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ARTICLE

Application of Physiologically-Based Pharmacokinetic 
Modeling to Predict Gastric pH-Dependent Drug–Drug 
Interactions for Weak Base Drugs

Zhongqi Dong1,4, Jia Li1,5, Fang Wu2,6, Ping Zhao1,7, Sue-Chih Lee1,6, Lillian Zhang3, Paul Seo2 and Lei Zhang1,6,*

Weak-base drugs are susceptible to drug–drug interactions (DDIs) when coadministered with gastric acid–reducing agents 
(ARAs). We developed PBPK models to evaluate the potential of such pH-dependent DDIs for four weak-base drugs, i.e., 
tapentadol, darunavir, erlotinib, and saxagliptin. The physiologically-based pharmacokinetic (PBPK) models of these drugs 
were first optimized using pharmacokinetic (PK) data following oral administration without ARAs, which were then verified 
with data from additional PK studies in the presence and absence of food. The models were subsequently used to predict 
the extent of DDIs with ARA coadministration. Sensitivity analysis was conducted to explore the impact of gastric pH on 
quantitative prediction of drug exposure in the presence of ARA. The results suggested that the PBPK models developed 
could adequately describe the lack of the effect of ARA on the PK of tapentadol, darunavir, and saxagliptin and could quali-
tatively predict the effect of ARA in reducing the absorption of erlotinib. Further studies involving more drugs with positive 
pH-dependent DDIs are needed to confirm the findings and broaden our knowledge base to further improve the utilization of 
PBPK modeling to evaluate pH-dependent DDI potential.

Many weak base drugs (WBDs) exhibit pH-dependent sol-
ubility. Generally, the solubility of a WBD decreases as pH 
increases. Thus, when WBDs are administered orally, el-
evation of gastric pH induced by another drug or disease 
state may lead to a decrease in WBD absorption and con-
sequently result in reduced systemic exposure to the drug. 
pH-dependent drug–drug interactions (DDIs) have been 

observed for many WBDs, including various anticancer 
and antiretroviral drugs when they are coadministered with 
gastric acid–reducing agents (ARAs) such as histamine H2-
receptor antagonists and proton pump inhibitors.1,2 One 
example is erlotinib, an epidermal growth factor receptor 
tyrosine kinase inhibitor. The area under the plasma concen-
tration-time curve (AUC) and maximum concentration (Cmax) 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  There is limited experience in using physiologically-
based pharmacokinetic (PBPK) models to predict pH-de-
pendent drug–drug interactions (DDIs), especially at the 
stage of regulatory submission.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  The study explored the utility of PBPK models in pre-
dicting gastric pH-mediated DDI potential for weak-base 
drugs and understanding its limitation and knowledge 
gaps.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  PBPK models, optimized and verified using clinical 
pharmacokinetic data following oral dosing, appear to 

adequately predict the lack of pH-dependent DDIs with-
out false positive prediction. For the drug predicted as 
positive DDI by the conceptual framework published ear-
lier, a PBPK model can be used to confirm the qualitative 
prediction results. However, it still merits further research 
on the quantitative prediction of the magnitude of a posi-
tive pH-dependent DDI.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOL-
OGY OR TRANSLATIONAL SCIENCE?
✔  It may be possible to use a PBPK model to adequately 
evaluate pH-dependent DDI potential qualitatively without 
a dedicated clinical DDI study.
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of erlotinib were decreased by 46% and 61%, respectively, 
when the drug was coadministered with omeprazole, a pro-
ton pump inhibitor.3 This may be one reason why patients 
treated with both erlotinib and ARAs had shorter progres-
sion-free and overall survival time than those without taking 
any ARAs.4 Current erlotinib labeling recommends that pa-
tients avoid concomitant use of erlotinib and proton pump 
inhibitors if possible. Given the possibility of compromised 
drug efficacy, the potential for pH-dependent DDIs should 
be evaluated for WBDs during drug development. Recently, 
the US Food and Drug Administration (FDA) solicited public 
input on best practices in the planning and evaluation of 
pH-dependent DDIs (https://www.regul​ations.gov/docum​
ent?D=FDA-2018-N-1820-0001).

Evaluation of pH-dependent DDI can be achieved through 
the conduct of a clinical DDI study, which can be costly and 
time consuming. Methods to determine the need for such 
a clinical DDI study are highly desirable. Previously, we 
proposed a preliminary decision framework to predict the 
potential of pH-dependent DDI under fasting conditions 
based on both solubility and clinical dose of the drug, en-
abling the determination of the need to conduct a clinical 
study to assess pH-dependent DDI at the early stage of drug 
development.5 However, such a simplistic framework does 
not consider other factors that may also play important roles 
in drug absorption, such as permeability, supersaturation, 
and the effect of food, which can limit its utility. In addition, 
this proposed framework can only qualitatively assess the 
potential of pH-dependent DDI.

Physiologically-based pharmacokinetic (PBPK) modeling 
has been increasingly used by drug developers to predict 
DDIs mediated by metabolic enzymes and/or transporters 
for regulatory submissions.6,7 However, experience is limited 
in using PBPK model to predict pH-dependent DDIs, espe-
cially at the stage of regulatory submission.8–11 The objective 
of this study was to explore the utility of PBPK modeling in 
predicting the pH-dependent DDI potential, specifically gas-
tric pH-mediated DDI potential, for WBDs and understand 
the limitation of PBPK models and knowledge gaps with a 
goal of improving the model prediction performance in the 
future.

METHODS
Development and verification of PBPK models
Figure 1 illustrates the workflow of PBPK model develop-
ment, verification, and application to predict pH-dependent 
DDIs. Briefly, the base model was developed for tapen-
tadol, saxagliptin, darunavir, and erlotinib by incorporating 
drug physicochemical properties measured in vitro, vol-
ume of distribution derived from clinical studies, and drug 
clearance obtained from either intravenous pharmacoki-
netic (PK) data or in vitro enzyme kinetics data. The base 
model used advanced distribution, absorption, and metab-
olism (ADAM) model as the mechanistic absorption model 
in Simcyp (version 16, Simcyp Ltd, a Certara company, 
Sheffield, UK) and employed the advanced compartmental 
absorption and transit (ACAT) model in Gastroplus (version 
9.0, Simulation Plus Inc., Lancaster, CA). The base model 

Figure 1  Flow diagram of model development and verification process. ADME, absorption, distribution, metabolism, and excretion; 
ARA, acid-reducing agent; AUC0−∞, area under the concentration-time curve from time zero to infinity; Cmax, maximum concentration; 
IV, intravenous; PK, pharmacokinetic.
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was optimized using PK data from one oral dose, except 
for tapentadol where PK data from two oral doses were 
used. The model was then verified with data from addi-
tional PK studies under fasted or fed conditions. If both the 
predicted area under the concentration-time curve from 
time zero to infinity (AUC0−∞) and Cmax for all the studies 
used in model development and verification fell within a 
1.5-fold difference compared with the observed data, the 
model was considered verified.

Application of established (final) PBPK model to 
predict pH-dependent DDI with an ARA
The established final models were then extended to pre-
dict drug exposure in the absence and presence of an 
ARA using omeprazole as a model ARA. Previously, it was 
reported that administration of omeprazole at the usual 
therapeutic dosing regimens could elevate gastric pH to as 
high as 6.12 Thus, simulation of DDI in the presence of ome-
prazole was conducted by increasing the gastric pH to 6 to 
represent the worst-case scenario. As such, the simulation 
was conducted in a virtual healthy volunteer population 
by changing the gastric pH from the default values under 
fasted conditions (Gastroplus, fasted: 1.3; and Simcyp, 
fasted: 1.5) to 6 for tapentadol, erlotinib, and saxagliptin 
because the pH-dependent DDI studies of these drugs 
were conducted in the absence of food. For darunavir, 
which has the pH-dependent DDI study conducted in the 
presence of food, the simulation was carried out by in-
creasing the gastric pH from the default values under fed 
conditions (Gastroplus, fed: 4.9; and Simcyp, fed: 5) to 6. 
The default values for gastric emptying time for both fasted 
and fed conditions as implemented in the software were 
used in the analysis. The predicted AUC and Cmax ratios in 
the presence and absence of omeprazole were computed 
and then compared with the observed clinical data to ad-
dress the following questions:

•	 pH-mediated DDI potential: Can simulations describe 
the lack of DDI with ARAs (e.g., <  25% decrease in 
both AUC and Cmax) or a positive DDI (e.g., ≥  25% 
decrease in AUC or Cmax) as observed in dedicated 
clinical studies?

•	 Quantitative prediction performance: Can simulations 
describe the observed AUC and Cmax ratios in the pres-
ence and absence of an ARA with less than 25% devia-
tion (i.e., is the R value for AUC and Cmax between 0.8 
and 1.25, where the R value is calculated according to 
the following equation:

Impact of different gastric pH on the model prediction 
performance
Different doses of omeprazole can increase gastric pH to a 
different extent.12–14 In our study, darunavir was given with 
20 mg omeprazole. Daily dosing of omeprazole 20 mg could 
increase gastric pH to the range of 2.8–4.2. Tapentadol, 

saxagliptin, and erlotinib were given with 40 mg omepra-
zole. This could increase gastric pH to the range of 4.4 to 
6. Thus, a sensitivity analysis was conducted on gastric pH 
to evaluate its impact on model prediction performance by 
changing the gastric pH from 1 to 8.

RESULTS
Development and verification of PBPK models for 
tapentadol, saxagliptin, darunavir, and erlotinib
Four WBDs in immediate-release oral dosage forms be-
longing to Biopharmaceutics Classification System (BCS) 
classes I–III were selected for PBPK model development 
based on the availability of aqueous solubility data, i.e., 
tapentadol (BCS class I), darunavir (BCS class II), erlotinib 
(BCS class II), and saxagliptin (BCS class III).15–18 These 
drugs were approved between 2003 and 2013 by the U.S. 
FDA and have the clinical DDI studies conducted with ARAs 
such as omeprazole (Table 1).

PBPK models for tapentadol, saxagliptin, darunavir, and 
erlotinib were developed and optimized based on both in 
vitro and clinical data. The input parameters for the es-
tablished final models for each drug are listed in Tables 
S1–S4. Table  2, Figure  2, and Figure  S8 illustrate that 
the optimized models with both Gastroplus and Simcyp 
well described the PK profiles following single oral doses. 
The predicted Cmax and AUC values were within 1.5-fold of 
the observed values for all drugs. Further external model 
verification indicated that the models also well described 
the observed drug exposure for additional oral doses and 
exposure in the presence of food that were not used for 
model development (Table 2).

Prediction of DDI potential with an ARA
The in vivo DDI study with an ARA was conducted by in-
creasing the gastric pH to 6 to represent the worst-case 
scenario when omeprazole was coadministered.

For tapentadol, saxagliptin, and darunavir, both the 
Gastroplus and Simcyp models well described the PK pro-
files following oral administration of the drug alone and in 
combination with omeprazole (Table 3). In addition, both the 
Gastroplus and Simcyp models suggested that there was 
no clinically relevant effect of omeprazole on their PK (i.e., 
a reduction of <  25% in both Cmax and AUC), which was 
consistent with the clinical data (Table 3).15,17,19 Moreover, 
the magnitude of Cmax and AUC change were also well pre-
dicted (i.e., R values of Cmax and AUC were between 0.8 and 
1.25 cutoff; Table 3).

For erlotinib, the established drug model in Gastroplus 
overpredicted the AUC in the presence of omeprazole (i.e., 
predicted/observed value of 1.7, higher than the 1.5 cutoff 
value; Table 3). Although the model was able to predict the 
positive DDI with omeprazole, it tended to underpredict the 
magnitude of DDI for both Cmax and AUC (R values of 1.40 
and 1.45, respectively, more than 1.25 cutoff; Table  3). 
Prediction using the established erlotinib model in Simcyp 
reasonably described AUC and Cmax of erlotinib in the pres-
ence and absence of omeprazole (Table 3). Although the 
model was able to predict positive DDI with omeprazole 
and described the observed AUC ratio within 1.25-fold, the 

R=

Model Predicted AUC or Cmax

ratio in the presence and absence of ARA

Clinically Obseved AUC or Cmax

ratio in the presence and absence of ARA

)?
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model also appeared to underpredict the magnitude for 
DDI for Cmax (i.e., R value of Cmax is 1.40; Table 3).

Impact of different gastric pH on the model prediction 
performance
It was reported that different doses of omeprazole can el-
evate the gastric pH to different levels while we used pH 6 
for quantitative predictions. Thus, sensitivity analysis was 
conducted by changing gastric pH to explore its impact on 
quantitative prediction of drug exposure in the presence of 
ARA. As shown in Figure 3, the AUC and Cmax did not dra-
matically change for tapentadol, saxagliptin, and erlotinib 
from pH 4.4 to 6. Meanwhile, the AUC and Cmax did not 
significantly change for darunavir from pH 2.8 to 4.2.

DISCUSSION

In the past decades, PBPK models have been applied to pre-
dict first-in-human dose, change of drug exposure in specific 
populations (e.g., renal impairment patients, pediatrics), and 
DDIs mediated by metabolic enzymes and/or transporters.20 
Recently, a study suggested that the PBPK model that was 
developed at the preclinical stage could correctly identify 
pH-dependent DDI potential for 78% drugs although false 
negative prediction was observed.21 However, there is still lim-
ited application of PBPK modeling to address the questions 
related to absorption-related DDIs at the stage of regulatory 
submissions.22–25 In the years of 2013–2017, PBPK modeling 
has been used in two New Drug Application submissions to 
predict the liability of pH-dependent DDIs to support the la-
beling recommendations.26,27 In this study, we evaluated the 
possibility to use PBPK models that were verified with clinical 
PK data to predict pH-dependent DDIs. This reflects the sce-
nario at the late stage of drug development.

PBPK models were developed for four WBDs that 
belong to BCS classes I, II, or III using Gastroplus and 
Simcyp, two commercially available PBPK platforms. The 
purpose of using two platforms was to examine the pre-
diction performances generated by different software. 
Good agreement to the observed data and between dif-
ferent platforms would add to our confidence in the utility 
of PBPK modeling for predicting pH-dependent DDIs. 
Prediction of pH-dependent DDIs under both fasted and 
fed conditions were explored. Our analysis suggests that 
PBPK models, optimized and verified using clinical PK 
data following oral dosing, appear to adequately predict 
the lack of pH-dependent DDIs without false positive 
prediction. For the drug predicted as positive DDI by the 
conceptual framework published earlier, a PBPK model 
can be used to confirm the qualitative prediction results. 
It is also expected that with appropriate input (clinically 
relevant solubility or dissolution, etc.) and sufficient ver-
ifications for PBPK absorption model using all available 
clinical study data with ascending doses under fasted/fed 
conditions, the model may be able to quantitatively predict 
pH-dependent DDI.

PBPK model vs. previous decision framework to 
predict pH-dependent DDI
Previously, we proposed a preliminary decision frame-
work to predict pH-dependent DDI potential based on 
both solubility and clinical dose of the drug.5 Although 
the framework results in no false negative prediction, it 
did not consider other critical factors in drug absorption, 
such as permeability, supersaturation, and the physio-
logical change under fed conditions and thus resulted in 
false positive prediction on 16% drugs. Thus in this study, 
we incorporated absorption-related parameters in the 

Table 1  Summary of dosing regimen and observed effects on the PK of test drugs in the food effect study and pH-dependent DDI study

Drug
Dosing regimen or PK 

parameters Food effect studya pH-dependent DDI studyb Reference

Tapentadol Dosing regimen Tapentadol, 100 mg, single 
dose

Tapentadol, 80 mg, single dose, omeprazole, 
40mg, q.d. for 4 days, fastedc

15

Cmax ratio 1.15 0.91

AUC ratio 1.25 1.01

Saxagliptin Dosing regimen Saxagliptin, 10 mg, single 
dose

Saxagliptin, 10 mg, single dose, omeprazole, 
40 mg, q.d. for 4 days, fastedc

17,36

Cmax ratio 1.09 0.98

AUC ratio 1.27 1.12

Darunavir Dosing regimen Darunavir, 400 mg, single 
dose

Darunavir, 400 mg b.i.d. for 5 days, 
omeprazole, 20 mg, q.d. for 5 days, fed

19,37

Cmax ratio 1.48 1.03

AUC ratio 1.54 1.05

Erlotinib Dosing regimen Erlotinib, 150 mg, single 
dose

Erlotinib, 150 mg, single dose, omeprazole, 40 
mg, q.d. for 5 days, fasted

3,38

Cmax ratio 1.57 0.39

AUC ratio 1.97 0.54

AUC, area under the concentration-time curve; b.i.d., twice a day; Cmax, maximum concentration; DDI, drug–drug interaction; PK, pharmacokinetic; q.d., 
once a day.
aThe food effect is expressed as the exposure ratio in the presence and absence of food.
bThe acid-reducing agent effect is expressed as the exposure ratio in the presence and absence of omeprazole.
cAssumed dosing condition when conducting the simulation.
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PBPK models and explored its prediction performance 
on pH-dependent DDI.

Regarding the prediction performance on the lack of 
pH-dependent DDI potential, both PBPK models and the 
preliminary decision framework achieved the correct pre-
diction on pH-dependent DDI potential for tapentadol and 
saxagliptin, which have the pH-dependent DDI studies 
conducted under the fasted condition. For darunavir, the 
DDI study was conducted under the fed condition, which 
is beyond the scope of the decision framework. However, 

PBPK model still resulted in correct prediction on the liabil-
ity of pH-dependent DDI that took into consideration of the 
impact of food on various elements in drug absorption, in-
cluding change in stomach pH and gastric emptying time. 
Consistent with our findings, the performance of PBPK 
models to correctly predict the lack of pH-dependent DDI 
potential was also demonstrated in a recent study where a 
Gastroplus model for alectinib, a BCS class IV drug, pre-
dicted that there is negligible impact of gastric pH elevation.28 
This was later confirmed by a DDI study with esomeprazole 

Table 2  Verification results using the established models

Drug Scenario IV or Oral dosing References

Cmax ratio (predicted/
observed)a

AUC ratio (predicted/
observed)a

Gastroplus Simcyp Gastroplus Simcyp

Tapentadol IV dose 34 mg single infusion 
for 15 min

15 0.92 0.96 1.11 1.13

Oral dose 1b 80 mg single dose, IRc 
tablet

15 0.84 0.95 1.04 0.88

Oral dose 2d 129 mg single dose, IR 
capsule

15 0.72 0.79 0.97 0.82

Oral dose 3e 64 mg single dose, IR 
capsule

15 0.88 1.03 1.14 0.96

Fed statee 100 mg single dose, IR 
tablet with food

15 0.68 0.92 0.76 0.75

Saxagliptin IV dose 0.04 mg, single infusion 
for 15 mins

39 0.99 0.86 0.92 0.88

Oral dose 1b 100 mg single dose, IR 
tablet

40 0.99 0.98 1.06 1.02

Oral dose 2e 5 mg single dose, IR 
tablet

39 1.08 1.10 1.13 1.18

Oral dose 3e 50 mg single dose, 
solution

41 0.98 1.00 1.16 1.27

Fed statee 10 mg single dose, IR 
tablet, with food

36 0.68 0.87 0.97 1.11

Darunavir f IV dose 150 mg, single infusion 
for 1 hour

37 1.07 1.20 1.00 1.05

Dose 1b 600 mg single dose, IR 
tablet, with food

37 0.85 0.88 0.88 0.76

Dose 2e 400 mg single dose, IR 
tablet, with food

37 0.71 0.74 0.78 0.74

Dose 3e 800 mg single dose, IR, 
with food

New Drug 
Submission

0.89 0.89 1.12 0.87

Fasted statee 400 mg single dose, IR 
tablet

37 1.01 0.95 1.27 0.93

Erlotinib IV dose 25 mg, single infusion 
for 30 mins

42 0.85 1.14 1.15 1.44

Dose 1b 150 mg single dose, IR 
tablet

3 0.81 1.01 1.15 1.06

Dose 2e 100 mg single dose, IR 
tablet

43 0.86 1.19 1.23 1.28

Dose 3e 200 mg single dose, IR 
tablet

16 0.78 0.97 0.96 0.83

Fed statee 150 mg single dose, IR 
tablet, with food

38 0.68 1.01 1.09 1.42

aThe value represents the ratio of predicted and observed Cmax or AUC0-∞.
bThe study was used for model refinement when needed. The Cmax ratio and AUC0-∞ ratio represent the result after model refinement.
cIR: Immediate-release.
dThe study was used for Gastroplus model refinement, but not for Simcyp model refinement.
eThe study was used for model external verification. It was not used for model refinement.
fThe model for darunavir was developed with the studies in the presence of 100 mg ritonavir, BID.
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coadministration.29 By contrast, using our previous pre-
liminary decision framework would incorrectly predict that 
alectinib may have a positive DDI with ARAs. Overall it seems 
that PBPK models, with proper verification, could generally 
provide correct prediction on the lack of pH-dependent DDI.

Regarding the prediction performance on positive pH-de-
pendent DDI potential, both the PBPK model and preliminary 
decision framework for erlotinib could qualitatively predict 
its positive DDI potential. However, because there is only 
one example of positive pH-dependent DDI in our study, it 
merits further study to confirm our finding.

It should also be noted that beyond the qualitative assess-
ment of the potential of pH-dependent DDI, PBPK modeling 
could also target on predicting the extent of AUC and Cmax 
change of a WBD in the presence of ARAs and simulate various 
scenarios that may not be clinically tested. In addition, sensi-
tivity analysis using the PBPK model can help understand key 
parameters that may affect drug absorption and DDI, which can-
not be achieved based on our preliminary decision framework.

Criteria to evaluate the prediction performance of 
PBPK models for pH-dependent DDI
In the current study, we evaluated both qualitative and 
quantitative prediction performance of PBPK models for 

pH-dependent DDI. The qualitative performance was eval-
uated based on whether the model could achieve a correct 
prediction on DDI potential (i.e., positive or negative DDI). 
Here positive DDI was defined as at least 25% reduction in 
either AUC or Cmax, whereas negative DDI was defined as 
less than 25% AUC or Cmax reduction. These are the same 
criteria as our previous decision framework for the evalua-
tion of pH-dependent DDI.5

It was reported that about 80% of PBPK models sub-
mitted to the FDA from 2008 to 2014 that were used to 
predict the effect of cytochrome P450 3A (CYP3A) inhib-
itors and inducers on a substrate drug’s PK could yield 
AUC or Cmax ratios within 1.25-fold of the observed val-
ues.6,7 In our study, we used the same criteria to evaluate 
the quantitative performance of the model, i.e., based on 
if the predicted AUC and Cmax ratios in the presence and 
absence of ARA fell within 1.25-fold of the observed data. 
It should be noted that a less stricter criteria (i.e., within 
1.5-fold of the observed data) was adopted for model ver-
ification because exposure change instead of exposure 
itself is our interests. Our study suggested that there were 
gaps for PBPK models to correctly predict change of AUC 
or Cmax in the presence of ARA (see the discussion in the 
next section).

Figure 2  Representative base model verification prediction results. Simulation of plasma concentrations followed by a single oral 
dose of (a) 80 mg tapentadol, (b) 100 mg saxagliptin, (c) 600 mg darunavir with 100 mg ritonavir under the fed condition, and (d) 150 mg 
erlotinib using both Gastroplus and Simcyp physiologically-based pharmacokinetic platforms. Closed circles indicate observed 
mean plasma concentration. The solid line indicates simulated mean plasma concentration using Gastroplus. The dash line indicates 
simulated mean plasma concentration using Simcyp.
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Performance of the final models in predicting  
pH-dependent DDIs
The final models predicted well when there was a lack of 
interaction as in the cases of tapentadol, saxagliptin, and 
darunavir. However, the PBPK model for erlotinib under-
predicted the decrease in drug exposure (Cmax and AUC 
using Gastroplus and Cmax using Simcyp) in the presence 
of omeprazole under the fasted conditions, as the pre-
dicted change was not within 1.25-fold of the observed 
value (Table 3). In Gastroplus, the default fraction of total 
colonic fluid volume filled with fluid, which is 10% over-
predicted exposure for certain drugs.30,31 In our study, 
when the fraction of total colonic fluid volume filled with 
fluid was refined to 1% based on the sensitivity analysis 
for erlotinib, the PBPK model for erlotinib was able to pre-
dict the decrease in drug exposure within 1.25-fold of the 
observed value (Table S5 and Figure S7). Consequently, 
the drug absorbed in the colon was reduced from 15.7% 
to 4.9%. Our study suggested that there were gaps for 
PBPK models to accurately predict change of AUC or 
Cmax in the presence/absence of ARAs using less than 
1.25-fold difference from the observed value as pre-
diction performance criteria. This is consistent with the 
finding from a previous study where exposure change of 
the compound ARRY-403 in the presence of famotidine 
was overestimated by about 2-fold by the PBPK model.32 
Our study also showed that appropriate model refinement 
is needed to have a better prediction performance (i.e., 
within 1.25-fold of the observed value) for using PBPK to 
predict pH-dependent DDI potential, e.g., in the case of 
erlotinib.

Impact of different gastric pH on prediction of  
pH-dependent DDI
Gastric pH can be elevated to different levels with differ-
ent type, dose, and dosing regimens of an ARA.12–14,33 For 
the four WBDs in our analysis, either 20 or 40 mg ome-
prazole was administered for 4 days before the WBD was 
given. It has been shown that the median 24-hour gas-
tric pH ranges from 2.8 to 4.2 after the administration of 
20 mg omeprazole for 5 days, whereas it ranges from 4.4 
to 6.1 with 40 mg omeprazole.12–14 Thus, to represent a 
worst scenario for the qualitative prediction of DDI effect 
in the presence of omeprazole or an ARA, we conducted 
simulations by increasing the gastric pH to 6 to mimic the 
maximum ARA effect on gastric pH. In addition, the po-
tential impact of different pH values on model prediction 
was explored using a sensitivity analysis. This allowed us 
to examine if applying different gastric pHs other than 6 
would result in different AUC or Cmax changes in the pres-
ence of an ARA. If so, the pH factor may complicate our 
quantitative prediction of the DDI effect imposed by an 
ARA. It was shown that for tapentadol, saxagliptin, and 
erlotinib, which were coadministered with 40 mg omepra-
zole, AUC and Cmax were generally unchanged from pH 
4.4 to 6.1 (Figure 3). For darunavir, which was coadmin-
istered with 20 mg omeprazole in the presence of food, 
AUC and Cmax were also not changed from pH 2.8 to 4.2 
(Figure 3). These results suggested that prediction results 
on AUC and Cmax change were not likely to be affected for Ta
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these drugs even though different gastric pH values after 
the ARA administration were applied.

Limitation of the current study
In our current study, we explored the utility of using PBPK 
models to predict pH-dependent DDI for WBDs. Our study 
showed that although PBPK model could result in a rea-
sonable prediction on pH-dependent DDI potential, it is still 
challenging to achieve an accurate quantitative prediction 
on the extent of AUC or Cmax change in the presence of an 
ARA. Because this was a proof-of-concept study to evalu-
ate the possibility of using PBPK to predict pH-dependent 
DDI both qualitatively and quantitively for various BCS 
class drugs, we only included limited WBDs among which 
only one drug has positive DDI (i.e., erlotinib) in the analysis. 
Further studies involving more drugs in BCS classes II and 
IV are needed to confirm the finding.

In terms of model development, four immediate-release 
drugs were used in our study. Either the Johnson or Wang-
Flanagan model was used to simulate drug dissolution. 
However, these dissolution models are generally not appli-
cable to extended-release formulations as the rate of drug 
dissolution is controlled by the formulation. Additional fac-
tors (e.g., drug release behavior) other than permeability and 
supersaturation such as biorelevant dissolution methods 
may deserve to be considered for base model development 
for extended-release formulations.

In terms of simulation of the pH effect, the gastric pH was 
kept constant after an ARA was given in our study. This is 
a general practice that most PBPK models are taking when 

predicting pH-dependent DDIs.11,28,31 However, numerous 
studies have shown that gastric pH undergoes a dynamic 
change after ARA administration and/or food intake.12–14,33 
Thus, incorporating a dynamic pH change during the simu-
lation may help the model to achieve a better quantitative 
prediction on pH-dependent DDI. In addition, in our study, 
we assume that omeprazole only changed the gastric pH, 
but not other parameters. However, certain studies sug-
gested that omeprazole could delay gastric emptying, which 
may also contribute to the change of Cmax.

34,35 As there is 
very limited information about gastric emptying time after a 
repeated dosing of omeprazole, the change of gastric emp-
tying time was not included in the model.

Finally, in this study, we only evaluated the prediction 
performance of PBPK model on WBDs. For weak-acid 
drugs that may have higher rates and extents of absorp-
tion in the presence of ARAs, PBPK models may be used 
to predict their pH-dependent DDI potential considering 
that the DDI is also associated with the solubility change 
of the drug as a result of alteration of gastric pH by the 
ARA. PBPK model prediction performance on pH-depen-
dent DDI prediction for weak-acid drugs warrants further 
assessment.

CONCLUSION

Overall, our study suggests that it may be possible to use 
PBPK modeling to adequately evaluate pH-dependent 
DDI potential for WBDs. This initial proof-of-concept study 
evaluated a limited number of drugs, including those that 

Figure 3  Impact of gastric pH on (a) Cmax in Gastroplus, (b) AUC in Gastroplus, (c) Cmax in Simcyp, and (d) AUC in Simcyp for darunavir, 
erlotinib, tapentadol, and saxagliptin using the verified physiologically-based pharmacokinetic model for each drug. AUC0−∞, area 
under the concentration-time curve from time zero to infinity; AUC96−108h, area under the concentration-time curve from 96 to 108 hour; 
Cmax, maximum concentration.

(a) (c)

(b) (d)
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do not show significant pH-dependent DDIs. The results 
from our work can serve as catalyst for future studies to 
systematically examine the qualitative and quantitative pre-
diction performance of PBPK models for additional drugs, 
in particular BCS class II and IV drugs that show signifi-
cant pH-dependent DDIs. This will broaden our knowledge 
base and further improve the utilization of PBPK modeling 
to evaluate pH-dependent DDI potential in lieu of dedicated 
clinical DDI studies.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).
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