
 

 

Int. J. Mol. Sci. 2014, 15, 4977-4993; doi:10.3390/ijms15034977 
 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Review 

The Multiple Mechanisms of Cell Death Triggered by 
Resveratrol in Lymphoma and Leukemia 

Raffaele Frazzi * and Marco Tigano 

Translational Research Laboratory, Department of Research and Statistics,  

IRCCS Arcispedale S.Maria Nuova, 42123 Reggio Emilia, Italy; E-Mail: marco.tigano@asmn.re.it  

* Author to whom correspondence should be addressed; E-Mail: raffaele.frazzi@asmn.re.it;  

Tel.: +39-0522-295842; Fax: +39-0522-295454. 

Received: 3 February 2014; in revised form: 27 February 2014 / Accepted: 12 March 2014 /  

Published: 20 March 2014 

 

Abstract: Lymphoma and leukemia represent a serious threat to human health and life 

expectancy. Resveratrol is, among the natural-derived chemopreventive molecules, one of 

the most effective and better studied. In this paper the main mechanisms of cell death 

triggered by- or linked to- resveratrol are reviewed and discussed. The main focus is on 

lymphoma and leukemia experimental models where resveratrol has been tested and 

investigated at the cellular, molecular or physiological levels. The most relevant in vivo 

challenges involving resveratrol are also reported and analyzed in order to define the key 

features of this polyphenol and the potential for the treatment of hematologic tumors.  
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1. Introduction 

Resveratrol (RSV) is a natural polyphenol belonging to the class of stilbenes (3,5,4'-trihydroxystilbene). 

It was first isolated from the roots of white hellebore in 1940 and later, in 1963, from the roots of 

Polygonum Cuspidatum, a plant already used in the Chinese and Japanese traditional medicine [1,2].  

The noteworthy list of beneficial effects demonstrated on eukaryotic organisms and human beings 

explains the great interest raised by this compound. These positive effects include anti-oxidant and 

anti-aging properties, improvement of insulin sensitivity, reduction of cardiovascular disease risk and 

chemoprevention in cancer, among others [3]. Interestingly, RSV has also been postulated to be a 

mimetic of the effects of caloric restriction (CR). CR is a nutritional protocol that contemplates an 

OPEN ACCESS



Int. J. Mol. Sci. 2014, 15 4978 

 

 

average reduction of 40% in caloric intake and that has been proven to lead to the elongation of 

lifespan in several animal models, including rodents [4]. RSV was demonstrated to extend lifespan of 

yeast, worms and flies as well as CR [5,6]. The linkage between RSV and life extension through an 

effect on the animal metabolism is therefore plausible, even though the mechanisms involved have yet 

to be defined exactly at the molecular level. 

The recent scientific literature reports the RSV antiproliferative and pro-apoptotic activity against  

a great variety of human cancer cell lines spanning from colon to prostate, from breast to lymphoma, 

from mesothelioma to leukemia [7–12]. 

Many mechanisms of action have been postulated in order to explain the antiproliferative activity of 

RSV. These include the activation of the intrinsic apoptotic pathway, the mitochondrial release of 

cytochrome c and the involvement of Bax, the generation of reactive oxygen species (ROS), the 

modulation of p53 pathway and the activation of the extrinsic death receptor pathway [13]. 

Specifically, RSV intereferes with the mitochondrial respiratory chain, and leads to the increase of 

ROS production [14]. The redox state of the cells plays a role in many types of apoptosis and the ROS 

produced at the level of the mitochondria can be involved in cell death [15]. The modulation of 

antioxidant enzymes can explain RSV’s ability to inhibit DNA damage in human lymphocytes induced 

by various toxic drugs and its ability to function as chemopreventive agent [16–18]. The current 

opinion is that RSV can work as a pro-oxidant as well as an anti-oxidant agent depending on the 

concentration administered to the cells and on the cell types [13]. For instance, the exposure of 

leukemia cells to sub-lethal concentrations of RSV exerts a protective action that results in the 

inhibition of drug-induced apoptosis [19]. The phenomenon of cytoprotection at low doses and 

cytotoxicity at high doses is called “hormesis”. Hormesis describes the bi-phasic dose-response that is 

common not only to RSV but also to many phytochemicals [20]. 

RSV can induce apoptosis in several types of cancer cells also through the modulation of the 

proteins belonging to the Bcl-2-family. RSV acts by neutralizing anti-apoptotic proteins while inducing 

the protein expression, conformational changes and cellular redistribution of the pro-apoptotic proteins 

of the Bcl-2-family [13]. This topic will be discussed further in this paper. 

Indeed, RSV is a chemically well known molecule that exerts pleiotropic effects. That is to say, 

several molecular targets are affected by RSV treatment and the resultant pleiotropic activity explains 

the diverse mechanisms of action that have been described thus far. 

The aim of this paper is the review of the mechanisms of cell death triggered by or linked to RSV 

on tumor cells of hematologic origin. We also summarize the few clinical studies concerning the use of 

RSV on human beings in order to provide relevant information about the actual mechanisms of cell 

death triggered in human tissues. These studies also underline the most critical aspects emerging from 

the translation to humans. The results are discussed in light of a possible future application of RSV to 

hematologic malignancies. 

2. RSV in Non-Hodgkin Lymphoma and Leukemias 

To date the literature describing the effects of RSV in Non-Hodgkin lymphomas (NHL) and 

leukemias is quite rich. The first scientific evidence demonstrating the antiproliferative and pro-apoptotic 

properties of RSV on these tumors were published starting from 2000 [21–24].  
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First, the changes on the cell cycle progression were reported. These include the accumulation in 

the S phase followed by the dose-dependent apoptosis onset, demonstrated by the increase of the sub-G1 

peak and by the increase of Annexin+ (AnnV+) cells [21]. Accordingly to these authors, RSV induced a 

Fas-independent and Caspase-8 (Casp-8) independent apoptosis in the T-cell derived lymphocytic 

leukemia cell line CEM-C7H2. Furthermore, in the myeloid leukemia cell line HL-60, RSV can  

kill the cells resistant to CD95/Fas-mediated cell death, confirming that RSV acts through a  

Fas-independent mechanism [22]. Interestingly, the mitochondrial membrane depolarization and the 

Casp-9 activation were involved in the RSV-mediated cell death of several Acute Lymphoblastic 

Leukemia (ALL) cell lines [22]. 

This evidence point to a role of Caspase-9 (Casp-9) as the initiator caspase able to trigger Caspase-3 

(Casp-3) cleavage following RSV treatment also in lymphoma cells. Cytochrome c is released from the 

mitochondria after Bax homo-oligomerization in colon and breast cancer cells treated with RSV,  

as recently demonstrated by Gogada and co-workers [25]. This is consistent with previous data  

showing that the mitochondrial membrane potential is lost as a consequence of RSV in several  

ALL lineages [22] and that this is the leading mechanism of the intrinsic apoptotic pathway activation.  

The proteins of the Bcl-2 family are heavily affected by RSV in leukemia and lymphoma cells. 

WSU-CLL and ESKOL cell lines and lymphocytes from patients affected by B-cell chronic 

lymphocytic leukemia were killed by RSV through apoptosis while the iNOS and Bcl-2 anti-apoptotic 

proteins were down-regulated [26]. In the same fashion, the promyelocytic leukemia-derived cell line 

HL-60 was killed by apoptosis and Bcl-2 expression down-regulated by RSV [27]. In the Burkitt’s 

lymphoma cell line Ramos, RSV down-regulated the two anti-apoptotic proteins Bcl-XL and Mcl-1 

while it up-regulated the pro-apoptotic proteins Bax and Apaf-1 [28]. Notably, in the same study, the 

human peripheral blood mononuclear cells (PBMCs, both quiescent or mitogenically stimulated) did 

not show any toxicity after being treated with the same concentrations of RSV (10 µM). Also in 

chronic myeloid (K562) and in acute lymphoblastic (HSB-2) leukemia cells, RSV induced cell growth 

inhibition and apoptosis through the increase of the pro-apoptotic Bcl-2 member Bax and the 

cytochrome c release [29]. Along with the just described bi-functional activity on Bcl-2-family 

members, RSV induces conformational changes and cellular redistribution of Bax and Bak. RSV is 

able to trigger the exposure of the Bax N-terminus and its translocation to mitochondria in colon 

cancer cells and in leukemia cells [30,31]. The exposure of the N-terminus of Bax and Bak seems to be 

required for the translocation to mitochondria and the induction of apoptosis. 

Casp-3 and STAT3 phosphorylation are also involved during RSV-mediated cell death of  

T-lymphocytes infected with human T-cell leukemia virus type 1 (HTLV-1) [32]. In these cell lines 

(MT-2 and HUT-102) RSV induces the cleavage of casp-3 and poly(ADP-ribose) polymerase 

indicating a caspase-dependent apoptosis. In the same system of adult T cell leukemia, myeloid cell 

leukemia sequence (Mcl-1) and cellular inhibitor of apoptosis protein (cIAP)-2 were inhibited, together 

to STAT3 phosphorylation [32]. These data confirm some previous observations where RSV induced 

apoptosis of adult T cell leukemia cells by down-regulating the antiapoptotic protein surviving [33]. 

As mentioned in the introduction, RSV also exerts its effects on cell metabolism. Consistently, many 

authors using different experimental models have reported that Adenosine Monophosphate-activated 

Protein Kinase (AMPK) is a key target in mediating RSV activity on metabolism; for instance, RSV 

stimulates glucose transport in myotubes by activating AMPK [34].  
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An interesting in vivo study demonstrates that mice deficient for AMPK are insensitive to  

RSV-mediated metabolic effects [35]. Furthermore, the lifespan extension of worms mediated by RSV 

requires AMPK [36].  

Recently, an intriguing relationship between RSV, adiponectin and AMPK activation has  

been demonstrated by Wang and co-workers in 3T3-L1 adipocytes [37]. Adiponectin is an  

adipocyte-derived hormone that plays a relevant role in regulation of insulin sensitivity and energy 

homeostasis. In this work the results confirm the RSV-mediated increase and multimerization of 

adiponectin and the RSV-mediated increase of DsbA-L (a main modulator of adiponectin) in 3T3-L1 

adipocytes. Interestingly, the authors demonstrate that the positive effects of RSV are mediated 

through the activation of AMPK and the transcription factor FOXO1 also in this adipocyte setting.  

A new and intriguing activity of RSV has been demonstrated in Chronic Myelogenous Leukemia 

(CML) cell lines [38,39]. CML is characterized by the reciprocal chromosomal translocation t(9;22) 

(q34;q11) that results in the formation of the Philadelphia (Ph) chromosome [40]. The Ph chromosome 

(present also in the Ph+ ALL) contains the abnormal fusion gene Bcr-Abl that produces the fusion 

protein BCR-ABL. This abnormal product constitutively localizes in the cytoplasm and retains the 

tyrosine-kinase activities of the c-ABL enzyme therefore activating a cascade of pathways promoting 

the cell proliferation and the anti-apoptotic mechanisms. Notably, two major survival and proliferation 

pathways are activated by BCR-ABL tyrosine-kinase: the PI3K/AKT/mTOR and the Mitogen 

Activated Protein Kinases (MAPK) pathways respectively [40]. 

RSV is able to inhibit the growth of CML leukemic cells by means of different mechanisms. One 

way is by activating AMPK that is a metabolic sensor at the crossroads between DNA damage and cell 

growth regulation [41]. AMPK is recognized as one of the main suppressors of the subunit mTORC1, 

a heterotrimeric protein kinase that includes mTOR [42]. AMPK is activated by RSV also in CML and 

participates in two relevant steps leading to the inhibition of the mTOR pro-survival pathway. First, 

AMPK activates tubular sclerosis 1–tubular sclerosis 2 (TSC1/2) heterodimer leading, in turn, to the 

inhibition of Ras homologue enriched in brain (Rheb) [41]. Rheb is a small GTP-binding protein that 

activates mTORC1. The second mechanism by means of which AMPK inhibits mTORC1 is through 

the RSV-mediated activation of autophagy in CML cells [39,43]. AMPK phosphorylation on Thr172 is 

increased following RSV treatment in both Imatinib-sensitive and Imatinib-resistant CML cell lines [39]. 

This is accompanied by the decrease of the phosphorylation status of mTOR, p70-S6 kinase,  

S6 ribosomal protein and 4-EBP1, suggesting the blockade at the level of TSC1/2, the heterodimer  

that inhibits mTORC1. The knockdown of AMPK in CML cells leads to the abrogation of the  

RSV-mediated LC3-II accumulation. LC3-II is a hallmark of autophagy that is up-regulated by RSV 

treatment. Coherently, the constitutive expression of mTOR upon engineering in the same cells 

abrogates the RSV-mediated LC3-II accumulation as well. These experiments show that RSV may 

regulate autophagy in CML cells through the activation of AMPK and the inhibition of the mTOR 

pathway [39].  

Consistent with this evidence, a new population-based genetic association study has recently 

unveiled a role for the AMPK subunit haplotype in the risk to develop NHL in women with no family 

history of cancer [44]. Specifically, the association of two haplotypes with follicular lymphoma (FL) 

and diffuse large B-cell lymphoma (DLBCL) histological subtypes strengthens the link between 

AMPK and lymphoma pathogenesis also in humans. 
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It has also been reported that human B lymphoma cells treated with RSV up-regulate the class-II 

human leucocyte antigen (HLA-II) [45]. This phenomenon involves both classical and non-classical 

HLA class-II proteins and leads to the increase in the HLA class-II antigen processing in B-cell 

lymphomas and their subsequent recognition by CD4+ T cells. These data suggest that RSV may be 

useful in improving the immune recognition of malignant B cells by CD4+ T lymphocytes, opening an 

interesting perspective for the immunochemotherapy of B-cell lymphomas. 

A recent work by Espinoza and co-workers describes a new property of RSV in leukemia cells [46]. 

The activating receptor NKG2D is expressed by cells of the innate and adaptive immune system, 

including the Natural Killer (NK) cells. NKG2D promotes the cytotoxic lysis of cancer cells by 

interacting with diverse and structurally different ligands. Several leukemia cell lines express the 

NKG2D ligand (NKG2D-L). This ligand, when up-regulated by stress stimuli, confers to the  

ligand-expressing cells a higher susceptibility to the NK-mediated cell lysis through the NKG2D 

receptor [47]. A major modulator of the expression of NKG2D-L at the cell surface is  

ataxia-telangiectasia mutated (ATM) [48]. The experiments performed by Luis Espinoza and 

colleagues demonstrate several effects depending on the treatment with RSV. First, ATM is activated 

by RSV in leukemia cells and different NKG2D-Ligands (NKG2D-Ls) are up-regulated as well at the 

cell surface; Second, ATM knockdown through shRNAs blocked the RSV-mediated up-regulation of 

surface NKG2D-Ls; Third, the NK-mediated cell death of leukemia cells is enhanced by pre-treatment 

with RSV and this effect is proportional to the levels of NKG2D-Ls induced by RSV in different 

leukemia cell lines [46]; Therefore, the NKG2D-triggered cell death may be a therapeutic mechanism 

elicited by the treatment with RSV on target cells also in vivo. The involvement of the immune system 

effector cells would be a great enhancement that cooperates and synergizes with the direct inhibitory 

action of RSV on cancer cells.  

The chemopreventive properties of RSV have been studied also in terms of the potential to 

modulate estrogen homeostasis and, consequently, to inhibit the formation of estrogen-DNA  

adducts [49]. The formation of estrogen-DNA adducts is recognized to be a critical factor in the 

etiology of several human cancers, including NHL. Specifically, a study conducted on men diagnosed 

with NHL shows that the concentration of estrogen metabolites, conjugates and depurinating DNA 

adducts in the urine was several folds higher in NHL patients (n = 15) than in healthy control men  

(n = 30; median ratio of 86.0 vs. 18.0, respectively) [50]. The general mechanism of estrogen-DNA 

formation involves the oxidation of catechol estrogens to quinones, which can react with DNA. The 

excessive formation of catechol estrogen quinones can lead to cancer initiation. Balanced and 

unbalanced estrogen homeostasis can be preserved or mitigated, respectively, by the use of specific 

compounds, including RSV. RSV reduces the semiquinones to catechol estrogens and leads to the 

reduction of the amount of catechol estrogen quinones available to react with DNA in order to form the 

critical adducts for cancer initiation [49]. 

The main molecular targets described in this paragraph are represented in Figure 1. Collectively, the 

reported evidence supports further studies on human subjects and, specifically, on lymphoma and 

leukemia patients. 
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Figure 1. Schematic representation of the recently discovered RSV molecular targets on 

leukemia or lymphoma cells as described in this paper (ATM, Ataxia telangiectasia 

mutated; NKG2DL, killer cell lectin-like receptor subfamily K member 1-ligand;  

LC3-II, microtubule-associated protein 1 light chain 3; AMPK, Adenosine  

Monophosphate-activated Protein Kinase; TSC1/2, tubular sclerosis 1–tubular sclerosis 2; 

Rheb, Ras homologue enriched in brain; mTOR, mammalian target of rapamycin; 

TORC1/2, target of rapamycin complex 1/2; BCR-ABL, breakpoint cluster region  

protein-c-abl oncogene 1, non-receptor tyrosine kinase; SIRT1, silent information regulator 

2 homolog 1; FOXO1, forkhead box protein O1; ROS, reactive oxygen species; MAPK, 

mitogen-activated protein kinase; PI3K, phosphatidil-inositol 3 kinase; Akt, RAC-alpha 

serine/threonine-protein kinase). The arrows represent an activation while the T-shaped 

lines represent an inhibition. 

 

3. RSV in Hodgkin Lymphoma  

There is currently just one paper describing the effects of RSV in Hodgkin lymphoma (HL) [51].  

In this work we assessed the RSV potential to induce apoptosis and inhibit the cell cycle progression  

of the L-428 HL cell line. We demonstrated the dose-dependent, pro-apoptotic activity and the 

involvement of some molecular mediators such as SIRT1, p53 and FOXO3a as caused by RSV 

treatment. We also showed, for the first time, the anatomical localization of the histone/lysine 

deacetylase SIRT1 in human reactive lymph nodes and in HL-affected lymph nodes on a total of  

30 patients. These preliminary observations suggest a selective expression of SIRT1 in the germinal 

centers (GCs) of the follicles and in the Hodgkin Reed-Sternberg cells, respectively. The GCs are the 

areas of the follicles where the lymphocytes proliferate after the antigen encounter. Together with the 

affinity maturation of antibodies, the GC reactions also bear the risk of generating autoreactive B-cells 

and malignant B-cell clones [52]. 
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Furthermore, our preliminary observations point to the fact that SIRT1 is highly expressed by 

proliferating centroblasts (unpublished data). This can be due either to the fact that actively 

proliferating cells feature a higher metabolic rate when compared to resting cells, or to the direct 

involvement of SIRT1 during the proliferating process. 

The fact that SIRT1 is activated or inhibited in cancer cells by RSV is still a matter of debate 

(Figure 1). SIRT1 can block senescence, cell differentiation and stress-induced apoptosis while 

promoting cell growth and angiogenesis [53]. Yet, there is also evidence pointing to the potential of 

SIRT1 to suppress the growth of intestinal and colon cancers, among others [54]. The current opinion 

is that the protein level and the enzymatic activity of this deacetylase can be modulated in a  

context-dependent fashion and that SIRT1 is involved in carcinogenesis, even though the mechanism 

still remains elusive [55]. 

4. In Vivo Tumor Experimental Models 

RSV has been investigated in terms of therapeutic and chemopreventive potential in several in vivo 

cancer models. These experimental models encompass tumors of epithelial origin and just a few 

hematologic tumors. Some of the most relevant challenges on tumors of epithelial origin are 

summarized in Table 1 [17,56–65].  

Table 1. Some of the most relevant papers describing the use of RSV on animal experimental 

models of solid tumors. 

Year Tumor experimental model Animal model Reference

1997 Skin cancer Female CD-1 mice [56] 
2009 Skin cancer Female C3H/HeN mice [57] 
2009 Skin cancer Female Swiss mice [58] 
2010 Skin cancer SENCAR mice [59] 
2002 Breast cancer Female Sprague-Dawley rats [60] 
2005 Breast cancer FVB/N female mice [61] 
2013 Breast cancer Female Sprague-Dawley rats [62] 
2013 Breast cancer Female BALB/c mice [63] 
2006 Colorectal cancer Male Wistar rats [17] 
2010 Colorectal cancer C57 BL/6 mice [66] 
2009 Prostate cancer Male Sprague-Dawley rats (SV-40 Tag) [64] 
2013 Lung cancer Female SCID mice [65] 

The aim of this paper is not a comprehensive summary of all the in vivo experimental cancer 

models where RSV has been tested. On the contrary, our focus is to underline the most relevant and  

up to date findings available that provide useful information in support of the use of RSV for the 

treatment of hematological tumors. 

The literature reports the data on mouse lymphocytic leukemia both in vitro and in vivo [67].  

This paper describes the antiproliferative and pro-apoptotic activity of RSV on mouse lymphocytic 

leukemia and translates the model system into BALB/c mice. The in vivo reported results show  

the increase in the overall survival of tumor-bearing mice after RSV intra-gastric administration  

(Kaplan-Meier curves). Spleen lymphocytes also showed a higher Con A-induced proliferation rate 
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after treatment with RSV when compared to the controls. In this work, the effect of the intraperitoneal 

injection of RSV on the survival of the mice is not reported though, at variance with the results shown 

for the intra-gastric administration).  

Mouse T-lymphoma EL-4 cells were injected into immunocompromised NOD/SCID mice and 

treated with RSV (100 mg/kg body weight) [68]. The results demonstrate the dose-dependent 

reduction of the tumor mass and the increase of the overall survival when the mice received daily 

doses of RSV orally. These interesting results are supported by the findings that RSV induced 

apoptosis of EL-4 cells via both the intrinsic and the extrinsic apoptotic pathways [68]. 

The in vivo evidence concerning Acute Lymphoblastic Leukemia (ALL), on the contrary,  

do not demonstrate any beneficial effect of the oral or intraperitoneal administration of RSV to 

immunocompromised NOD/SCID mice engrafted with this human leukemia [69,70]. When mice were 

fed with a RSV-containing diet and next challenged with ALL engrafment, no delay in leukemia 

development was observed. Furthermore, RSV did not improve the activity of the chemotherapeutic 

drug vincristine since the survival curves and the percentages of human lymphocytes in the blood 

showed no differences with the controls [69]. When given intraperitoneally, RSV did not have any 

positive effect on the progression of ALL neither in terms of survival curves nor percentage of 

circulating human leukemic cells [70].  

Another mouse challenge of RSV on Balb/c mice injected with human acute myeloblastic leukemia 

Kasumi-1 cells reports a significant improvement of survival of the animals treated with RSV [71]. In 

this model, RSV was administered i.g. for 24 days before the injection of Kasumi-1 leukemia cells 

through the tail vein. The differences were statistically significant when the animals were administered 

with 10 or 20 mg/kg/day of RSV. Phospho-STAT3 was decreased by RSV in the livers of the treated 

animals when compared to the controls. 

This data concerning lymphoma or leukemia experimental models (summarized in Table 2) 

strengthens the need to carefully choose the route of administration during the challenges and point to 

the fact that the outcomes may be context-dependent. 

Table 2. Some of the most relevant papers concerning in vivo challenges of hematological 

tumors with RSV. 

Year Tumor experimental model Animal model Reference

2007 L1210 mouse lymphocytic leukemia Male BALB/c mice [67] 
2011 EL-4 mouse lypmhoma NOD/SCID mice [68] 
2012 Human ALL NOD/SCID mice [69] 
2012 Human ALL NOD/SCID mice [70] 
2010 Human acute myeloblastic leukemia Kasumi-1 Male BALB/c mice [71] 
2009 Human PBMCs  [72] 
2013 Human CLL  [73] 

5. RSV and Challenges in Humans 

The literature that concerns the effects of RSV on human subjects presents significant findings but 

is limited thus far [74]. 
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Two of the most relevant challenges on cancer are represented by the works by Brown and  

Patel [75,76]. These studies described the administration of RSV orally to twenty human subjects  

with histologically confirmed colorectal cancer at eight daily doses before surgical resection. The 

administration of RSV caused the reduction of the tumor cell proliferation by 5% (p = 0.05) and this 

effect was likely due to the parent compound and by resveratrol-3-O-glucuronide that were recovered from 

the tissues [76]. Parallel research was aimed at evaluating the safety, the pharmacokinetic and the effects on 

circulating levels of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) after 

repeated dosing of RSV. This research describes the study on forty healthy volunteers ingesting RSV 

daily for 29 days. The results demonstrate that resveratrol-3-O-sulfate, resveratrol-4'-O-glucuronide, and 

resveratrol-3-O-glucuronide are major plasma metabolites and, most importantly, that the ingestion  

of RSV caused a decrease in circulating IGF-I and IGFBP-3 (p < 0.04 for both) in all volunteers. 

Therefore, repeated administration of high doses of RSV generates micromolar concentrations of 

parent and much higher levels of glucuronide and sulfate conjugates in the plasma, together with a 

decrease in circulating IGF-I and IGFBP-3. The modulation of these molecules in the plasma might 

contribute to cancer chemopreventive activity since the IGF signalling system (consisting of IGFs, 

IGFBPs and IGF receptors) plays a role in tumorigenesis [75]. Specifically, several studies suggest a 

direct relationship between levels of IGF-I, and an inverse relationship between the levels of IGFBP-3, 

and the risk of colorectal, prostate, breast or lung cancer [77]. Interestingly, the anticarcinogenic 

activity of calorie restriction in preclinical models seems to be, at least in part, mediated via the 

reduction of circulationg IGF-I [78]. It has been published that RSV can lower circulating IGF-I in 

diabetic mice on a high-calorie diet and in prostate tumor tissue of TRAMP mice [79,80]. These data 

collectively represent a link between RSV chemopreventive activity and IGF signalling system also in 

human cancer. 

Very relevant information concerning RSV sulphate-metabolites is reported in a recent paper by 

Patel and colleagues [81]. Here, the authors demonstrate that RSV metabolites contribute to the  

in vivo activity through regeneration of the parent compound. After repeated ingestion of RSV by 

healthy volunteers and cancer patients, sulphate and glucuronide conjugates of RSV in human plasma 

and tissue were measured. The extent of the cellular uptake dictated the antiproliferative activity and 

relies on specific membrane transporters. Furthermore, colon cancer cell lines incubated with  

RSV-monosulfate mixture (75 µM) or with RSV (10 µM) generate RSV and resveratrol-3-O-sulfate, 

respectively, within the cells. Growth inhibition was observed after RSV-monosulfate mixture 

administration and, most interestingly, sulphate metabolites induced autophagy and senescence.  

Lipid-bound protein 1 light chain 3 (LC3-II, a marker of autophagy) and the cyclin-dependent kinase 

inhibitor p21 (a marker of senescence) decreased intracellularly after the treatment with a steroid 

sulfatase inhibitor (estrone 3-O-sulfamate), even after the treatment with RSV-monosulfate mixture. 

These data indicate that RSV regeneration within the cells is a pivotal event for the observed 

antiproliferative activity. Therefore, sulphate-conjugates represent a physiological circulating pool of 

RSV that gradually regenerates the parent compound in selected cells and tissues, leading to the in vivo 

observed beneficial effects [81].  

Another paper reports the effects of RSV on human PBMCs isolated from healthy volunteers [72]. 

This interesting work demonstrates the bi-phasic effect of RSV on human B-cell proliferation. 

Specifically, PBMCs were analyzed after six days of culture and assessed for their proliferation 
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potential. RSV doses of 5 µM increased the proliferation of CD19+ B lymphocytes in a statistically 

significant manner while a concentration of 10 µM inhibited B lymphocyte proliferation. These data 

suggest that RSV affects human B lymphocyte proliferation and apoptosis in vivo.  

An intriguing antileukemic activity of RSV on human chronic lymphocytic leukemia (CLL) 

patients was recently been reported by Tomic and co-workers [73]. CLL patients were administered 

with RSV and some haematological and molecular parameters of circulating tumor cells were 

measured. STAT3 phosphorylation decreased, as well as white blood cells count and O-linked  

β-N-acetylglucosamine (O-GlcNAc) proteins. CLL cells are characterized by high levels of O-GlcNAc 

proteins and these affect intracellular signalling processes and disease progression [82]. This study is 

limited though by the very low number of CLL patients tested (n = 3) and by the poorly defined 

schedule of administration of RSV to the patients. 

6. Conclusions and Perspectives 

RSV is an attractive molecule in several fields of human health, as confirmed by the number of 

publications concerning this natural phytoalexin [74]. Cancer is, among the age-related deadly 

diseases, one of the research fields where RSV has demonstrated a great potential but has been just 

partially characterized, possibly due to the low bioavailability of the parental compound together with 

the partial knowledge of the role played by RSV-glucuronides and -sulfonates that are generated 

physiologically in the bloodstream [81,83].  

The low bioavailability of the parental compound based on poor resorption and extensive 

biotransformation is a well known limit of the molecule [84]. The metabolic pattern of RSV is 

complex and leads to the formation of 3-sulfate, 3,4'-disulfate, 3,5-disulfate, 3-glucuronide,  

4'-glucuronide and two diglucuronides, as described by Burkon and Somoza [85]. It seems also that, in 

the intestine and liver, the dose of RSV dictates the type of produced metabolites. Specifically, at low RSV 

concentrations, sulfation prevails whereas at higher RSV concentrations sulfates drop and glucuronides 

become prevalent [86,87]. RSV exerts several in vivo activities despite the extensive biotransformation and 

this may be explained through some mechanisms including the hydrolysis of the conjugates in the target 

tissues (that re-generates the parent compound), the recirculation after deconjugation in the gut and the 

biologic activity of the RSV-sulfates and RSV-glucuronides themselves [84]. 

Another interesting RSV-related molecule is piceatannol, which is a naturally occurring stilbene 

present in sugar cane, berries, peanuts, red wines and the skin of grapes [88]. Piceatannol is also  

a RSV-metabolite, generated via the cytochrome P450 1A2 and 1B1 enzymes and it is one of the  

main RSV-metabolites present in the liver. Therefore, one hypothesis is that RSV may function as a 

pro-drug for the production of piceatannol or other stilbenes that probably contribute to the observed 

beneficial effects [88]. 

The clinical trials in human subjects focused on diabetes, cardiovascular diseases, cancer and 

inflammation and the doses of RSV administered were diverse. The described ranges span from 0.03 to 

5.0 g daily doses of RSV [74]. RSV is rapidly absorbed when administered orally and reaches a peak 

in the bloodstream within 60 min [75,76]. However, the already mentioned rapid conversion to 

different metabolites hampers the definition of a suitable, recommended dose for a given disease.  

The conclusions reached by the working group on RSV on this issue are that the relevant effective 
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doses of RSV need to be established in humans in relation to the different diseases that it may 

counteract and that these doses will vary accordingly to the specific effects being studied [74]. 

The confirmed sensitivity of lymphoma and leukemia cells to RSV, together to the better 

knowledge of the actual molecular targets of this polyphenol, may lead to future useful applications.  

It is known that RSV: 

- may exert its activity on human PBMCs in a bi-phasic/dose-dependent way; 

- is cytotoxic to lymphoma and leukemia cancer cells since it can trigger apoptosis, autophagy  

or senescence; 

- seems not to be toxic to human PBMCs, either resting or mitogenically stimulated; 

- is well tolerated by humans and its physiological metabolites may work as a circulating 

reservoir of the parent compound that can be re-generated within the cells of the intestinal tract; 

- is a chemically well-known molecule whose structure can be improved and modified  

by substitutions aimed at increasing the anticancer properties or the bioavailability of the  

active principle. 

The recent findings reported in this paper provide a rational summary of some the most interesting 

molecular targets of RSV in lymphoma and leukemia. These should be integrated to the information 

provided by the most advanced techniques of Gene Expression Profiling and Next Generation Sequencing. 

Indeed, the effects of RSV on human cells must be considered context-dependent and normal cells 

could respond differentially when compared to cancer cells to the same RSV doses and in the same 

experimental conditions. Even though this issue may increase the complexity, we believe that is a key 

feature of RSV that needs to be taken in consideration all the times this molecule is introduced in the 

experimental design.  

Finally, more in vivo approaches are strongly recommended in order to define the actual 

chemopreventive or therapeutic doses that can be relevant and realistic for future developments. The 

optimal RSV dose that can achieve useful results has to be determined for each pathology and type of 

cancer and will possibly vary depending on the histology of the tumor. The same approach should be 

adopted during the characterization of RSV-derivatives as well as RSV-metabolites. 
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