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Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder of unknown
etiology. IBS is caused by a disruption in the gut-brain axis. Given the importance of
the gut microbiota in maintaining local and systemic homeostasis of immunity, endocrine,
and other physiological processes, the microbiota-gut-brain axis has been proposed as a
key regulator in IBS. Neurotransmitters have been shown to affect blood flow regulation,
intestinal motility, nutrient absorption, the gastrointestinal immune system, and the
microbiota in recent studies. It has the potential role to play a function in the
pathophysiology of the gastrointestinal and neurological systems. Transmitters and their
receptors, including 5-hydroxytryptamine, dopamine, g-aminobutyric acid, and histamine,
play an important role in IBS, especially in visceral sensitivity and gastrointestinal motility.
Studies in this field have shed light on revealing the mechanism by which
neurotransmitters act in the pathogenesis of IBS and discovering new therapeutic
strategies based on traditional pharmacological approaches that target the nervous
system or novel therapies that target the microbiota.

Keywords: neurotransmitters, irritable bowel syndrome, microbiota-gut-brain axis, 5-HT, dopamine,
GABA, histamine
INTRODUCTION

Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder (FGID) and one of
the most prevalent gastrointestinal diseases. The pathogenesis of IBS is multifactorial, includes
genetic, physiological, psychosocial, and environmental factors. The clinical characteristics of IBS
present as persistent or intermittent episodes, including abdominal pain, abdominal distention,
bowel habits, and changes in stool behavior, thus severely affecting the quality of life (1, 2).
Meanwhile, patients with IBS often have neurological dysfunctions, such as anxiety, depression, and
other symptoms (3). However, due to its complexity, the underlying mechanisms of IBS
pathogenesis are still a mystery (4). Currently, it is believed that the etiology of IBS may involve
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mental disorders, gut dysbiosis, gastrointestinal motility
disorders, visceral hypersensitivity, and intestinal infection (5).

Several mechanisms have been proposed in IBS pathogenesis,
including abnormal neural pathways and alterations in the
immune and endocrine systems, Together, these elements lead
to malfunctions in regulating intestinal smooth muscle
movement (Figure 1). Notably, recent studies highlight that
the gut microbiota plays a role in inflammation and immune
dysfunction via the gut-brain axis, which may contribute to IBS
pathophysiology (6). At the same time, a series of clinical and
animal studies showed that the abundance of some dominant
microorganisms was decreased, gut microbiota diversity was
decreased in IBS individuals, and the abundance of
Bifidobacteria and Lactobacilli, as well as Enterobacteria was
increased. Moreover, it has also been reported that host
resistance to pathogenic microorganism colonization is
weakened in patients with IBS. Many elegant works have
proposed that IBS is likely to be caused by intestinal flora
imbalance, which is also related to the induction of an
abnormal neuroendocrine network. The imbalance of intestinal
flora can lead to impaired intestinal mast cell function. Intestinal
mast cells play an important role due to their irreplaceable
functions in the intestinal mucosal immune system and
nervous system. The inflammatory mediators secreted by
intestinal mast cells act on adjacent endocrine cells and nerve
fibers to release neurotransmitters, which affect intestinal
motility, and sensation and can transmit information to the
nerve center, inducing high sensitivity of the visceral afferent
nerve, the intestinal nerve, and the intestinal nervous system,
resulting in intestinal dysfunction and IBS symptoms (7).
However, the mechanism by which the intestinal flora plays a
role is not fully understood. With the increase in histamine and
protease levels in the colon biopsy supernatant of patients with
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IBS, human submucosal neurons were excited (8). Changes in
stress hormones and brain-derived neurotrophic factor (BDNF)
levels occurred, but it seems that more neurotransmitter systems
or regulators may be the basis for microbial changes in host
behavior, and there was a lack of insight into these pathways at
the time (9, 10). Moreover, our previous studies also focused on
the topic of the “microbiota-gut-brain axis”, and an open-label
clinical study proved that children with autism spectrum
disorders had a significant improvement in gastrointestinal as
well as autistic symptoms after being given fresh feces by
colonoscopy and fecal microbiota transplantation (FMT)
capsules (11).Additionally, an animal study showed that
ulcerative colitis (UC) animal models exhibited depressive
symptoms, and rectal administration of the probiotic Roseburia
intestinal is helpful in colon repair and the recovery of
gastrointestinal function by restoring the gut microbiota (12),
These alterations in gastrointestinal malfunctions are also
followed by the alleviation of depressive-like behaviors through
the gut-brain axis.

Currently, available evidence has shown that neurotransmitters
in the gastrointestinal system might be important in regulating the
microbiota-gut-brain axis in IBS. This review will focus on the
possible role of neurotransmitters including 5-hydroxytryptamine
(5-HT), dopamine, g-aminobutyric acid (GABA), and histamine in
the microbiota-gut-brain axis (Table 1), and aims to summarize
recent clinical and animal studies to explain howneurotransmitters
are involved in FGIDs through synthetic mechanisms,
gastrointestinal distribution, and therapeutic targets (Figure 2).
IRRITABLE BOWEL SYNDROME

The pathological mechanism of IBS is unclear, and some studies
have reported that it may be related to psychology, central nervous
modulation, neuroendocrine response, gastrointestinal motility,
visceral hypersensitivity, etc (51). The recently revised Roman
standard IV defines irritable bowel syndrome as “In the past three
months, abdominal pain occurred on average at least one day per
week, accompanied by two or more of the following symptoms: i)
related to a change in defecation frequency, ii) associated with
defecation, iii) related to a change in stool form (consistency);
symptoms should last for at least six months” (52). Roman IV-
based questionnaires on bowel habits and abdominal pain are
widely used to diagnose IBS and further determine IBS subtypes
based on bowel movements and stool conditions. According to
clinical manifestations, IBS can be classified into the following
subtypes: unclassified (IBS-U), mixed type (IBS-M), constipation-
predominant (IBS-C), and diarrhea-predominant (IBS-D) (52,
53), among which diarrhea type is the most prevalent. The gut
microbiota of patients differs among different IBS subtypes, and it
is speculated to be related to the typical constipation subtype (54).
Studies have reported that patients with reduced IBS symptoms
after FMT had lower depression scores, but the depression scores
of patients who received placebo treatment did not change (55).

From the above evidence, IBS is generally thought to be a
multifaceted disease with a combination of peripheral and
central factors. In recent years, the conception of the
FIGURE 1 | Illustration of gut-brain bidirectional communication in IBS.
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microbiota-gut-brain axis has been proposed, and the gut
microbiota has been identified as an indispensable participant
in gut-brain communication (56). For the intestinal microbiota
hypothesis, the microbiota can influence the brain and behaviors
along the microbiota-gut-brain axis (57). Recent studies have
reported that IBS-related mental disorders (including
schizophrenia, anxiety disorders, and depression) are related to
or regulated by changes in the microbiota, while probiotics and
antibiotics, exogenous probiotics, and microbial substrates have
a certain therapeutic effect on these symptoms (58). A series of
data from animal experiments indicate that the gut microbiota
may affect the brain and even lead to neurological and mental
Frontiers in Endocrinology | www.frontiersin.org 3
illness. Therefore, microbiota may become a potential indicator
or a therapeutic target of many mental diseases, such as
depression, Parkinsonism, and IBS (59).
NEUROTRANSMITTERS

Neurotransmitters (NTs) are chemical messengers that transfer a
message from one neuron to the next, they are essential for
neurological functions and influence human behavior. Mental
disorders such as depression, anxiety, and mood disorders are
closely related to the abnormalities in neurotransmitters (60).
FIGURE 2 | Gut microbiota and neurotransmitters played an important role through the microbiota-gut-brain axis in IBS.
TABLE 1 | Research on neurological disorders and the microbiota-gut-brain axis.

Neuroticism Location Gastrointestinal
Function (Constipa-
tion or diarrhea. etc.)

Neurological diseases with
gastrointestinal
dysfunction

Gut bacteria disorder Clinical medication

5-HT Enterochromaffin cells
(ECs), mucosal mast
cells, and myenteric
neurons (13–15)

Diarrhea (16, 17)
Abdominal pain and
discomfort (16)

Affective disorders (18)
Multiple sclerosis (19)
Major Depressive Disorder
(20)

Indigenous spore-forming bacteria (Sp)
(21)

Ondansetron (22)
Tricyclic antidepressants
(TCA) and selective serotonin
reuptake inhibitors (SSRIs)
(18)Resveratrol (23)

Dopamine Nerve terminal layer of
the intestinal wall, and
the intestinal mucosa
(24)

Visceral pain
Increase intestinal
permeability (25, 26)

Anxiety (27, 28)
Depression (29, 30)
Multiple sclerosis (31)
Schizophrenia (32),
Alzheimer’s disease (AD) (33)
and Parkinson’s disease (PD)
(34)

Enterococcus faecalis (35)
Lactobacillus plantarum PS128 (36)

Metformin (25)
Butyrate, Losartan (26)
Imipramine (37)

GABA In intermuscular and
submucosal neurons
and intestinal epithelial
cells (38)

Intestinal motility,
gastric emptying,
nociceptive sensation,
and acid secretion (39)

Behavioral disorders, pain,
and sleep (40, 41)
Major Depressive Disorder
(42)

B. fragilis KLE1758 (42) Pregabalin, gabapentin or
baclofen (43)CGP7930 (39)
Bifidobacterium NCIMB8807
(44)

Histamine Gastrointestinal
chromaffin cells (45)

Gastric acid,
gastrointestinal
inflammation, and
abdominal pain (46)

Major Depressive Disorder
(47)

Plesiomonas shigelloides
Streptococcus thermophilus,
Staphylococcus warneri, Lactobacillus
parabuchneri, and Lactobacillus reuteri
(48)

Ebastin (49)
Ketotifen (50)
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The monoaminergic neurotransmitter deficiency hypothesis
suggests that joy, happiness, and other positive emotions are
associated with 5-HT, norepinephrine (NE), and dopamine,
while inadequate neurotransmitter levels would result in
depressive symptoms. Restoring the levels of these
neurotransmitters will have antidepressant effects (61).
Subsequent studies have shown that signals from other
neurotransmitters may also change during depression. For
example, glutamate and acetylcholine neurotransmitter levels
are higher, while GABA neurotransmitter levels are lower (60,
62, 63).

Neurotransmitters are produced not only by host cells, but also
by the intestinal flora, hence, gut microbes also affect the central
nervous system (CNS) through the microbiota-gut-brain axis (64,
65). A recent study revealed that changes in the gut microbiota
may contribute to mutual communication between the brain and
the intestine, and may change the cortical response through
neuroendocrine-immune stimulation (66). For example, it is
believed that the pathogenesis of depression may be related to
the gut microbes, which are indispensable in short-chain fatty acid
(SCFA) metabolism and play a crucial role in regulating
neurotransmitters in the CNS, especially in the hypothalamus (67).

In IBS patients, the physiological manifestations are closely
related to neurotransmitters, including abnormal gastrointestinal
motility, visceral sensory abnormalities, central sensory
abnormalities, anxiety, and depression (68). Changes in
microbial composition and metabolomics are related to the
abnormality in neurotransmitter expression in the system, and
would also influence the intestinal neuronal pathways that
control intestinal sensorimotor function (69, 70) These
neurotransmitters not only regulate blood flow, but also
influence intestinal movement, the absorption of nutrients,
natural immunity of the gastrointestinal system, and the
microbiota. Therefore, the pathways and mechanisms that are
involved in neurotransmitter synthesis, as well as neuron
inactivation, could serve as potential targets for therapeutic
drugs for psychiatric and neurological diseases because they
play such an important role in brain function.development
(71). In this review, we will mainly discuss the interaction of
neurotransmitters and the intestine through the microbiota-gut-
brain axis in IBS.

5-HT
5-hydroxytryptophan (5-HT) is a type of indoleamine [3-(b-
aminoethyl) -5-hydroxyindole]. It serves as not only a systematic
neurotransmitter and a hormone in the body, but also a
paracrine messenger in the gastrointestinal system (72). 5-HT
in the body is synthesized from the essential amino acid
tryptophan (Trp) in both the brain and gut, and the majority
of it (approximately 95% of total 5-HT) resides in the digestive
tract and is mostly produced and stored in enterochromaffin cells
(ECs) (13, 73). ECs are the most characteristic endocrine cells in
the intestine,—the largest endocrine organ in the human body,
—and can transform tryptophan to 5-HT via Trp hydroxylase 1
(TPH1). Peripheral 5-HT plays an essential role in regulating
intestinal sensation, movement, secretion of intestinal glands,
Frontiers in Endocrinology | www.frontiersin.org 4
and upholding intestinal balance, it does not cross the blood-
brain barrier and affects the CNS in healthy conditions. In the
human intestine, ECs act as sensors for the gut content. Under
certain stimulations, including acetylcholine, increased
intracavitary pressure, and low pH (74–76), 5-HT is released
from ECs and activates the intrinsic sensory neurons in the
intestinal wall to cause secretory reflex and peristalsis in the
intestine, while exogenous neurons can also be activated by 5-HT
to cause pain, discomfort, nausea, and vomiting (75, 77, 78)

In the gut, 5-HT is responsible for one of the core signaling
pathways, especially in modulating intestinal permeability and
regulating mucosal inflammation. In particular, intestinal
peristalsis and the secretory reflex are regulated by 5-HT
released from endothelial cells. They are stimulated by 5-HT1

and 5-HT4 receptors on submucosal primary afferent neurons,
while 5-HT3 receptors on primary afferent neurons may also play
a part in intestinal reflex activity (13). When the intestinal tract is
stimulated, 5-HT increases and binds to 5-HT3 receptors in the
exogenous primary afferent nerve endings, making the enteric
nervous system (ENS) and visceral afferent nerve highly
sensitive, thus resulting in discomfort, abdominal pain, and
diarrhea (16). 5-HT is related to colon inflammation in a DSS-
induced murine colitis model, and treatment by inhibiting 5-HT
production in colonic mucosa has a therapeutic outcome in
ameliorating colitis-associated symptoms and inflammation
(79). In addition, it has also been reported that in IBS-D
patients, the 5-HT and 5-HT3 receptors in the intestinal
mucosa are significantly higher than those in healthy controls,
indicating an impaired 5-HT system in IBS patients (80).

5-HT production in the gut is believed to be regulated by the
gut microbiota, although the mechanism by which the gut
microbiota acts in modulating intestinal 5-HT synthesis has
not yet been fully illustrated. Efforts have been made to
understand how the gut microbial community affects Trp
metabolism and 5-TH. Alterations in gut microbial
composition can lead to changes in the plasma level of Trp
along with its metabolites (79). Transplantation of feces from
IBS-C patients to healthy mice would cause gut microbiota
imbalance by reducing Firmicutes and increasing Bacteroides
and Akkermansia. Additionally, the mice showed a reduction in
5-HT in the intestinal tissue, and therefore suffered from
constipation and damaged intestinal barrier function (81).
Germ-free mice exhibit colon defects in producing 5-HT as
well as decreased serum 5-HT levels, and current evidence
suggests that SCFAs produced by the gut microbiota may play
a role in regulating TPH1 expression (82). Moreover, secondary
bile acids oriented from cholate viamicrobial transformation can
influence the synthesis of 5-HT (21). In addition, 5-HT is capable
of increasing the abundance of spore-forming bacteria in the gut
microbiota (83).

By focusing on 5-HT and the gut microbiota, traditional
Chinese medicine has made a breakthrough in treating IBS.
Tongxie prescription can effectively rebuild the gut microbiota
and gut microecology, reduce colonic 5-HT, and thus relieve the
symptoms of IBS-D (84). The oral administration of resveratrol,
an effective antioxidant, had a strong therapeutic effect on IBS
February 2022 | Volume 13 | Article 817100
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rats through the 5-HT1A receptor-dependent PKA-CREB-
BDNF pathway, and changed the concentration and metabolic
rate of 5-HT, as well as the expression of its receptor 5-H1A (23).
In a work that reports the beneficial effects of ondansetron, a 5-
HT3 receptor antagonists, on IBS-D patients who showed
significant abnormalities in mucosal serotonin metabolism, the
therapeutic effect of ondansetron was most obvious in patients
with the lowest 5-HT concentration in rectal biopsy tissues (22),
and the possible mechanism may be that 5-HT3 receptor
antagonists slow down the intestinal transport. In addition, a
meta-analysis reported that 5-HT3 receptor antagonists are
effective in improving symptoms in IBS-D (85, 86). Other
studies have proven that blocking the 5-HT6 receptor can
reduce the number of defecations, and the use of 5-HT6
receptor antagonists can relieve symptoms of IBS-D or other
forms of diarrhea (17).

Dopamine
Dopamine is a major catecholamine neurotransmitter that
regulates reward-motivated behavior, and it is synthesized by
both the central and peripheral nervous systems. It is also a
precursor of other catecholamines such as NE and epinephrine.
Dopamine is pivotal in multiple physiological processes,
including attention, motivation, reward, emotion, memory, and
appetite (87, 88). Most dopamine originates from tyrosine,
phenylalanine hydroxylase can convert L-phenylalanine into
tyrosine and it can also indirectly produce dopamine (87, 89).
Although dopamine along with its terminal products can be
detected in the cerebrospinal fluid and blood, it is difficult to
trace its source origin due to its complexity, it can be produced
not only by the CNS but also by peripheral organs such as the
kidneys and intestines (87).

Interestingly,mutual modulation exists betweenmicroorganisms
and catecholamines. In the presence of dopamine and NE,
pathogenic Escherichia coli O157:H7 (EHEC) displayed higher
viability, increased motility, and stronger virulence. Other
pathogenic bacteria such as Klebsiella pneumoniae and
Staphylococcus aureus were also found to be sensitive to NE,
which is possibly caused alterations in iron acquisition. In
addition, some strains of gut microorganisms are reported to be
capable of producing dopamine or NE, including Proteus vulgaris,
Serratia marcescens, Bacillus subtilis, and Bacillus mycoides (90).
Meanwhile, dopaminergic circuits have also been proven to be
sensitive to gut microbiota alterations. Some studies report that
germ-free (GF) and specific pathogen-free (SPF) mice showed
anxiety behavior under different stresses, with no significant
change in dopamine levels in the hippocampus (45, 91). Diaz
Heijtz et al. reported that the ratio of dihyroxy-phenyl acetic acid
and dopamine (DOPAC/DA ratio) in the striatum was significantly
higher in GF mice. Nishino and his group, found that fecal
microbiota transplantation from SPF mice to GF mice could
relieve anxiety symptoms in GF mice. Strikingly, the most
significant change found in monoamine in GF mice after fecal
transplant is the alteration in dopamine and its metabolites.

A study on GF mice also reported that some probiotics have
positive influences on anxiety behavior, Lactobacillus Plantarum
Frontiers in Endocrinology | www.frontiersin.org 5
PS128 showed an anti-anxiety effect, while dopamine and
homovanillic acid (one of the catecholamine metabolites) were
higher in the striatum, but there were no significant changes in
the prefrontal cortex, hippocampus, and striatum (36). Recently,
dopamine has been considered to be related to intestinal
homeostasis. Dopamine receptors which are distributed in the
intestinal wall (D1, D3, and D5 receptors) are present not only in
the intestinal mucosa but also in the nerve endings of the
intestinal wall. Dopamine D2 receptors are the main mediators
of the endogenous effect of dopamine (71, 92), they are found
only in nerve endings in the intestinal wall, while the D4 receptor
exists only in the mucosal layer (24).

Dysregulation of the dopaminergic system is associated with
anxiety (27), depression (29, 30)and intestinal microbe
imbalance (93). Alterations in the dopaminergic system are
found in patients with IBS, compared with the healthy cohort,
the IBS cohort has lower serum and urinal levels of dopamine
(22, 94). However, another clinical study reported that dopamine
levels were significantly increased in IBS-C patients, while IBS-D
patients did not show any difference (95). These opposite results
are unable to reflect the real-world situation of how dopamine
and dopamine-related metabolism is changed in IBS patients, but
evidence validated that dopamine could contribute to IBS. Some
researchers have made efforts to develop dopamine-based
therapy for IBS, and they have gained progress on this issue. In
restless legs syndrome (RLS) cases associated with IBS, the
administration of levodopa and dopamine agonists induced
improvement in both IBS and RLS symptoms (96). It has also
been reported that metformin, a widely used drug for treating
type 2 diabetes, can activate central D2 dopamine receptors, thus
reducing visceral hypersensitivity and increasing intestinal
permeability in IBS patients (25),. Similarly, butyrate enema
can improve visceral pain and colon permeability in an IBS
animal model. Losartan can prevent visceral pain and colonic
hyperpermeability in IBS rats, which may be dependent on the
PPAR- g, AMPK, and central dopamine D2 pathways, or
mediated by opioids and nitric oxide (26). Imipramine may
also inhibit visceral hypersensitivity and colonic permeability in
an IBS animal model through the a-2-adrenoceptor, dopamine
D2, and opioid pathways, and improve the intestinal barrier (37).

Gamma-Aminobutyric Acid
Gamma-aminobutyric acid (GABA) is an amino acid derivative
of glutamate, which is a major mediator of inhibitory
transmission in the mammalian nervous system. A large
amount of literature supports the association between changes
in GABA neurotransmission and many psychological diseases,
including behavioral disorders, insomnia, and pain (40). GABA
also plays an important role in homeostasis and disruption of the
ENS, such as acid secretion, gastric empties, intestinal motility,
and pain perception (39, 90). The sources of GABA in the
intestine include neurons containing GABA synthase, and
mucosal endocrine-like cells, indicating that GABA is not only
a neurotransmitter but also an endocrine agent in the
gastrointestinal tract (97). In IBS patients, the GABAergic
system is disrupted, and the levels of glutamate decarboxylase
February 2022 | Volume 13 | Article 817100
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2 (GAD2), GABA, and GABA receptors(including type B1 and
B2) are decreased, while GABA transporter-2 (GAT-2) is
increased in IBS-D patients (98).

For years, evidence has shown that bacteria are responsible
for GABA production as well as consumption. The E. coli strain
was found to be capable of taking GABA as the only source of
carbon and nitrogen decades ago, while a broad spectrum of
bacteria was been identified as GABA producers (90), including
Bifidobacterium and Lactobacillus. The gut microbiota has a
direct influence on GABA metabolism in the body. Fecal
transplantation from schizophrenia patients to GF mice
resulted in elevated levels of glutamine and GABA in the
hippocampus, and led to schizophrenia-related behaviors,
which are similar to other glutamatergic hypofunction murine
models (99). Meanwhile, compared to SPF mice, GABA levels in
the lumen and serum of GF mice are remarkably reduced, while
the cerebral level is intact (100). It is well known that dietary
intervention can change the composition and function of the gut
microbiota (101), and a ketogenic diet has been shown to
increase the level of GABA in the cerebrospinal fluid of
children with refractory epilepsy (102). In a recent fecal
transplant study, it was found that GABA was the most
variable metabolite in obese patients receiving allosteric fecal
transplants from lean donors (103). Unfortunately, how GABA is
produced by gut microorganisms and how it is involved in the
disease are still underunderstood.

GABA receptors in the mammalian CNS enable GABA to act
as a depressant and influence behavior. GABA-A receptors are the
major receptor of inhibitory neurotransmission in the CNS, and
are involved in most brain physiological functions (104). Enteric
nerve cells exert excitatory effects by increasing intracellular
chloride concentrations through sodium-potassium-chloride
transporters, thus activating GABA receptors in the ENS, rather
than inhibiting neurons in the CNS. The understanding of the
GABAergic system in the peripheral nervous system is relatively
limited, especially in the ENS. Studies have proven that both ionic
(GABA-A and GABA-C) and metabolic (GABA-B) receptors of
GABA exist in both nerve cells and nonnerve cells in the GI system
(105, 106). The mRNA level of the GABA-A receptor was
expressed in intermuscular and submucosal neurons and
intestinal epithelial cells (105). Seifi et al. demonstrated
immunolocalization of GABA subunits (a1-5 and g2) on mouse
colon ENS cells (107). Other studies have also shown that a
nonspecific GABA-A receptor ligand affects intestinal
contraction (108, 109).

The fact that the GABA-B receptor changed in IBS patients
and the evidence that mice exposed to stress had higher levels of
GABA-A receptor a3 in their colons indicated that stress may be
the reason for the change in GABA in IBS (110). Therefore,
GABA analogs and agonists may be effective in the treatment of
IBS. It has been reported that pregabalin may improve IBS
symptoms because it binds to calcium channels in ileum
neurons (43). In recent years, the US FDA has approved
pregabalin for the treatment of fibromyalgia and neuropathic
pain because of its analgesic and anxiety-relieving effects. And
Clinical studies have proven that pregabalin has a positive effect
Frontiers in Endocrinology | www.frontiersin.org 6
on IBS symptoms, especially IBS-M and IBS-D. Although
pregabalin can improve abdominal distention, abdominal pain,
and diarrhea, it does not affect IBS symptoms such as depression
and anxiety (111). In addition, gabapentin and baclofen are
effective and helpful for relieving visceral hypersensitivity. The
pharmacological effects of gabapentin on IBS were limited due to
hepatotoxicity and neurotoxicity, but it still improved pain and
anxiety-like behavior in mice (112), moreover, baclofen did not
show significant efficacy in reducing the visceral motor response
(113). CGP7930 is another GABA-BR agonist, and due to its
mechanism of action, it reduces visceral pain without the same
number of side effects as baclofen and promotes endogenous
GABA release (39). Although the GABA receptor is considered
to be a potential target in therapies for IBS, it also shows
significant side effects. Notably, the influence of GABA on host
cells could be enhanced by the microbiota. Oral supplementation
with Bifidobacterium brevis NCIMB8807pESHgadB, a strain that
produces GABA through overexpression of glutamate
decarboxylase B, reduced visceral sensitivity in a rat model (44).

Histamine
Histamine is produced from the amino acid L-histidine by
catalyzed oxidation decarboxylation of histidine decarboxylase,
which exists in many mammalian cells (87). Most of them are
expressed in mast cells and basophils, but can also be detected in
lymph nodes, thymus, and gastrointestinal chromaffin cells (45).
Histamine is an important regulator in various immune
responses, such as allergies and inflammation, and it can also
modulate the motility of the gastrointestinal tract, increase the
permeability of the intestinal mucosa, and affect mucosal ion
secretion. Based on this, histamine is speculated to be involved in
IBS pathogenesis. Several clinics and animal studies have found
that the histamine level in the colon was increased in IBS
cases (114).

The metabolism of histamine mainly depends on histamine-
N-methyltransferase (HNMT) and diamine oxidase (DAO) (115,
116). According to its location, histamine in vivo is deaminated
or methylated by DAO and HNMT enzymes, respectively (117).
DAO is an extracellular secretion enzyme that oxidizes and
deaminates histamine to produce imidazole acetaldehyde.
Animal studies have shown that DAO forms the main hurdles
for histamine absorption (118). HNMT is a cytoplasmic enzyme
that forms N4-methylhistamine by methylation of inactivated
histamine imidazole rings, requiring receptor-mediated
endocytosis or specific transporters to transport histamine into
cells (119). Furthermore, histamine is synthesized by neurons in
the posterior hypothalamus, which extends from axons to the
entire brain and acts as a neurotransmitter (120). Apart from
host cells, histamine can also be produced by some strains of
microorganisms, such as E. coli and Morganell morganii.
Interestingly, certain bacteria are capable of regulating the
synthesis of histamine by producing histidine decarboxylase
(HDC), an enzyme that transforms histidine to histamine (114).

It was recently proposed that histamine receptor agonists for
treating allergies, can also reduce visceral hypersensitivity,
immune activation, and symptoms in IBS patients (121).
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Urinary histamine levels in IBS patients are related to the disease
severity of IBS, especially abdominalgia (94). Some studies have
shown that histamine-tolerant patients can reduce the a
diversity of gut microbiota, change the abundance of Proteus
and Bifidobacteria, and elevate the fecal zonulin level (122).
Preclinical and clinical results suggest that pain in some
patients with IBS may be caused by fungus-induced mast cell-
derived histamine release, which in turn activates sensitization of
sensory-afferent expressed histamine-1 receptors and associated
nociceptive transient reporting potential channel V1
(TRPV1) (123).

Histamine can activate its 7-transmembrane G-protein
coupled receptors, including H1, H2, H3, and H4 (45), which
are expressed on both presynaptic and postsynaptic nerve
membranes (124). Presynaptic histamine receptors, as
autologous or heterologous receptors, regulate neurotransmitter
release from the axon terminal to synaptic cleft via different
responses (125). Histamine receptors are distributed in various
places of the nervous system, and their specificity of localization
depends on their physiological correlation (126). Studies have
shown that H1 and H4 are the main histamine receptors involved
in the gastrointestinal process, and H2 is associated with the
production of gastric acid (46).

IBS patients who respond well to H1 antagonists differ from
others, hinting that the histaminergic system of IBS patients may
be overstimulated (127). Recent evidence has shown that histamine
increases the sensitivity of mouse dorsal root ganglion and human
rectal submucosal neurons to TRPV1 by activating the H1 receptor
(HRH1). In addition, the supernatant of IBS biopsy tissue also
enhanced the sensitization of mouse dorsal root ganglion neurons
throughHRH1. Based on these findings, 51 IBS patients were given
ebastin, a nonsedative HRH1 antagonist,and after treatment,
ebastin reduced IBS symptoms and abdominalgia in patients
(49). Since the expression was increased in the colonic mucosa
of colitis-infected, H1 and H4 receptors may have an important
effect on the pathogenesis of colitis and visceral hypersensitivity. In
a model of postinflammatory colitis, an H4 antagonist can
improved abdominal pain (128). New interventions to block H1

receptors are being proposed because ebastin improved IBS clinical
signs such as abdominalgia and visceral allergy (49), while ketotifen
can upregulate the pain threshold and improve the quality of life of
IBS patients (50).

Other Neurotransmitters
The abovementioned neurotransmitters involved in IBS via the
microbiota-gut-brain axis were intriguing, and other
neurotransmitters have also attracted attention for
understanding the etiology and pathogenesis of IBS. Many
researchers have proven that NE and glutamate are responsible
for the occurrence of IBS. For example, one study pointed out
that NE levels in IBS patients changed after taking the a-2
receptor antagonist yohimbine and agonist clonidine. IBS
patients have increased anxiety and altered yohimbine and NE
levels in plasma, whereas plasma NE levels are positively related
to increased brain arousal in these cases (129). Targeting
corticotropin-releasing factor receptor type 1 (CRF-R1) was
also an option for treating active IBS patients. The NE
Frontiers in Endocrinology | www.frontiersin.org 7
pathway of the locus ceruleus complex is changed in patients
with IBS, and CRF-R1 may reduce the responsiveness to
stress (130).

At the same time, tryptophan metabolism is also related to
depression in patients with IBS (131). The immune-sensitive
enzyme indoleamine 2,3-dioxygenase (IDO), which is
responsible for the degradation of tryptophan was increased in
IBS, however, the level of neuroprotective kynurenic acid (KynA)
and the ratio of KynA/Kyn were reduced (132). Riluzole is a
glutamate uptake activator that modifies visceral hypersensitivity
in adult stressed animals, but it does not influence adolescent
animals (133). The results from clinical and animal experiments
suggest that N-methyl-D-aspartate (NMDA) receptors play an
important role due to their blockade, which reduces the negative
effects of stress and anxiety (134, 135). These findings suggested
that regulation of the Kyn/tryptophan pathway may affect the
receptors of NMDA in the CNS, might be involved in the
progression of depression and may be a therapeutic target
against the psychotic syndrome of the IBS patients (136, 137).
Another study has also shown that microinjection of different
doses of glutamate into the hypothalamic paraventricular
nucleus (PVN) can not only reduce visceral sensitivity but also
reduce the frequency of vagus nerve discharge (138). In addition,
it has been reported that compared to the control sample,
mGluR7 gene and protein expression levels in the colonic
mucosa of rats with visceral hypersensitivity were upregulated.
However, the administration of AMN082 (an mGluR7 agonist)
can reduce visceral hypersensitivity, which indicates that
targeting mGluR7 may be useful for relieving IBS (139).
CONCLUSION AND FUTURE
PERSPECTIVE

Currently, the management of IBS has attracted attention due to
the lack of effective medication and the difficulty of single-agent-
based therapy to relieve symptoms. Intestinal microflora
disorders are found in patients with different subtypes of IBS.
At present, the gut microbiota is closely associated with IBS onset
and symptoms in multiple aspects. Although probiotics have
achieved preliminary efficacy in the treatment of IBS, the
therapeutic mechanism remains unclear. IBS patients with
neurotransmitter dysfunction have a series of symptoms, such
as disturbance of the intestinal environment. Increasing evidence
has proven that bidirectional communication exists between the
gut microbiota and neurotransmitters. Neurotransmitters
participate in blood flow, the absorption of nutrients, the gut
microbiota, immunity, and intestinal movement to control and
maintain the balance of the intestinal environment. Exploring its
potential functions will help to understand the pathophysiology
of IBS and find new targets for the treatment of IBS. However, the
gastrointestinal tract is a complex system controlled by multiple
regulators. The hormones produced by local mediators, the CNS,
ENS, and other organs will affect the concentrations of
neurotransmitters and their ultimate impact on intestinal
physiology. Many studies have reported that 5-HT and GABA
interact with the gut microbiota in many studies of functional
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gastrointestinal diseases, but relatively few studies have examined
histamine and dopamine. This suggests that neurotransmitters
need to be given more attention in future studies of the
microbiota-gut-brain axis. Intestinal microbes can produce
neurotransmitters and regulate them along the gut-brain axis.
Therefore, more efforts are needed to reveal the mechanism of the
microbiota-gut-brain axis in IBS. The impact of the microbiota
composition on modulating neurotransmitter signals along the
microbiota-gut-brain axis opens up an innovative and interesting
approach. Animal studies that combine microbiota intervention
with neurotransmitter receptor antagonists support this idea more
strongly. However, most of the evidence was based on animal
experiments, and thus there is an urgent need for a well-designed
clinical study to verify this. This review provides a basis to continue
the exploration of the complex interactions between
neurotransmitters and their receptors, and the microbiota-gut-
brain axis in the pathophysiology of IBS.
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