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Drug development is a long, expensive and multistage process geared to achieving safe drugs with high
efficacy. A crucial prerequisite for completing the medication regimen for oral drugs, particularly for
pediatric and geriatric populations, is achieving taste that does not hinder compliance. Currently, the
aversive taste of drugs is tested in late stages of clinical trials. This can result in the need to reformulate,
potentially resulting in the use of more animals for additional toxicity trials, increased financial costs and
a delay in release to the market. Here we present BitterIntense, a machine learning tool that classifies
molecules into ‘‘very bitter” or ‘‘not very bitter”, based on their chemical structure. The model, trained
on chemically diverse compounds, has above 80% accuracy on several test sets. Our results suggest that
about 25% of drugs are predicted to be very bitter, with even higher prevalence (~40%) in COVID19 drug
candidates and in microbial natural products. Only ~10% of toxic molecules are predicted to be intensely
bitter, and it is also suggested that intense bitterness does not correlate with hepatotoxicity of drugs.
However, very bitter compounds may be more cardiotoxic than not very bitter compounds, possessing
significantly lower QPlogHERG values. BitterIntense allows quick and easy prediction of strong bitterness
of compounds of interest for food, pharma and biotechnology industries. We estimate that implementa-
tion of BitterIntense or similar tools early in drug discovery process may lead to reduction in delays, in
animal use and in overall financial burden.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The use of sophisticated and highly automated processes in
drug discovery has resulted in expedited pipelines and the
approval of more than 4,000 medicines as of April 2020 [1]. Yet,
a key aspect related to regimen compliance has not been properly
addressed. The oral route remains the main way for drug adminis-
tration [2], with aversive taste of drugs causing swallowing diffi-
culties and compliance problems. This is especially relevant with
pediatric medicine, for which encapsulation does not always pro-
vide a solution [3–5]. Even though some bitter-masking agents
exist, they are often insufficient for masking or preventing a drug’s
intensely bitter taste [4–6]. Indeed, more than 90% of pediatricians
report that a drug’s aversive taste and low palatability are the big-
gest barriers to completing the medication regimen, leaving chil-
dren with limited access to ‘‘child-friendly” drugs and exposing
them to possible harm and insufficient treatment [4,7]. Because
of the potential risks caused by aversive taste of drugs, the Food
and Drug Administration (FDA) has added taste events to their
Adverse Event Reporting System [8] and expects that all medicines
with the potential to be given to children should be assessed for
palatability [9,10]. The problem is also acute for the older popula-
tion, and the European Medicines Agency (EMA) reflection paper
on the development of medicines for geriatrics lists taste as a key
consideration for medicine development [11]. Sour or metallic
taste can also elicit aversion, but intense bitterness is particularly
abundant among drugs, and many of them were shown to activate
bitter taste receptors [12,13]. The challenge imposed by aversive
taste in drug development has led to the establishment of several
assays for bitterness measurement, including the rat brief access
taste aversion (BATA) [14], electronic tongues and human sensory
panels [15].
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The current pipeline for drug development process includes four
main stages: drug design, preclinical phase (animal testing), clinical
phases in human and the final review and approval by the medici-
nes regulators including the FDA and the EMA [16,17]. During the
design and preclinical phases, the taste of the drug is usually disre-
garded. It is evaluated, if at all, only during the clinical phases when
the drug is introduced to humans. As a result, in clinical trials with
nauseous drugs (usually due to intense bitterness), reduced compli-
ance to the treatment and increased dropout rates have been docu-
mented in several cases [18,19]. In addition, knowledge of the
aversive taste of drug candidates enables the selection of a similarly
aversive placebo in order to avoid unblinding of the trials [20,21].
Often, it is only once intense bitter taste is suspected to affect the
clinical trial and cause compliance problems, that the palatability
of the drug is tested, usually in human taste panels [15]. This may
lead to reformulation of the drug and repeat the preclinical and clin-
ical phases. Such detours may delay a potential medicine from get-
ting to the patient for an additional 6 to 24months, potentially using
additional animals, and increasing financial costs. For a moderately
successful medicine, this could be a reduction in income estimated
at hundreds of millions of dollars.

Bitter taste can be elicited by structurally diverse compounds.
Over 1000 bitter-tasting compounds are currently documented in
BitterDB. Salts, peptides, fatty acids, polyphenols, alkaloids, ter-
penoids and compounds from additional chemical families con-
tribute to the wide chemical space of bitter tastants [22,23].
Bitter compounds vary also in their perceived intensity: quinine
and amarogentin were reported as extremely bitter to humans,
recognizable at micromolar concentrations. Other molecules, such
as caffeine and naringin elicit slightly bitter taste and are typically
recognizable at millimolar concentrations [23]. Notably, we
showed that bitter compounds are not more toxic than non-
bitter compounds [24], questioning the common paradigm that
posited the evolutionary role of bitter taste as a marker for toxicity
[25,26].

Bitter compounds are recognized by G-protein coupled recep-
tors subfamily of bitter taste receptors, called T2Rs [27,28], that
harbor 25 functional T2R subtypes in human [29]. While some
receptors are broadly tuned with hundreds of diverse ligands,
others are very selective with 0–3 known agonists [30,31]. T2Rs
are not only expressed in the oral cavity but also in many extraoral
tissues, possessing different physiological roles besides chemosen-
sation of bitter tastants [32,33]. For example, activation of T2Rs
expressed in human airway smooth muscle with inhaled bitter tas-
tants was shown to mediate relaxation of the muscles and
decreased airway obstruction in mouse models of asthma [34].
T2Rs expressed in thyrocytes were shown to regulate the produc-
tion of thyroid hormones and influence the function of the thyroid
gland [35]. Surprisingly, a human cohort suggested that polymor-
phism in T2R42 gene, an orphan bitter taste receptor, is associated
with lower thyroid hormone levels [35]. The fact that T2Rs can be
expressed in extraoral tissues and that orphan T2Rs can be associ-
ated with physiological phenomena may suggest the involvement
of T2Rs in health and disease [32] as well as a potential off-
target for drugs [36].

We have previously developed BitterPredict [37], which classi-
fies molecules into bitter or non-bitter with over 80% accuracy.
Several other machine learning predictors followed suit [38,39].
In addition, structure-based methods were developed for identifi-
cation of new agonists for specific bitter taste receptors
[12,40,41]. Here we are interested specifically in finding intensely
or extremely bitter molecules, since these are the ones that are
likely to cause compliance problems. This will allow project teams
to address very bitter compounds in the early stages of develop-
ment and focus on bitterness masking for the flagged molecules
or deprioritizing them for oral administration.
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To establish a machine learning algorithm for intense bitter-
ness, data had to be gathered: we curated data from BitterDB
and from a public repository of natural compounds by AnalytiCon
Discovery [42], and have measured bitterness intensity of several
new compounds using the BATA assay. Next, we successfully
trained a new machine learning classifier ‘‘BitterIntense” with
the ability to assign compounds as ‘‘very bitter” (VB) or ‘‘not very
bitter” (NVB) based on descriptors calculated from their chemical
structure. BitterIntense was then used to assess prevalence of VB
compounds in datasets of interest in order to elucidate additional
attributes of VB compounds as in relation with possible toxic and
therapeutic effects.
2. Materials and Methods

BATA assay. The rat brief access taste aversion (BATA) model
has been demonstrated as a highly translatable tool for screening
bitter compounds [14,43]. Comparison of BATA and human gusta-
tory trials at GlaxoSmithKline (GSK) suggest an average offset of
0.5 log concentration (3-Fold), with rats typically slightly more tol-
erant to bitter taste than humans [43]. We have chosen the 3 mM
IC50 in rat model as a threshold for classifying compound as ‘‘very
bitter” or ‘‘not very bitter”, and 0.1 mM human recognition thresh-
old in human data. This accommodates both the difference
between species, and difference between measures (IC50 is the
concentration that inhibits 50% of consumption, while recognition
threshold is the lowest concentration at which recognition occurs).
Studies at GSK were performed using Davis Rig MS-160 lickome-
ters (DiLog Instruments, Tallahassee, USA) and as described by Soto
et al. [14] with the following exceptions: 12 male Sprague Dawley
Crl:CD (SD) rats (number determined following power analysis of
historic GSK data), 6 to 7 weeks of age on arrival, supplied by
Charles River UK (Marston, UK) were used per study. Rats were
housed in groups of either two or four, kept on a 12 h light: dark
cycle, 19-21oC, 45–55% humidity. 5LF2 rodent diet (LabDiet, Mis-
souri, USA) was fed ad libitum. Animal grade drinking water
(AGW) was reverse osmosis filtered, UV treated and provided ad li-
bitum between water restriction periods. All testing occurred dur-
ing the light period. Rats were water restricted for 21 h prior to
each test session to ensure sufficient thirst for the rats to attempt
to lick all solutions presented. Each test session was limited to a
maximum of 30 min, following which rats were returned to their
home cages and given free access to AGW for a minimum of
2.5 h before commencement of the next water restriction period.
Following completion of each study, rats were health assessed by
a named veterinary surgeon and returned to non-naïve stock. A
minimum one-week washout period was provided prior to use of
rats on subsequent BATA studies.

All compounds presented during BATA studies were fully solu-
bilised across a range of concentrations with 0.5 log dose separa-
tion to generate concentration response curves. Lick counts of
zero and one were excluded from data sets due to being deemed
an insufficient attempt to lick a solution and therefore not related
to palatability. Lick responses were modelled using a three param-
eter logistic function with the minimum constrained to zero (R
v.3.5.1, Foundation for Statistical Computing, Vienna, Austria). Lick
response was expressed as a percentage of the median AGW
response within each study, 95% confidence interval. The concen-
tration of API that elicited lick rates equivalent to 50% of the med-
ian AGW was then calculated and deemed the IC50.

All animal work conforms to the UK Animals (Scientific Proce-
dures) Act, European Directive 2010/63/EU and the GSK Policy on
the Care, Welfare and Treatment of Animals. All protocols were
approved as part of the GSK Scientific and Ethical Review Forum
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and carried out in accordance with the appropriate project licence
issued by the UK Home Office.

For all studies performed at GSK, commercially available com-
pounds were sourced from Sigma Aldrich (Gillingham, UK). GSK
compounds were supplied by the internal dispensary.

BitterDB and Analyticon data. Data on bitterness intensity and
chemical structures for the training and testing of the model were
also obtained from BitterDB [23] and Analyticon’s repository on
Kaggle website [42]. There are about 180 compounds with known
sensory thresholds (out of 217 that have any kind of sensory data,
provided in Supplementary Material). Compounds that were ver-
bally described as intensely bitter, in most cases possessed bitter
recognition thresholds below 0.1 mM and compounds that were
described as slightly bitter, possessed thresholds with values
higher than 0.1 mM. Based on this, all compounds with bitter
recognition threshold below 0.1 mM, were classified as ‘‘very bit-
ter”, and compounds with bitter recognition threshold above
0.1 mM were classified as ‘‘not very bitter”.

For compounds with unknown bitter recognition thresholds, we
considered the taste descriptions. For example, we classified com-
pounds as very bitter if they were described as ‘‘Intensely/ex-
tremely bitter”, ‘‘more bitter than quinine”, etc. On the other
hand, compounds that were described as ‘‘slightly/weak bitter”
were classified as not very bitter. The addition of the non-bitter
subset had shown to be beneficial in preliminary testing of the
classifier (not shown), increasing the ability to distinguish between
very bitter compounds and not very bitter compounds.

Chemical families analysis. The chemical families of the com-
pounds in the training set were extracted using ClassyFire web-
server [44].

Datasets preparation. After obtaining the SMILES strings of the
compounds, we uploaded the compounds to Maestro (Schrödinger
Release 2017–2: MS Jaguar, Schrödinger, LLC, New York, NY, 2017).
We generated 3D structures using ligprep and Epik (Schrödinger
Release 2017–2: LigPrep, Epik, LLC, New York, NY, 2018) in pH
7.0 ± 0.5. All compounds were desalted when available, retaining
the bigger ion and excluding the smaller counter ion. In general,
if structures had additional molecules, these were removed. We
retained the original chirality of compounds when specified, other-
wise we generated additional stereoisomer per ligand. For each
compound, the conformer with the lowest energy was extracted
and used. When 2 stereoisomers where generated for one com-
pound, we kept both structures. Compounds that could not be neu-
tralized were excluded from the sets due to the limitations of
calculating QikProp descriptors. All the datasets in this current
study were prepared in the same protocol as mentioned above.

Descriptors calculation. Three sets of descriptors were calcu-
lated for the prepared 3D structures using Canvas (Schrödinger
Release 2017–4: Canvas, Schrödinger, LLC, New York, NY, 2017):
Physicochemical descriptors, Ligfilter descriptors (moieties, atoms
and functional groups) and QikProp descriptors (ADME descrip-
tors). For the QikProp descriptors, additional PM3 properties were
calculated as well (Schrödinger Release 2017–4: QikProp,
Schrödinger, LLC, New York, NY, 2017). Compounds that failed to
calculate one of the descriptors were excluded from the analysis.

Dataset split for training, test and hold-out sets. All the col-
lected compounds were divided randomly into training, test and
hold-out set using functions from python’s Scikit-learn package.
The training set consisted of 493 compounds: 169 very bitter com-
pounds and 324 not very bitter compounds.

The test set consisted of 123 compounds: 43 very bitter com-
pounds and 80 not very bitter compounds and was used for testing
the performance of the model during the training. The hold-out set
consisted of 105 compounds: 31 very bitter compounds and 74 not
very bitter compounds. We have established this set for final eval-
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uation of the model, as an external set of compounds that the
model has never encountered before.

Distributions of selected descriptors (MW, AlogP, Ring count
and QPlogHERG) in the training, test and hold-out sets are shown
in Supplementary Fig. S3.

Model construction and fitting. The XGBoost model was con-
structed and fitted using Python 3.7.5, in Spyder 3.7 environment.
Relevant packages: Scikit-learn (version 0.21.3), XGBoost (version
0.9), Numpy (version 1.17.4), pandas (version 0.25.3), matplotlib
(version 3.1.1) and seaborn (version 0.9.0).

An early stopping approach was used in the training process, in
which the performance of a model is monitored during the training
process which is stopped once the performance ceased improving,
see Figs. S1 and S2. The evaluation metrics for the early stopping
were: logarithmic loss [45] and Binary classification error rate (de-
fined as = #(wrong cases)/#(all cases)).

Feature selection. The most contributing features were
selected according to their feature importance gain score, calcu-
lated using XGBoost library in python [46]. We constructed a loop
that tested the changes in the accuracy of the model by setting dif-
ferent thresholds of the gain scores in order to select the best fea-
tures. When setting the threshold on 0.004, we maintained 55
features (out of 235 original features) that had the most contribu-
tion to model, obtaining 83% accuracy.

Parameter tuning. The parameters of the XGBoost algorithm
were tuned using sklearn’s GridSearchCV from sklearn.model
selection module [47]. The number of cross validation folds was
set to 10 and the scoring method was set for ‘f1 score’ in order
to improve the precision and the recall. Parameter tuning was per-
formed on the training set using the initial fitted model, suggesting
that the optima parameters are: colsample_bytree = 0.6,
gamma = 0.5, max_depth = 5. In brief, colsample_bytree is the frac-
tion of features that will be randomly sampled to construct each
decision tree, gamma represents the minimum loss reduction
required to make a further partition on a leaf node of the decision
tree and max depth represents the maximum depth of a tree. In
addition, the parameter (scale_pos_weight) that helps with unbal-
anced data was tuned by the ratio between positive and negative
observations in the training set to 1.9.

Evaluation of the performance of the model. After calculating
the number of true positives (TP), true negatives (TN), false posi-
tives (FP) and false negatives (FN), we evaluated the model using
four metrics:

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN
Precision ¼ TP
TP þ FP
Recall=Sensitiv ity ¼ TP
TP þ FN
Specificity ¼ TN
TN þ FP
F1 score ¼ 2 � Precision � Recall
Precisionþ Recall

Toxicity data. FocTox dataset consists of FAO/WHO food con-
taminants list and a list of extremely hazardous substances defined
in section 302 of the U.S. Emergency Planning and Community
Right-to-Know Act. CombiTox dataset is a combination of two
datasets (The Toxin and Toxin-Target Database version 2.0
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(T3DB) and DSSTox—the Distributed Structure-Searchable Toxicity
Database). The datasets were taken from the paper of Nissim I. et al.
[24].

Hepatotoxicity data. All hepatotoxicity descriptors were
extracted from FDA’s DILIrank [48] dataset which is an updated
version of the LTKB (Liver Toxicity Knowledge Base) Benchmark
dataset [49]. DILIrank consists of 1,036 FDA-approved drugs with
known hepatotoxicity descriptors and liver toxicity risk assess-
ments. The compounds in the dataset were prepared as explained
in ‘‘Datasets preparation” section.

External datasets. DrugBank (version 5.1.5) consist of experi-
mental and approved drugs [1], and Natural products atlas (NPat-
las, version 2019_08) [50] were downloaded from their official
websites. Compounds were prepared according to the protocol of
‘‘Datasets preparation” section. COVID 19 drugs and their targets
were retrieved from ‘‘IUPHAR/BPS Guide to Pharmacology” [51].
After excluding the antibodies and compounds without chemical
structure we prepared the remaining 34 compounds according to
the ‘‘Datasets preparation” section.

Data Analysis and visualization of the data. All the data in this
current study was analyzed using Pandas library [52] and visual-
ized with Matplotlib [53] library in Python.
3. Results

Establishment of positive and negative sets. 34 compounds
were obtained from behavioral studies using the rat brief access
taste aversion (BATA – see Materials and Methods). Additional
compounds were pulled from the BitterDB [23], and the Analyticon
repository of natural compounds on kaggle [42]. The compounds
were classified into 2 classes: ‘‘Very bitter” (VB) and ‘‘Not very bit-
ter” (NVB) using the following criteria: Compounds with sensory
bitter recognition threshold below 0.1 mM; or molecules with taste
description that states ‘‘extremely bitter” or ‘‘intensely bitter” etc.,
were included in the VB class (246 compounds). Compounds with
bitter recognition threshold above 0.1 mM or molecules with taste
description that includes ‘‘slightly bitter” or ‘‘weak bitter taste”
etc., were included in the NVB class (323 compounds). The BATA
test measures aversion, which is assumed to be driven mainly by
bitterness. The IC50 achieved for each compound in the BATA test
was used to classify compounds using the following criteria: mole-
cules with IC50 below or equal to 3 mMwere classified as VB. Mole-
cules with IC50 above 3 mMwere classified as NVB. In addition, 152
non-bitter compounds were added to the NVB class from the neg-
ative set used previously in BitterPredict [37] to enable correct pre-
diction (namely, they should be classified as NVB) also for non-
bitter compounds. For practical purposes pursued here, we group
non-bitter and not very bitter into the same category. The non-
bitter compounds that were included in the negative set were ran-
domly selected and had MW greater than 250 g/mol to match the
MW of very bitter compounds.

Chemical families analysis. Bitter compounds are structurally
diverse and, and many chemical families can elicit bitter taste
[22]. Drug-like molecules and phytonutrients, such as flavonoids,
isoflavones, terpenes, and glucosinolates can elicit bitter taste with
various intensities [54]. Here we analyze which chemical families
are enriched with intensely bitter compounds. The chemical fami-
lies for VB and NVB compounds in the training set are represented
in Fig. 1. The VB class is enriched with triterpene saponins and
triterpenes in general, while NVB class is broadly represented by
different chemical families. The results suggest that triterpene
saponines are the most abundant VB compounds in our training
set. Interestingly, this family is also found among the top chemical
families of NVB molecules, illustrating that taste intensity can not
be simply deduced based on the chemical family of the compound.
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Training the classifier. Physicochemical, Ligfilter and Qikprop
descriptors were calculated for the compounds in the dataset
(see Materials and Methods). 15% of the compounds (105 com-
pounds) were chosen randomly and left out of the training set, as
a hold-out test set for final evaluation of the model. The other
616 compounds were randomly divided into: 80% training set
(493 compounds) and 20% internal test set (123 compounds).
Extreme Gradient Boosting (XGBoost) algorithm was chosen for
this classification task. XGBoost is a popular and powerful
decision-tree-based ensemble method that uses optimized gradi-
ent boosting techniques and is known to perform well with small
to medium size datasets [46].

Since the training set is rather small, we extracted the highest
contributing features (see Materials and Methods) in order to avoid
overfitting. 55 features were selected out of 235 for the model
training. Further details are described in the Methods section.

BitterIntense Performance. Evaluation of the model’s perfor-
mance (Table 1) was carried out on three sets: training set (with
cross-validation, k-fold = 10), test set, and hold-out set. Bit-
terIntense was able to achieve over 80% accuracy across the differ-
ent datasets. The precision, which indicates the ratio between the
true positives and all the positive assignments (true positives and
false positives), was on average 80% on training set, 71% on the test
set and 63% on the hold-out set. Recall, which indicates how well
the model identified the true positives (ratio between true posi-
tives and the sum of true positives and false negatives) was on
average 85% on the training set, 86 on the test set and 77% on
the hold-out set. In addition, we calculated the F1-score which is
another metric for the accuracy of the model by taking into
account both the precision and the recall values (defined as the
harmonic mean of precision and recall, see Methods section): for
the training set F1-score was 82 ± 5%, for the test set 78% and for
the hold-out set 70%. In general, we observed higher recall values
than precision values, suggesting that our model has less false neg-
atives than false positives. This result is in line with our goal to
maximize identification of very bitter compounds.

Important features. The feature importance was measured in
XGBoost by the ‘‘gain” method which is the average gain of splits
which use the feature in the prediction process. Higher gain value
implies greater importance of the feature. The top 15% of features
are represented in Fig. 2 and suggest that molecule’s size and
polarizability are the most influential factors for bitterness level.
Fitting the model using the heavy atom count feature only, results
in 70% accuracy on the training set, with recall and precision of 70%
and 58% respectively. This result emphasizes the importance of
molecular size and suggests correlation between the size of the
molecule and the bitterness intensity.

Relationship between bitterness intensity and toxicity.
Though bitter taste is often regarded as a marker for toxicity that
guards against consuming poisons [55], our previous analysis
showed that bitter compounds are not necessarily toxic and vice
versa [24]. We explored whether similar conclusions hold for VB
compounds, by comparing toxicities of VB and NVB compounds.
BitterIntense was applied to toxic compounds from FocTox and
CombiTox datasets, collated in previous work [24]. The FocTox
dataset consists of FAO/WHO food contaminants and extremely
hazardous substances. Out of 289 compounds, only 25 were pre-
dicted to be very bitter (pVB, 8.6%). CombiTox, a manually curated
dataset of toxic compounds [24], holds ~134,000 compounds, out
of which 12% were pVB, suggesting that toxic substances are not
necessarily very bitter and in fact, most of the toxicants are pre-
dicted to be NVB. Thus it appears that only ~10% of toxic com-
pounds are intensely bitter.

We further checked the possible connection between the level
of bitterness and liver toxicity (hepatotoxicity) and cardiac toxic-
ity. Hepatotoxicity is the most common cause for the discontinua-



Table 1
BitterIntense performance on the training, test and hold-out sets. Training set
evaluation was done using k-fold cross validation with k = 10. The results in the
training set column represent the mean metric with its standard deviation across 10
iteration of cross validation.

Training set Test set Hold-out set

(493 compounds) (123 compounds) (105 compounds)
Accuracy (%) 87 ± 5 83 80
Precision (%) 80 ± 8 71 63
Recall (%) 85 ± 4 86 77
F1 score 82 ± 5 78 70

Specificity (%) 81 81

Fig. 1. Representation of chemical families in the training set (A) – Top chemical families represented in the dataset of very bitter compounds. (B) - Top chemical families
represented in the dataset of not very bitter compounds. The compound on the lower left side (Asperosaponin VI) is a representative of very bitter triterprene saponins, the
compound on the lower right (Nitrosaccharin) is a representative of not very bitter benzothiazoles. Deriv. = derivatives.
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tion of clinical trials on a drug, and the most common reason for an
approved drug’s withdrawal from the marketplace [48,56]. Drug-
induced liver injury (DILI) has been listed as the leading cause of
acute liver failure in the USA in 2002 [57], and DILI has become
Fig. 2. Top 15% important features in the model. The importance is calculated by the ave
XGBoost model. The heavy atom count, molar refractivity, number of likely metabolic rea
hydrogen) component of the solvent accessible surface area (PISA), hydrophobicity (A
Predicted IC50 value for blockage of hERG channels (QPlogHERG).
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an important concern in the drug discovery process. A possible
connection between the level of bitterness and hepatotoxicity
could suggest that the level of bitterness is a potential marker for
such toxicity. We predicted the level of bitterness of drugs with
known hepatotoxicity descriptors, taken from DILIrank dataset
[48].

Most of the drugs in the dataset (729 compounds) were pre-
dicted as NVB (pNVB), and only 258 were predicted as VB. The
pVB drugs do not appear to be more hepatotoxic than the pNVB
drugs: the most hepatotoxic class (class number 8, Fig. 3A) as well
as the ‘‘Most DILI concern” category (Fig. 3B) are actually enriched
with pNVB drugs.

Cardiac toxicity is a possible side effect of many anti-cancer
drugs [58] and other drugs, causing heart problems as well as sud-
den cardiac death [59]. For this reason, the FDA has required
almost all new drugs to be assessed for cardiac toxicity, which
led to discontinuation of clinical trials and even withdrawal of
rage gain of splits which use the feature in the prediction process in each tree in the
ctions (metab), number of tertiary amines and amide groups, p (carbon and attached
logP), hydrophobic component of the solvent accessible surface area (FOSA) and



Fig. 3. Bitterness levels of drugs and their hepatotoxicity descriptors. (A) Distribution of pVB (silver) and pNVB (black) drugs across severity classes of hepatotoxicity. (B)
Distribution of pVB and pNVB drugs across DILI concern categories. The severity of hepatotoxicity increases from left to right in all figures.
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drugs from the market [60]. One of the mechanisms of cardiotoxi-
city is blockage of voltage-gated potassium channels called the
hERG channels [61]. QPlogHERG is a common descriptor for pre-
dicted IC50 value for blockage of hERG K + channels, which indi-
cates cardiac toxicity [62], where values below �5 are of concern
[63]. As QPlogHERG appeared in the top features list of our model
(Fig. 2), we checked whether very bitter compounds tend to be
more toxic for the heart. QPlogHERG values were already calcu-
lated for our training and test sets as part of the descriptors calcu-
lation process (see methods section), we have used these values to
compare the QPlogHERG values of VB and NVB compounds. Our
results (Fig. 4) suggest that VB compounds are more cardiotoxic
than NVB compounds, where the median value for VB compounds
Fig. 4. QPlogHERG values of VB (grey) and NVB (white) compounds. Statistical
significant difference was observed using Mann-Whitney test, n = 721, P-
value < 0.0001.
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is �5.2 (considered cardiotoxic) and the median for NVB com-
pounds is �4.

Very bitter drugs and their potential therapeutic effects.
Since VB drugs are more likely to cause compliance problems, we
applied BitterIntense on all compounds (approved and experimen-
tal drugs) from Drugbank (5.1.5)1 to evaluate the abundance of VB
drugs (Fig. 5). Out of 10,170 compounds that were able to pass
through our predictor, 23.6% were pVB. Specifically, 18% of exper-
imental drugs and 26% of approved drugs are pVB. For comparison,
in microbial natural products (NPatlas, version 2019_08,
n = 24,805) [50], 47.7% were pVB. Thus only ¼ of drug candidates,
but about half of the microbial natural products are likely to be VB.

Are there specific therapeutic indications or targets that are
enriched with pVB drugs? We focused here on a highly relevant
disease, the COVID19. The COVID19 pandemic is spreading
throughout the world, with millions of confirmed cases and hun-
dreds of thousands of deaths, according to reports by the World
Health Organization that were published in June 2020 [64]. Some
drugs have been suggested for treating COVID-19 patients, but
no drug has yet been approved fully and officially by the FDA. Sev-
eral drugs are currently under study and clinical trial, for example:
Remdesivir, an adenosine analog that was previously tested as a
potential drug for Ebola and as anti-viral drug [65], showed
promising result in COVID19 patients and thus was granted an
FDA Emergency Use Authorization on 1 May 2020 [66]. Interest-
ingly, taste and smell loss [67], including impairment of the bitter
taste, are reported by many COVID19 patients [68]. We applied Bit-
terIntense to possible COVID19 drug candidates and compared it to
the general abundance of pVB drugs in DrugBank. A list of ligands
related to COVID19 in ‘‘Coronavirus Information – IUPHAR/BPS
Guide to Pharmacology” [51] was retrieved. After excluding anti-
bodies and compounds without chemical structure (Fig. 5), among
34 drug candidates, 41.2% were pVB. The proportion of pVB drugs
among COVID19 potential drugs, is thus significantly higher than



Fig. 5. Prevalence of pVB compounds (silver) and pNVB compounds (white) across 3 datasets: NPatlas, DrugBank and COVID19 drugs. Statistical significant difference in the
proportions of pVB compounds was observed using Two Proportion Z-Test.
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in DrugBank (23.6%)(P-value = 0.016), suggesting that VB drugs
may be more abundant in the COVID19-related list than in general
drugs. No evident difference was found between the main targets
of pVB and NVB COVID19-related drug candidates.
4. Discussion and conclusions

BitterIntense was developed to easily classify compounds as
Very bitter (VB) or Not very bitter (NVB) and has achieved above
80% accuracy on test set. The model was trained with chemically
diverse compounds. The most important features in the classifica-
tion task of VB vs NVB compounds are the heavy atom count and
the molar refractivity (a measure of polarizability). Training the
model with the single feature of heavy atom count resulted in a
model with 70% accuracy, with recall and precision of 70% and
58% respectively. This means that VB molecules are often larger
than NVB molecules, but additional features greatly improve the
predictions, reaching average accuracy of 87%, recall of 85% and
precision of 80% on the training set. One possible explanation for
the correlation between the size of the molecule and the bitterness
intensity is that bigger molecules can interact with more residues
in the binding site of the receptor, resulting in strong binding and
slow dissociation. The correlation between size and long residence
time of ligands in binding pockets of receptors, including GPCRs
was shown [69,70]. In addition, larger number of heavy atoms
was shown to correlate with selectivity of bitter molecules towards
T2Rs (namely, activating a small number of T2R subtypes) [30]
emphasising the importance of this descriptor for bitterness
perception.

In addition, BitterIntense was used for analysis of connection
between toxicity and the level of bitterness of molecules. Our
results suggest that compound that are considered acute toxic or
hepatotoxic for human are not necessarily predicted to be very bit-
ter. There are several possible explanations for this trend: some
bitter compounds that activate T2Rs were also shown to interact
with Cytochrome P450 enzymes (CYP) [71], promiscuous
monooxygenases involved in metabolism of drugs and xenobiotics
in the human body [72]. Perhaps VB and pVB drugs interact differ-
ently or even with stronger affinity with CYP enzymes, possibly
explaining the differences in the hepatotoxic effect. This hypothe-
sis could be tested in future work. Furthermore, activation of
extraoral T2Rs might contribute to the decreased risk for hepato-
toxic effect of the very bitter drugs. Activation of gut T2Rs was
shown to lead to detoxification by upregulating the transcription
of xenobiotic efflux pumps [73]. However, our results reveal that
VB compounds have significantly lower QPlogHERG values than
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NVB compound, suggesting that VB compounds could be more car-
diotoxic than NVB by blocking hERG channels, in line with previous
work that found hERG channels among off-targets of bitter com-
pounds [12]. Interestingly, T2Rs are also expressed in the heart,
which raises the possibility that bitter compounds may both acti-
vate cardiac T2Rs [74] and block hERG channels [12]. In summary,
our analysis shows that VB and pVB drugs tend to be less harmful
as far as acute toxicity and hepatotoxicity, but have more potential
to be cardiotoxic than NVB compounds. The possible underlying
mechanisms require further study, while VB and pVB drug candi-
dates should be kept in the drug discovery process with potential
aversiveness (but not necessarily toxicity) flagging.

Our results suggest that (experimental and approved) drugs
tend to be less enriched with pVB compounds as compared to ran-
dom dataset of microbial natural products. Furthermore, drugs
suggested for potential repurposing for COVID-19 targets, tend to
include more pVB compared to general population of drugs, raising
the question of potential beneficial effect of bitterness or involve-
ment of bitter taste receptors in the disease, interesting also in
view of taste loss being one of the symptoms of the disease [68].
However, as it appears that many COVID-19 patients temporarily
lose taste sensitivity [68], the aversive taste of orally administered
drugs may be actually less problematic for administration in this
case. While the potential involvement or mediation of bitter taste
receptors in COVID19 is unclear, the results further highlight the
importance of flagging - but not excluding from the pipeline – of
pVB drug candidates.

BitterIntense is a quick and easy method that enables flagging
of intensely bitter compounds during early stages of drug develop-
ment, and can thus potentially reduce financial costs, animal test-
ing and the lead time to the patients. The ability to detect pVB
drugs in early stages not only will accelerate the drug development
process but will also promote the development of more palatable
drugs suitable for children and geriatric patients. In addition, Bit-
terIntense could also be of interest for biotech and foodtech com-
panies that are working on bioactive molecules, artificial
sweeteners or natural products of plants that are developed to be
integrated in food products. Thus, our proposal is to integrate com-
putational taste prediction along other computational tools within
discovery and development of new bioactive compounds.
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