
The central domain of UNC-45 chaperone inhibits the
myosin power stroke
Paul J. Bujalowski1, Paul Nicholls2, Eleno Garza3 and Andres F. Oberhauser1,3,4

1 Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA

2 Baylor College of Medicine, The University of Texas Medical Branch, Galveston, TX, USA

3 Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA

4 Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, USA

Keywords

chaperone; myosin; UNC-45

Correspondence

A. F. Oberhauser, Department of

Neuroscience and Cell Biology, The

University of Texas Medical Branch,

Galveston, TX 77555-0620, USA

Tel: +1 409 772 1309

E-mail: afoberha@utmb.edu

(Received 18 September 2017, revised 27

October 2017, accepted 31 October 2017)

doi:10.1002/2211-5463.12346

The multidomain UNC-45B chaperone is crucial for the proper folding and

function of sarcomeric myosin. We recently found that UNC-45B inhibits

the translocation of actin by myosin. The main functions of the UCS and

TPR domains are known but the role of the central domain remains obscure.

Here, we show—using in vitro myosin motility and ATPase assays—that the

central domain alone acts as an inhibitor of the myosin power stroke through

a mechanism that allows ATP turnover. Hence, UNC-45B is a unique chap-

erone in which the TPR domain recruits Hsp90; the UCS domain possesses

chaperone-like activities; and the central domain interacts with myosin and

inhibits the actin translocation function of myosin. We hypothesize that the

inhibitory function plays a critical role during the assembly of myofibrils

under stress and during the sarcomere development process.

Force generation in striated muscle comes from the myo-

sin motor domain, an 110-kDa globular protein that

allows conversion of the chemical potential energy in

ATP into mechanical work. This complex protein is inca-

pable of self-folding and assembly. Instead, molecular

chaperones work in a precise network to allow a nascent

myosin polypeptide to be protected from aggregation

and folded into its native and functional conformation.

The UNC-45B chaperone is associated with the proper

folding and function of the sarcomeric myosin [1–4].
UNC-45B is built of three domains: the C-terminal

UCS domain, the central domain, and the N-terminal

TPR domain [2]. The conserved UCS domain is alone

capable to prevent aggregation of the chaperone client

protein, myosin, and it is responsible for the chaperone-

like properties of UNC-45B [5]. Our binding studies indi-

cated that the central domain also interacts with myosin

but does not prevent myosin aggregation, and thus, it

does not possess chaperone-like activities [5]. This differ-

ent behavior and the fact that the central domain induces

significant conformational changes within the myosin–
UNC-45B complex through allosteric interactions [5],

suggest that the central domain performs a different

function than the UCS domain.

The UNC-45B protein has been identified as a fac-

tor that might play a critical role in several disease

syndromes such as congenital heart diseases and can-

cers [6]. Several studies have shown that UNC-45B is

required for myosin accumulation in sarcomeres of the

myocardium and thus might be critical for human

heart proper function [7–11].
We have previously shown that the UNC-45B chaper-

one inhibits the actin translocation function of myosin,

which is believed to play an important role during the

assembly of myofibrils under stress or during the devel-

opment process [12]. The precise mechanisms by which

UNC-45B chaperones myosin and modulates myosin

head function are unknown. Which are the key regions

in UNC-45B mediating its myosin-chaperoning and

actin gliding inhibiting functions? Based on the crystal

structures and biochemical data on Drosophila [6,13,14],

Caenorhabditis elegans [15–17] UNC-45B and also

based on the molecular dynamics and biophysical stud-

ies on human UNC-45B [5,18,19], we hypothesize that
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the UCS domain independently interacts with the myo-

sin head, prevents thermal aggregation, and maintains

mechanically unfolded intermediates of the myosin head

competent for refolding, underscoring its interaction

with non-native states. In contrast, the central domain is

capable of binding to native myosin heads but unable to

prevent misfolding [5]. Hence, we further hypothesize

that the chaperone function resides in the UCS domain

and the blocking effect is largely mediated by the central

domain. Here, we directly tested this hypothesis using

the well-established actin filament gliding assay, which

is the minimal experimental system for studying acto-

myosin motility [20–22].

Materials and methods

Protein expression and purification

The full-length Mus musculus UNC-45B and its central and

UCS domains were subcloned, expressed, and purified as

described in a previous publication [5].

Actin purification and labeling

Actin was purified from rabbit skeletal muscle [22,23].

Briefly, actin was extracted from actin acetone powder using

3 mM NaN3, 0.2 mM CaCl2, 0.2 mM ATP, and 0.5 mM DTT

in 2 mM Tris, pH 8.5. In order to polymerize the actin,

50 mM KCl and 2 mM MgCl2 were added and then dialyzed

against 50 mM KCl, 2 mM MgCl2, and 0.5 mM DTT in

10 mM Tris, pH 7.5, to maintain the polymerized state [22].

The filaments were labeled using AlexaFluor 594 phalloidin

(Life Technologies, Carlsbad, CA, USA) [12,22].

Myosin purification and subfragment-1

preparation

Myosin was extracted from rabbit skeletal muscle and puri-

fied using the technique of Margossian and Lowey [24].

Subfragment-1 (or S1) was produced by chymotryptic digest

of synthetic myosin filaments [25]. The S1-bearing super-

natant was dialyzed against 50 mM imidazole pH 7.0,

0.3 mM EGTA, and 1 mM DTT and cleared by centrifuga-

tion. This supernatant was then adjusted to 150 mM NaCl

and purified by size exclusion chromatography on a Sepha-

cryl S-300 column (GE Healthcare, Piscataway, NJ, USA).

The purity and composition of full-length myosin and the

S1 subfragment proteins were confirmed by SDS/PAGE

[26].

Actin filament gliding assay

The actin gliding experiments were performed on nitrocel-

lulose-coated surfaces as previously described by our

group [12]. Briefly, nitrocellulose-coated coverslips were

prepared by depositing 1 lL of 1% nitrocellulose in amyl

acetate on a glass cover slip and spreading evenly with a

pipette tip. The nitrocellulose-coated coverslip was then

used to prepare a flow cell. Myosin S1 at 0.2 mg�mL�1

was applied in a TBS buffer for 2 min. This was then

washed with buffer to remove the unbound fraction, and

then, the surface was blocked with 1 mg�mL�1 BSA in

G-actin buffer for 3 min before being rinsed with wash

buffer (20 mM MOPS, pH 7.4, 80 mM KCl, 5 mM MgCl2,

and 0.1 mM EGTA).

The Alexa-594-phalloidin-labeled actin was then added

at a concentration of 20 nM in wash buffer and incu-

bated for 1 min. The assay buffer consisting of wash buf-

fer supplemented with 0.7% methylcellulose, 1 mM

ATP, 0.1 mg�mL�1 glucose oxidase, 0.02 mg�mL�1 cata-

lase, 2.5 mg�mL�1
D-glucose, and 50 mM DTT was then

washed to commence the experiment [22]. The flow cell

was imaged using a Nikon Eclipse TE2000 microscope

(Nikon, Melville, NY, USA) with a Nikon 40X 1.3 NA

objective and a CoolSnapHQ camera (Photometrics, Tuc-

son, AZ, USA). Images were taken every 1–5 s, depend-

ing upon the speed of motion, with an exposure time of

200 ms per frame. For analysis, we used the Difference

Tracker software (Babraham Bioinformatics, Cambridge,

UK) in IMAGEJ (NIH, Bethesda, MD, USA). All of these

experiments were performed at room temperature, which

ranged from 19 to 23 °C.

Myosin ATPase assay

ATP hydrolysis was measured using a colorimetric

ATPase Assay Kit (Innova Biosciences, Cambridge, UK)

following the manufacturer’s instructions. Briefly, 0.2 lM
myosin S1, 1 mM fresh ATP, and 0.4 mg�mL�1 actin fila-

ments were mixed with 2 lM of UNC-45B, central

domain or UCS domain in 10 mM Tris, 50 mM KCl,

10 mM MgCl2, 0.2 mM CaCl2, and 1 mM DTT. Each con-

dition was assayed using 100 lL aliquots of the reaction

mix at each time point, promptly quenched, and then the

absorbance was measured at 650 nm (using a Molecular

Devices VersaMax Tunable Microplate reader, Molecular

Devices, Silicon Valley, CA, USA). These reactions were

carried out at 25 °C.

Statistical analyses

Unless otherwise stated, data are reported as mean � stan-

dard deviation. Student’s paired t-test (two-tailed) was

applied to determine the significance of the differences in

ATPase activity in the absence or presence of the different

UNC-45B protein constructs, respectively. Statistical signifi-

cance was assigned as not significant for P > 0.05 and *for
P ≤ 0.05.

42 FEBS Open Bio 8 (2018) 41–48 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Inhibition of myosin power stroke by a chaperone P. J. Bujalowski et al.



Results

We utilized an actin gliding assay [12,20–22] to test

which domain of UNC-45B is responsible for the

blocking effect of UNC-45B on myosin-mediated actin

translocation. We added different recombinant UNC-

45B protein constructs in the assay buffer of an actin

gliding experiment with S1 myosin fixed to nitrocellu-

lose-coated coverslips. Using this assay, we measured

an average actin filament gliding velocity of about

400 nm�s�1, a value that is in agreement with previous

measurements [27].

Addition of 2.8 lM UNC-45B completely inhibited

the translocation of actin (Fig. 1A). As a control, we

added BSA (3.5 lM) which showed a ~ 40% inhibition

(Fig. 1B; each point represents the position of the

trailing edge of an actin filament at 1-s intervals). This

nonspecific slowing effect of BSA in the gliding assay

is most likely due to macromolecular crowding com-

bined with the compromised power stroke of myosin

S1, similar to the results obtained previously [12].

Titrating UNC-45B levels (Fig. 1C), we estimated the

apparent Kd of this effect at about 0.2 lM.
In our experiments, the addition of the central

domain of UNC-45B to the assay buffer resulted in a

halt to actin gliding when added at a concentration of

2.2 lM (Fig. 2A). This result was similar to a positive

control consisting of a similar concentration of full-
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Fig. 1. UNC-45B specifically modulates myosin motor activity in an in vitro gliding assay. (A,B) Actin gliding assays with ATP-bearing assay

buffer supplemented with 3.5 lM BSA or 2.8 lM UNC-45B, respectively. Each point represents the position of the trailing edge of an actin

filament at 1-s intervals. (C) Velocity of actin gliding in the presence of varying quantities of UNC-45B and BSA. The solid lines correspond

to a nonlinear least-squares fit to single exponential decay equation (of the form f = a 9 exp(�b 9 x)) to the experimental data. All error

bars represent standard deviation of three or more experiments.
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length UNC-45B (Fig. 1A). The addition of 3.5 lM of

the UCS domain resulted in a slowing of the actin

gliding, although this effect was significantly weaker

than the results observed with the central domain

(Fig. 2B).

In order to estimate the apparent Kd of the inhibi-

tion by the central domain, we systematically increased

its concentration in the gliding assay and estimated a

value of 0.4 lM (Fig. 2C). Our results showed that the

addition of the central domain was able to duplicate

the effects of UNC-45B. When we performed the same

experiment with the UCS domain, the effect was much

less potent and was more reminiscent of the effects of

the BSA control (Fig. 1C). We hypothesize that the

inhibitory effect of the UCS domain is nonspecific as

it has higher affinity for myosin S1 than the central

domain as measured by fluorescence binding assay [5].

In that study, we found that estimated equilibrium dis-

sociation constants for the UCS and central domain

are 2.3 9 10�7
M and 1.6 9 10�6

M, respectively.
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Fig. 2. Addition of varying quantities of the central domain mimicked the inhibition curve of full-length UNC-45B, but the UCS domain did

not. (A) 2.2 lM of central domain added to the assay buffer of a S1-based gliding assay resulted in a 100% inhibition similar inhibitory effect

to UNC-45B. (B) 3.5 lM of the UCS domain added to the assay buffer resulted in a much weaker inhibition mimicking the BSA control. (C)

Velocity of actin gliding in the presence of varying quantities of central domain (triangles), UCS domain (squares), and UNC-45B (circles).

The solid lines correspond to a nonlinear least-squares fit to single exponential decay equation (of the form f = a 9 exp(�b 9 x)) to the

experimental data. The UCS domain slowed actin translocation, although this effect plateaued. The central domain in contrast potently

slowed the rate of actin translocation, similar to UNC-45B full-length controls. All error bars represent standard deviation of three or more

experiments.
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In order to test whether the central domain inhibits

the myosin S1 actin-activated ATPase, we measured

the kinetics of phosphate generation by S1 (Fig. 3).

We found that there is a small but not statistically sig-

nificant difference between the kinetics of phosphate

generation with (2.4 � 0.5 lmol�min�1) and without

(3.2 � 0.6 lmol�min�1) an inhibitory concentration of

the central domain (2 lM; Fig. 3B). Moreover, we

found that full-length UNC-45B and the UCS domain

do not inhibit the S1 actin-activated ATPase (Fig. 3B).

These data suggest that the actin translocation inhibi-

tory property of the central domain of UNC-45B

occurs through a mechanism allowing ATP turnover

while inhibiting the power stroke.

Discussion and conclusions

Our previous studies showed that the myosin-specific

chaperone UNC-45B inhibits the myosin motor

domain power stroke [12]. In this work, we have

identified that the central domain acts alone as an

inhibitor of myosin power stroke. Therefore, the

UNC-45B is a unique chaperone where each of the

three domains has a clearly defined and different

function (Fig. 4). The UCS domain binds to myosin

heads and under stressful conditions stabilizes them

and prevents their aggregation. The central domain

has an inhibitory effect on the ability of myosin to

translocate actin. We previously found that, on its

own, Hsp90 had no effect on actin gliding, but when

added after the UNC-45B-induced halt, it was cap-

able of reversing it [12]. Hence, the TPR domain

binding to Hsp90 reverses the UNC-45B inhibition of

the myosin power stroke and resumes actin transloca-

tion.

What is the biological relevance of these observa-

tions? Based on these and our published data

[5,12,19,26], we propose a novel model for the action

of the UNC-45B molecular chaperone in myosin

assembly and repair (Fig. 4). Considering the work by

Gazda et al. [15] demonstrating that UNC-45B forms

a multimeric scaffold regulating the location of myosin

heads and coordinating the activity of Hsp90, we

believe that this UNC-45B scaffold function is not

merely limited to proper positioning of myosin head

but it plays a multifunctional role during sarcomere

formation and maintenance. We propose that an

important function of UNC-45B is to prevent the

power stroke from occurring during myosin biogenesis.

In the forming sarcomere, this would prevent untimely

force from being applied to thin filaments, which could

disrupt their orderly assembly into the semicrystalline

sarcomere. Hsp90 could then serve both to assist in

the completion of the myosin fold and to release the

UNC-45B-mediated block, allowing the now fully

formed myofibrils to contract normally.

Time (min)
0 10 20 30 40 50 60

Fr
ee

 P
i (

µm
ol

)

0

50

100

150

200

250

A B

S1 
S1 + UNC45 full
S1 + UCS domain
S1 + central domain

Pi
 re

le
as

e 
ra

te
 (µ

m
ol

/m
in

)

0

1

2

3

4
S1 
+UNC-45B full
+UCS domain 
+Central domain 

Fig. 3. The actin translocation inhibitory property of the UNC-45B central domain occurs through a mechanism that allows ATP turnover. (A)

Kinetics of phosphate generation by myosin S1 (0.2 lM, open circles) mixed with 2 lM UNC-45B (filled circles and no line), 2 lM UCS

domain (filled squares), or 2 lM central domain (inverted triangles). The lines correspond to linear fits to the experimental data (S1 alone:

dashed line; UCS domain: thin line; central domain: thick line). We found that a matching BSA concentration (2 lM) did not affect the S1

ATPase Pi release rate (data not shown). (B) Analysis of the rate of the myosin ATPase derived from linear fits to (A) showing that there is a

small but not statistically significant difference (P-value = 0.058) between the S1 ATPase Pi release rate with (2.4 � 0.5 lmol�min�1) and

without (3.2 � 0.6 lmol�min�1) an inhibitory concentration of the central domain (2 lM). All error bars represent standard deviation of three

or more experiments.
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According to this model, when myosin heads are

damaged (e.g., due to thermal or chemical stress),

Hsp90 molecules dissociate from the myosin/UNC-

45B/Hsp90 complex. Then, both the UNC-45B chaper-

oning activity and blocking of the power stroke take

place. This allows myosin refolding to occur without

mechanical force displacing key components. Under

this translocation-inhibited conformational state of

myosin, the aberrant behavior of the thick filament

can then be corrected by refolding due to the chaper-

one network coordinated by their TPR domains.

Hsp90 once again reassociates and the repaired thick

filament may resume the organized generation of force.

Hsp90 activity can be regulated by phosphorylation

[28], which might switch on and off its modulation of

UNC-45B–myosin interactions for optimal control of

myosin refolding and assembly [29].

According to this model, the UCS domain is the

chaperone-like domain, the central domain is an inhi-

bitory domain that halts power stroke, and the TPR

domain binds Hsp90 which releases UNC-45B from

thick filaments when myosin molecules obtain proper

fold and are ready to return to performing its biologi-

cal function.

The existence of a single chaperone molecule with

different domains that have distinct functions on the

client has not been reported previously, to our knowl-

edge. Our studies should provide novel mechanistic

insights into the pathogenesis of increased or reduced

myosin activity (such as in certain hypertrophic and
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power strokes; this translocation-inhibited conformational state of myosin is relieved by Hsp90 upon successful assembly into the

sarcomere. When a myosin head is damaged, Hsp90 molecules dissociate from the complex. Then, both the UNC-45 chaperoning activity

and blocking of the power stroke take place. Under these conditions, the aberrant behavior of the thick filament can then be corrected by

refolding due to the chaperone network coordinated by their TPR domains. Hsp90 once again reassociates and the repaired thick filament

may resume the organized generation of force.
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dilated cardiomyopathies) and its modulation by chap-

erones.
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