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Oxidative stress is detrimental to life process and is particularly responsible for aging and
age-related diseases.Thus, most organisms are well equipped with a spectrum of biological
defense mechanisms against oxidative stress.The major efficient antioxidative mechanism
is the glutathione system, operating a redox cycling mechanism for glutathione utilization,
which consists of glutathione and its peroxidase and reductase. However, this system is
mainly effective for hydrophilic oxidants, while lipophilic oxidants require another scaveng-
ing system. Since many age-related pathological conditions are related to lipid peroxidation,
especially in association with the aging process, the physiological role of the scavenging
system for lipophilic oxidants should be considered. In this regard, the biliverdin to biliru-
bin conversion pathway, via biliverdin reductase (BVR), is suggested to be another major
protective mechanism that scavenges lipophilic oxidants because of the lipophilic nature
of bilirubin. The efficiency of this bilirubin system might be potentiated by operation of
the intertwined bicyclic systems of the suggested redox metabolic cycle of biliverdin and
bilirubin and the interactive control cycle of BVR and heme oxygenase. In order to combat
oxidative stress, both antioxidative systems against hydrophilic and lipophilic oxidants are
required to work cooperatively. In this regard, the roles of the bilirubin system in aging
and age-related diseases are reassessed in this review, and their interacting networks are
evaluated.
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INTRODUCTION
Oxidative stress is the result of an imbalance between generation
and scavenging of reactive oxygen species (ROS). Old cells have
higher levels of ROS than young cells (Hagen et al., 1997; Lee et al.,
1999). Senescent states of cells can be readily induced by sub-lethal
doses of pro-oxidants (Chen and Ames, 1994; Chen et al., 1998).
Thus, any adjustment of the ROS balance is expected to prevent
or restore cellular senescence.

Biliverdin reductase (BVR) is an evolutionarily conserved
enzyme, converting biliverdin to bilirubin, the potent physiologic
antioxidant (Schluchter and Glazer, 1997; Baranano et al., 2002;
Sedlak et al., 2009). Bilirubin protects cells against high concen-
trations of hydrogen peroxide (H2O2), for which a redox cycle
that amplifies the oxidation of bilirubin into biliverdin, which
is then recycled back into bilirubin by BVR, has been proposed
(Baranano et al., 2002; Sedlak and Snyder, 2004). Biliverdin is a
cleavage product of heme by heme oxygenase (HO). The HOs
are heat-shock protein-32 family proteins, comprising a consti-
tutive isoform (HO-2) and an inducible isoform (HO-1). Since
BVR can regulate HO-1/HO-2 expression, these intertwined rela-
tionships among enzymes of HO and BVR and their metabo-
lites, biliverdin, and bilirubin, may potentiate the efficiency of
the cellular physiological defense capacity against oxidative stress.
Therefore, it is necessary to assess the physiological role of BVR
and the heme degradation pathway in oxidative stress-related
phenomena and related diseases. Furthermore, it has recently

been reported that knock-down of BVR could induce cellular
senescence (Kim et al., 2011a). This relationship of BVR with
the aging process, as well as other oxidative stress-associated
disorders, led us to consider its roles in age-related diseases
as well.

CATALYTIC ROLE OF BILIVERDIN REDUCTASE IN THE
BILIVERDIN TO BILIRUBIN PATHWAY
The HO/BVR pathway is the main process for heme degrada-
tion and is evolutionarily conserved for control of oxidative stress.
Two isozymes of BVR have been characterized in humans: the
fetal form, biliverdin reductase B, and the adult form, biliverdin
reductase A. Biliverdin reductase A (the major enzyme and here-
after, abbreviated as BVR) is an abundant and ubiquitously
expressed enzyme with a high turnover rate. BVR can protect cells
against oxidative stress by two different mechanisms: by converting
biliverdin to bilirubin and by regulating HO expression (Kravets
et al., 2004; Sedlak and Snyder, 2004; Ding et al., 2011). Biliru-
bin has a strong antioxidant activity, protecting cells against 10-
to 1000-fold higher concentrations of H2O2 (Sedlak et al., 2009).
This high efficiency of bilirubin as a potent antioxidant is proposed
to be amplified by the cyclic conversion of bilirubin and biliverdin:
the reduction of biliverdin to bilirubin by BVR and the oxidation
of bilirubin to biliverdin by lipophilic ROS (Baranano et al., 2002;
Sedlak and Snyder, 2004). Despite the nature of recycling bilirubin
to biliverdin by peroxyradicals has been questioned recently, the
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strong antioxidant effects of biliverdin and bilirubin are evident
(McDonagh, 2010).

The major antioxidative defense system in vivo is the glu-
tathione redox cycling system, comprised of glutathione and
its two redox enzymes, glutathione peroxidase and glutathione
reductase. This system is primarily effective for hydrophilic ROS,
because of the hydrophilic nature of glutathione. In contrast, the
biliverdin and bilirubin pathway is expected to be effective against
lipophilic ROS, because of the lipophilic nature of bilirubin.
Therefore, this biliverdin to bilirubin pathway system is presumed
to be complementary to the glutathione redox cycling system for
scavenging both hydrophilic and lipophilic ROS.

The heme degradation pathway provides two enzymatic antiox-
idants (i.e., HO and BVR) and two hydrophobic antioxidants
(i.e., bilirubin and biliverdin) that contribute to the powerful
antioxidative mechanism of an organism. The lipophilic nature of
bilirubin alone would provide specific protective activity against
lipid soluble metabolites, such as stability of phospholipids in
multi-lamellar liposomes and rat liver microsomes (Bliuger et al.,
1985; Stocker and Ames, 1987; Stocker et al., 1990). Exogenous
bilirubin can reduce lipid peroxidation in the heart and kidney
and can protect thymus cells against ultraviolet- or sphingosine-
mediated apoptosis (Dudnik et al., 2001). Both unconjugated and
conjugated bilirubin can protect low density lipoprotein (LDL)
against peroxidative attack by scavenging peroxyl radicals (Wu
et al., 1996).

META-CATALYTIC ROLES OF BILIVERDIN REDUCTASE
Besides its function as a reductase, BVR has pleiotropic func-
tions in cell signaling, cell metabolism, and gene control. BVR is
a dual-specificity (serine/threonine/tyrosine) kinase, involved in
various cellular functions (Maines, 2005; Kapitulnik and Maines,
2009). One of the pathways modulated by BVR is the insulin sig-
naling pathway. BVR is a substrate for insulin receptor tyrosine
kinase (IRK) activity as well as a kinase for serine phosphorylation
of insulin receptor substrate-1 (IRS-1; Lerner-Marmarosh et al.,
2005; Wu et al., 2008; Maines, 2010). BVR can also enhance phos-
phatidyl inositol 3-kinase (PI3K)/Akt activity by binding to SH2
domains, which has been considered a new mechanism of insulin
resistance (Lerner-Marmarosh et al., 2005). In addition, BVR plays
a role as a carrier protein for nuclear signal transduction, as it has
a nuclear localization signal within the carboxy terminal end of
its reductase domain. Since BVR has mitogen activated protein
kinase (MAPK) docking consensus sequences, it interacts with
the MAPK family, in particular, the extracellular signal-regulated
kinases 1/2 (ERK1/2), and functions as a nuclear transporter of
ERK (Lerner-Marmarosh et al., 2008). BVR is activated and local-
izes into the nucleus in response to various stress signals, such
as bacterial lipopolisaccharide (LPS) and bromobenzene (Maines
et al., 2001). In the nucleus, BVR, being a leucine zipper-like DNA
binding protein, binds not only to activator protein-1 (AP-1) but
also to cyclic adenosine monophosphate (cAMP) response ele-
ment sites (Kravets et al., 2004; Tudor et al., 2008). Thereby, BVR
can bind to the HO-1 promoter, an AP-1 regulated gene, regulating
HO-1 induction in response to oxidative stress (Tudor et al., 2008).
BVR is also involved in the inflammatory response via adjusting
the levels of PI3K and Akt (Wegiel et al., 2009).

LIPID PEROXIDATION IN AGE-RELATED DISEASES
Since the structure of polyunsaturated fatty acids (PUFAs) is of a
bis-allylic nature, lipids are prone to oxidation. Once lipid perox-
idation is initiated, a chain reaction is propagated until terminal
products are produced. Peroxyl radicals are rearranged via cyclic
reactions to endoperoxides (Marnett, 1999). Scission of the oxi-
dized PUFA results in formation of two aldehyde products: phos-
pholipid aldehydes, such as oxidized phosphatidylcholine (OxPC),
and α,β-unsaturated aldehyde cleavage fragments, including mal-
ondialdehyde (MDA), 4-hydroxynon-enal (HNE), and 4-oxo-2-
non-enal (ONE; Kadl et al., 2004; Adibhatla and Hatcher, 2010).
Compared to free radicals, the aldehydes, such as MDA, 4-HNE,
and other aldehydes, are moderately stable and can diffuse within
the cell or be extruded extracellularly to attack distant targets. They
show a very high reactivity toward biomolecules, such as proteins,
phospholipids and DNA, leading to a variety of intramolecular and
intermolecular covalent adducts. At the membrane level, proteins
and amino lipids can be covalently modified by lipid peroxida-
tion products, resulting in damages of membrane structure. In
addition, these aldehydes can also act as bioactive molecules in
physiological and/or pathological events (Catalá, 2009). Therefore,
the cumulative damages of these aldehyde products deteriorate
cell integrity and function which may eventually result in cellular
senescence. Higher levels of lipid peroxidation have been observed
in plasma and tissues of aged organisms, including liver, brain,
lung, kidney, and muscle (Bourre, 1988; Mizuno, 1990; Pansarasa
et al., 1999; Poon et al., 2004; Ward et al., 2005; Gil et al., 2006).

LIPID PEROXIDATION IN CARDIOVASCULAR DISEASES
Cardiovascular diseases (CVD), a family of diseases that include
atherosclerosis, coronary heart disease, hypertension, and stroke,
are the main causes of death in developed countries. The thicken-
ing and stiffening of the arteries in atherosclerosis are due to fatty
plaques and mineral deposits, resulting in a shortage of blood
supply to the myocardium. Lipid peroxidation markers, such
as oxidized low density cholesterol, MDA, 4-HNE, dienoic acid,
hydroxyoctadecadienoic acids, and oxidized cholesterol linoleate,
are increased in the plaques and blood of atherosclerotic patients
(Kuhn et al., 1992; Ahotupa and Asankari, 1999; Valko et al., 2007;
Ravandi et al., 2011). A progressive increase of lipid peroxidation
in the heart is also observed with aging (Miro et al., 2000). Oxida-
tive stress in cardiac and vascular myocytes has been suggested to
be linked with cardiovascular tissue injury (Dhalla et al., 2000).
Lipid peroxidation and protein carbonylation lead to disruption
of the membrane lipid bilayer and functional deterioration of cel-
lular proteins, eventually resulting in abnormalities of subcellular
organelles (Kaneko et al., 1989; Stoyanovsky et al., 1997; Molavi
and Mehta, 2004; Valko et al., 2007). In addition, the significant
pooling of iron in atherosclerotic lesions implies that the iron-
catalyzed formation of free radicals may take place in the develop-
ment process of atherosclerosis (Yuan and Li, 2003). Therefore,
the role of lipophilic antioxidative mechanism for preventing
age-related CVD should be considered and evaluated.

LIPID PEROXIDATION IN NEUROLOGICAL DISORDERS
The brain is vulnerable to oxidative damage due to its high
lipid content, high oxygen consumption, high concentration of
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redox-active metals (e.g.,Cu and Fe),and relatively low antioxidant
capacity. Therefore, this organ is susceptible to lipid peroxidation
(Markesbery and Lovell, 2007). As a consequence, the increased
oxidative stress that occurs with aging in the brain may be respon-
sible for the pathogenesis of age-related neurodegenerative dis-
eases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD)
Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS),
multiple sclerosis (MS), Niemann–Pick’s disease (NPC), and brain
traumas (Klein and Ackerman, 2003; Adibhatla and Hatcher, 2007;
Zhu et al., 2007). AD, a neurodegenerative disorder of cognitive
and memory decline, is represented by a marked accumulation of
amyloid-β peptide (Aβ), the main constituent of senile plaques,
and deposition of neurofibrillary tangles (Butterfield and Lauder-
back, 2002; Butterfield et al., 2006). Formation of Aβ is partially
induced by oxidative stress, as illustrated by the increased lipid per-
oxidation, the decreased PUFA content, and the increased MDA
and 4-HNE in AD ventricular fluid (Butterfield and Lauderback,
2002; Butterfield et al., 2006; Recuero et al., 2010). The increased
lipid peroxidation precedes amyloid plaque formation in an AD
animal model (Pratico et al., 2001). Apolipoprotein E (ApoE) is
subject to free radical attack and a direct correlation between
ApoE peroxidation and AD has been reported (Butterfield and
Lauderback, 2002). PD is the second most prevalent age-related
neurodegenerative disease after AD. PD is characterized by the
selective loss of dopaminergic neurons in the substantia nigra
(Lotharius and Brundin, 2002). Oxidative stress-related dopamin-
ergic neuronal damage is the leading theory of PD pathogenesis
(Gonzalez-Fraguela et al., 1998; Miller et al., 2009). The important
sources of ROS in PD are activation of phospholipases, including
cPLA2, and induction of NADPH oxidase in activated microglia
(Miller et al., 2009). HD is a rare, inherited neurological disorder,
characterized by abnormal body movements and lack of coordi-
nation. Although the effect of lipid peroxidation is debatable with
respect to the model of HD and type of tissue under consideration,
elevated levels of 8-OHdG and HNE in plasma and MDA in striatal
and cortical tissues, as well as increased F2-isoprostane, are present
in HD (Mariani et al., 2005). In addition, many other neurologi-
cal diseases are associated with accumulated lipid peroxidation in
specific tissues: the spinal cord motor neurons of sporadic ALS
patients (Simpson et al., 2004), spinal cord injury, and central ner-
vous system (CNS) injuries, such as stroke, traumatic brain injury
(Adibhatla et al., 2006; Adibhatla and Hatcher, 2008), autoimmune
diseases, such as MS, all the inflammatory CNS tissues (Muralikr-
ishna Adibhatla and Hatcher, 2006; Qin et al., 2007), and CA1
hippocampal neurons after transient cerebral ischemia (Muralikr-
ishna Adibhatla and Hatcher, 2006). Therefore, in order to develop
any strategy to prevent age-related neurological disorders, it is
necessary to activate or potentiate the defense mechanism against
lipophilic oxidants.

LIPID PEROXIDATION IN OTHER AGE-RELATED DEGENERATIVE
DISEASES
Involvement of lipid peroxidation in cardiovascular or neurode-
generative diseases is well established, but the connection of
lipid peroxidation with other age-related diseases, such as type II
diabetes mellitus and cancer, has not been properly elucidated.
Increased oxidative stress has been proposed to be one of the

major causes of the hyperglycemia-induced trigger of diabetic
complications (Maritim et al., 2003). Hyperglycemia triggers ROS
formation from a variety of sources, such as glucose autoxida-
tion, oxidative phosphorylation, NAD(P)H oxidase, lipoxygenase,
cytochrome P450 monooxygenases, xanthine oxidase (XO), and
nitric oxide synthase (Valko et al., 2007). Among them, XO is one
of the major sources of ROS in diabetes mellitus, since treatment
of non-insulin dependent diabetic patients with allopurinol, an
XO inhibitor, reduces the level of oxidized lipids in plasma and
improves blood flow (Butler et al., 2000). Lipoxygenase catalyzes
conversion of arachidonic acid into a broad class of signaling mol-
ecules, such as leukotrienes, lipoxins, and hydroxyeicosatetraenoic
acid. Diabetes is associated with increased lipoxygenase expres-
sion, resulting in increased eicosanoid formation (Brash, 1999).
β-cells are particularly sensitive to ROS, because they are low in
antioxidant enzymes, such as glutathione peroxidase, catalase, and
superoxide dismutase, which leads to β-cell dysfunction (Kaneto
et al., 1999; Evans et al., 2003). Cancer is a disease that involves a
multi-step process of mutations and preferential clonal expansion
of highly neoplastic, mutated cells. It is clear that ROS is associ-
ated with genomic instability, which predisposes to mutagenesis
and carcinogenesis. It has been reported that MDA is mutagenic
in bacterial and mammalian cells and carcinogenic in rats, and
HNE is weakly mutagenic, but appears to be the major toxic prod-
uct of lipid peroxidation (Basu and Marnett, 1984; Plastaras et al.,
2000; Riggins and Marnett, 2001). In addition, MDA correlates
with the extent of primary tumor and predicts poor progno-
sis of oropharyngeal cancer (Salzman et al., 2009). Thereby, in
order to prevent these degenerative diseases, the protective mech-
anism of lipophilic antioxidants should be effectively activated
as well.

PREVENTIVE ROLES OF BILIRUBIN SYSTEM AGAINST
AGE-RELATED DISEASES
Several lines of evidences have demonstrated the negative relation-
ship of BVR activity and bilirubin concentration with the aging
process. An age-dependent decrease in the activity of BVR was
detected (Maines, 1990). Together with BVR, HO forms a power-
ful protective system against various oxidative stresses. But HO-1
induction by various oxidative stressors, such as H2O2 and hemin,
is markedly impaired in senescent human fibroblasts (Kim et al.,
2011a). Serum bilirubin concentration is highest in the 19- to 24-
year-old age group, after which it declines, which might be related
to the age-related decrease in BVR activity (Rosenthal et al., 1984).
Moreover, since oxidized BVR was associated with impairment of
its function (Barone et al., 2011a), the age-related increase in ROS
generation might influence BVR activity.

With regard to age-related diseases, bilirubin has a significant
and beneficial role in preventing oxidative changes in a number
of diseases, including atherosclerosis, neurodegenerative disease,
diabetes mellitus, and cancer as well as a number of inflammatory
and autoimmune diseases. The mild to moderately elevated lev-
els of serum bilirubin are positively related to better outcomes of
CVD. For example, the male air force pilot study showed that
a 50% decrease in total bilirubin was associated with a 47%
increase in the more severe coronary artery diseases (Schwert-
ner et al., 1994). Low serum bilirubin in patients with CVD was
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also detected in the Framingham Offspring Study (Djousse et al.,
2001, 2003). In addition, positive effects of serum bilirubin were
illustrated in the study of Gilbert’s syndrome. Gilbert’s syndrome
is the most common hereditary genetic disorder of impaired glu-
curonyl transferase activity causing mild to moderate elevations of
serum bilirubin and is found in up to 5% of the population. The
prevalence of the ischemic heart diseases in Gilbert’s syndrome
was found to be only 2%, compared with 12% in control indi-
viduals (Vitek et al., 2002). It is interesting to note that cigarette
smoking, a major risk factor for CVD, was associated with sig-
nificantly lowered serum bilirubin content (Van Hoydonck et al.,
2001). Both unconjugated and conjugated bilirubin can protect
human LDL against oxidation by oxy-radicals generated by 2,2′-
azo-bis(2-amidinopropane) or Cu (Wu et al., 1996). It seems like
BVR/HO-2 link plays an important role in cardiac protection.
Recently, it is suggested that BVR would be an upstream stabi-
lizer of HO-2, which prominently expressed in the cardiovascular
system, and both entities are intimately linked to cardiomyocyte
survival (Ding et al., 2011). There are numerous possible mecha-
nisms by which the HO-1/HO-2 pathway may improve vascular
function. It has been reported that HO-2 activation occurs in
ischemic hearts in dogs and that inhibition of the HO system
reduces vasodilation during ischemia in the presence of NO and
COX inhibitors (Nishikawa et al., 2004).

With regard to neurodegenerative disorders, bilirubin is a
potent antioxidant against the cellular damage elicited by ROS and
contributes to the overall antioxidant network of the brain (Taka-
hashi et al., 2000; Mancuso, 2004). Impairment of the HO/BVR
system in the hippocampus of AD, as well as a linkage of BVR
with an improvement of cognitive function following atorvastatin
treatment, have been reported (Barone et al., 2011b). All these
effects contribute to the neuroprotective role of BVR in the brain.
In addition, a low concentration of serum bilirubin is related to an
increased risk of ALS and mental illnesses, such as winter depres-
sion and schizophrenia (Oren et al., 2002; Ilzecka and Stelmasiak,
2003; Iwasaki et al., 2005). HO-2 is selectively enriched in neu-
rons and it is becoming apparent that HO-2 play an important
role in cytoprotection in neural tissues. HO-2 expression has been
shown to be protective against apoptotic cell death in cortical, hip-
pocampal, and cerebellar granule cultures and an in vivo model
of ischemic injury (Dore and Snyder, 1999; Dore et al., 1999a,
2000). In the brain, it is suggested that HO-derived CO would
function as a neurotransmitter/neuromodulator (Maines et al.,
1993; Seki et al., 2000). HO-2 protects against lipid peroxidation
mediated cell loss as well as the impaired motor recovery after
traumatic brain injury (Chang et al., 2003). Furthermore, a link
has been proposed between HO activities and neurodegenerative
conditions such as familial AD. Single point mutations in amyloid
precursor proteins, binding to HO-1/HO-2, have been associated
with a significant reduction in HO activities, resulting in greatly
reduced bilirubin levels and increased neurotoxicity (Takahashi
et al., 2000). The neuroprotective effects of HO-2 seem to be
attributed to the generation of bilirubin (Dore et al., 1999b, 2000).

In diabetes mellitus, a higher level of serum bilirubin is asso-
ciated with a lower risk of the disease (Fukui et al., 2008, 2011;
Han et al., 2010; Dekker et al., 2011). Using the National Health
and Nutrition Examination Survey (NHANES) data, an inverse

relationship of serum total bilirubin and the incidence of diabetes
has been suggested (Cheriyath et al., 2010).

Although controversial, there are some evidences that serum
bilirubin may be protective against some forms of cancer. Base-
line serum bilirubin concentration was inversely associated with
the risk of cancer development (Ko et al., 1994). Cross-sectional
analysis demonstrated that an increase in serum bilirubin was
associated with a lower rate of colorectal cancer (Zucker et al.,
2006). In addition, a possible beneficial role of bilirubin was also
described in several diseases, illustrated by the low serum biliru-
bin levels detected in various oxidative stress-mediated diseases,
such as rheumatoid arthritis, systemic lupus nephritis, idiopathic
pulmonary fibrosis, and chronic obstructive pulmonary disease
(Ohrui et al., 2001; Fischman et al., 2010; Horsfall et al., 2011).

PHYSIOLOGICAL ADJUSTMENT OF THE AGING PROCESS BY
BILIRUBIN SYSTEM
The Hayflick limit describes the phenomenon of normal mitotic
cells undergoing a finite number of cell divisions before enter-
ing replicative senescence, after which they cannot divide further
and become unresponsive to mitogenic stimuli (Hayflick, 1965).
In addition to replicative senescence, cells can also be induced
to become prematurely senescent by exposure to oxidants, DNA
damaging agents, histone deacetylase inhibitors, or by overexpres-
sion of certain oncogenes, which is referred to as stress-induced
premature senescence (Chen et al., 1995; Serrano et al., 1997; Rob-
les and Adami, 1998; Zhu et al., 1998). Regardless of the induction
mode, senescent cells generally acquire the enlarged and flat-
tened morphology with high expression of senescence-associated
β-galactosidase and lose the ability to proliferate. Senescent cells
contain higher levels of oxidative DNA lesions than early passage
cells with increased p21, hypo-phosphorylated Rb, reduced E2F
activity, and G1 stage cell cycle arrest (Stein et al., 1990; Noda
et al., 1994; Dimri et al., 1995). Over the past few decades, ROS
was presumed to be the pivotal determinant factor underlying age-
associated decline of physiological functions. ROS levels increase
with age in major organs, such as liver,heart, and brain (Gomi et al.,
1993; Bejma et al., 2000; Driver et al., 2000; Zhang et al., 2003), and
overproduction of pro-oxidants has been reported in many species
during aging (Sohal and Weindruch, 1996; Barja, 2002; Zanetti
et al., 2010). Oxidative stress has also been implicated in various
age-related pathological conditions involving CVD, cancers, neu-
rological disorders, diabetes, and other diseases (Valko et al., 2007).
The primary physiological function of BVR is the production of
bilirubin, a major natural and potent antioxidant. Moreover, the
suggested redox cyclic nature of the bilirubin to biliverdin pathway
and induction of HO by BVR would potentiate the physiological
antioxidant capacity of this system (Baranano et al., 2002; Sedlak
and Snyder, 2004; Sedlak et al., 2009; Ding et al., 2011). Recent
studies have revealed that administration of BVR ameliorates the
signs of oxidative stress-mediated diseases more efficiently than
administration of other antioxidant enzymes, and when cellular
BVR activity is suppressed using siRNA, the levels of ROS and
cell death markedly increase (Baranano et al., 2002; Sedlak et al.,
2009).

When the effects of BVR knock-down on cell viability and
cell cycle progression are monitored, human diploid fibroblasts
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become growth-arrested for a prolonged period after depletion of
BVR, resulting in cellular senescence with decreased levels of cyclin
D1, increased levels of p16/INK4a, decreased phosphorylation of
Rb, and high expression of senescence-associated β-galactosidase
(Kim et al., 2011a). This BVR knock-down-induced cellular senes-
cence could be effectively suppressed by treatment with the ROS
scavenger, N -acetyl cysteine (NAC). Since simple depletion of BVR
can decrease cell viability and induce senescence, BVR might be
suggested as the essential component for cellular survival under
normal oxidative stress conditions. In addition, overexpression
of BVR partially restored young cell-like morphology in senescent
fibroblasts, but without resumption of mitogenic potential, imply-
ing that BVR overexpression alone was not sufficient to prevent
senescence-related cell cycle arrest (Kim et al., 2011a).

Recently, a number of studies have demonstrated that cellular
senescence provides an important barrier to genomic instabil-
ity and tumorigenesis (Campisi and d’Adda di Fagagna, 2007;
Schmitt, 2007). Senescent cells also express high levels of p16
(Alcorta et al., 1996), which might be responsible for blocking
tumorigenesis. Interestingly, BVR activity is elevated in tumor tis-
sues (Maines et al., 1999), and serum bilirubin levels are inversely
related to cancer mortality (McCarty, 2007). Moreover, knock-
down of BVR induces cell death in HeLa and A498 cells and sensi-
tizes these cancer cells to oxidative stress (Kim et al., 2011a). There-
fore, it can be assumed that down-regulation of BVR might be an
important additive strategy for the successful treatment of cancer.

Biliverdin reductase activity is reduced with aging (Maines,
1990). HO-1 induction by BVR, as well as by oxidative stressors,
is markedly impaired in senescent human fibroblasts (Kim et al.,
2011a). These aging-related decreased responses to oxidative stress
might be due to age-dependent differences in the efficiency of
oxidative stress-related signal trafficking into the nucleus. We have
demonstrated that the nucleocytoplasmic trafficking system was
markedly impaired in senescent human diploid fibroblasts (Kim
et al., 2010a,b, 2011b). In addition, the nuclear barrier hypothesis
of aging has been proposed, in which the aging phenotype might
be induced by the inefficiency of nucleocytoplasmic trafficking of
a variety of mitogenic or apoptotic signals due to suppression of
nuclear pore complex functions (Park, 2011). BVR is a leucine
zipper-like DNA binding protein, which serves as a transcription
factor for HO-1 (Kravets et al., 2004; Tudor et al., 2008). To per-
form its activities, such as signal transduction and induction of
HO-1 in response to oxidative stress, the nuclear translocation of
BVR is prerequisite. In this regard, nuclear trafficking of BVR and
subsequent signaling events may be impaired in senescent human
diploid fibroblasts, which might help to explain the age-dependent
differences in response to oxidative stress.

THE INTERTWINED BICYCLIC NATURE OF THE BILIRUBIN
SYSTEM FOR ROS SCAVENGING
Biliverdin reductase in young cells effectively protects the cells
from various oxidative stresses through generation of bilirubin, a
potent lipophilic ROS scavenger, and by regulating the expression
of HO, another potent antioxidant. In this situation, the two cycles
of the bilirubin system for ROS scavenging are supposed to be
intertwined. The first cycle is the suggested redox cycle of biliverdin
to bilirubin by BVR and the cycling back of bilirubin to biliverdin

probably by lipophilic oxidants. The second cycle is the induction
of HO by BVR and the degradation of heme to biliverdin, which
is again metabolized to bilirubin by BVR (Figure 1). These two
metabolic and transcriptional cycles are intertwined and oper-
ate in response to oxidative stress, providing highly efficient ROS
scavenging. This intertwined bicyclic bilirubin system, comprised
of BVR and HO for heme degradation to biliverdin and biliru-
bin, could play a significant role in maintaining cellular integrity
against oxidative stress. Senescent cells have increased ROS gen-
eration and decreased BVR activity due to its oxidative modi-
fication, resulting in reduced bilirubin formation. Furthermore,
the senescence-mediated impairment of nucleocytoplasmic traf-
ficking prevents the nuclear translocation of BVR, resulting in
decreased HO induction (Figure 1). Therefore, it is natural to
assume that dysfunction of this bicyclic bilirubin system would be
responsible for aging and, subsequently, for age-related disease.

THERAPEUTIC STRATEGIES AND FUTURE DIRECTIONS
Although it is claimed that lipid peroxidation and impaired biliru-
bin system are related to age-related diseases, several important
issues still remain to be resolved. The exact role of bilirubin
system in the progression of age-related diseases is not fully under-
stood. Further randomized trial data and molecular studies are
necessary to evaluate the potential role of bilirubin system in
aging and age-related disease progression. Though the causal links
between changes in HO/BVR activity,bilirubin/biliverdin level and

FIGURE 1 | Physiological network of the bicyclic bilirubin system in

aging and age-related disease. In normal physiological condition of
oxidative stress, BVR catalyzes biliverdin to bilirubin and induces HO, which
further provides more biliverdin from heme. And the resulting bilirubin may
turn back to biliverdin partially by oxidants. This bicyclic nature of bilirubin
system provides the efficient physiological antioxidative capacity. But in
harsh conditions of high oxidative stress, BVR is catalytically inactivated and
is blocked for nuclear translocation, which inhibits the induction of HO,
resulting in inhibition of catalytic turnover of heme to biliverdin and also
biliverdin to bilirubin, leading to oxidative damages of the biomolecules and
finally to aging and age-related diseases.
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upstream/downstream changes in aging process have not been
clearly established, the lipid peroxide damages especially at all the
cellular membrane fractions would be readily expected to impair
cellular functions and its integrity. Therefore, in order to protect
the membrane lipid damages from the lipid soluble oxidants, the
antioxidants of lipophilic nature rather than hydrophilic nature are
expected to play the dominant roles. Therefore, it can be assumed
that the bilirubin system might protect the organs effectively from
the oxidative stress, especially of lipophilic oxidants, via its poten-
tial amplifying antioxidative capacity. If this hypothesis were true,
aging and age-related diseases might be prevented by modulating
BVR system to a certain degree. In this regard, it can be a novel
promising strategy to adjust HO/BVR activity and/or exogenous
administration of bilirubin for control of aging process and its
related diseases. But it should be reminded that bilirubin pos-
sesses both antioxidant and prooxidant properties. Bilirubin shows
hormeric dose responses, as illustrated by that it protects red blood
cells against oxidative stress at physiologic concentrations, while
it is associated with significant cytotoxicity at concentrations of
30 mg/dL or higher (Mireles et al., 1999). The similar results were
shown when neuronal cells were exposed to low and high concen-
trations of bilirubin (Chen et al., 2003). Moreover, since several
toxic effects of bilirubin have been demonstrated on erythrocytes,
lymphocytes, renal cells, lung, and brain in a dose and time depen-
dent manner (Elias et al., 1987; Alexandra Brito et al., 2006), the
specific safe dose response should be considered for its use in
regulation of aging process and its related diseases.

CONCLUSION
Since impaired redox homeostasis and defective oxidative stress
defense mechanisms are the key contributors to the aging process,

the endogenous antioxidative systems have been presumed to play
important roles in the control of age-related diseases as well as
aging itself. In addition to the glutathione system of hydrophilic
nature, when oxidative stress and lipid peroxidation are issued,
the another antioxidative mechanism consisting of BVR and
the biliverdin to bilirubin pathway should be concerned against
lipophilic oxidants. This bilirubin system is comprised of the inter-
twined bicyclic control mechanisms: the first, the metabolic redox
cycle of biliverdin and bilirubin, and the second, the transcrip-
tional control cycle of HO by BVR. The efficiency of this bilirubin
system, amplified by the cyclic nature of the control mechanism,
enables it to protect cells effectively against oxidative stress. Aging
is associated with decreased BVR activity due to oxidative dam-
ages, which results in decreased induction of HO, leading to further
reduction of bilirubin generation. Prolonged knock-down of BVR
in young cells would result in premature senescence. These results
provide the strong supports for the concept that a rise in ROS by
way of inefficient BVR activity, either by oxidative damage or by
impaired nucleocytoplasmic trafficking, could be an intracellular
trigger of cellular senescence. Moreover, the inverse relationship of
BVR activity and bilirubin status observed in a variety of diseases
implies a significant role of the bilirubin system in the pathogen-
esis of many age-related diseases as well as aging itself. Therefore,
it can be suggested that the bilirubin system might provide new
opportunities for drug development and therapy for aging and a
variety of age-related disorders.
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