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Ocean waves have multidirectional components.
Most wave measurements are taken at a single
point, and so fail to capture information about
the relative directions of the wave components
directly. Conventional means of directional estimation
require a minimum of three concurrent time series
of measurements at different spatial locations in
order to derive information on local directional
wave spreading. Here, the relationship between
wave nonlinearity and directionality is utilized to
estimate local spreading without the need for multiple
concurrent measurements, following Adcock & Taylor
(Adcock & Taylor 2009 Proc. R. Soc. A 465, 3361–3381.
(doi:10.1098/rspa.2009.0031)), with the assumption
that directional spreading is frequency independent.
The method is applied to measurements recorded at
the North Alwyn platform in the northern North Sea,
and the results compared against estimates of wave
spreading by conventional measurement methods
and hindcast data. Records containing freak waves
were excluded. It is found that the method provides
accurate estimates of wave spreading over a range
of conditions experienced at North Alwyn, despite
the noisy chaotic signals that characterize such ocean
wave data. The results provide further confirmation
that Adcock and Taylor’s method is applicable to
metocean data and has considerable future promise
as a technique to recover estimates of wave spreading
from single point wave measurement devices.

1. Introduction
The relative directions in which wave components travel
have a substantial effect on their combined kinematics
and dynamics. This has significant implications in coastal
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and ocean engineering, including design codes for offshore oil platforms, ship safety, optimization
of wave energy devices and the dispersion of oil slicks and plastic contaminants. For the
majority of wave observations made in the oceans, the relative directions of the underlying wave
components remain unknown because the observations are usually made in isolation as point
measurements. The conventional way of overcoming this problem is to use either an array of
three or more instruments [1,2] or multi-degree-of-freedom devices [3–5] such as radar, clover-leaf
buoys and wave-rider buoys.

Another approach is to exploit the relationship between wave nonlinearity and wave
directionality. The majority of waves in the ocean are weakly nonlinear; therefore, their observed
time series will contain second-order nonlinearities [6,7]. The connection that exists between
nonlinearity and directionality as observed experimentally by Johannessen & Swan [8], Onorato
et al. [9], and in the field by Forristall [10], and Toffoli et al. [11], provides a means by which
information on local directional spreading can be inferred from the nonlinearites that lie within
a single point measurement. To exploit this connection, it is necessary to extract the linear
free waves and second-order bound waves from the wave elevation time signal, and then fit
second-order wave theory to the bound wave signal using an assumed spreading function, and
hence estimate the spreading from the optimal fit. Walker et al. [12] presented an approximate
method for separating out the linear free waves and second-order bound waves contained
within an observed free surface elevation time series, through filtering in the frequency domain
and minimizing skewness. For a prescribed wave spreading function involving a combination
of interacting freely propagating linear waves, the resulting bound waves can be calculated
to second-order using interaction kernels derived for finite depth by Dalzell [13]. Using this
theory, the bound waves associated with a given set of free waves are simply a function of their
component directions. By comparing the predicted bound second-order difference waves for an
assumed spreading distribution to the actual bound second-order difference waves contained
within the original measurement, Adcock & Taylor [14] derived a method for estimating the
local directional spreading for a point measurement. This approach, herein called the ‘long-wave
method’ (LWM), was satisfactorily validated using experimental data obtained by Cornett et al.
[15] and numerically generated data with the addition of random noise. Adcock et al. [16] used
the same approach to infer the conditions that gave rise to the Draupner wave of 1 January 1995
from information acquired by a single point gauge, and found that directional spreading was of
key importance in understanding the extreme event. The results were found to be consistent with
other nearby observations [17,18].

Here, Adcock and Taylor’s method is applied to a large dataset of observations from
three measurement devices located on the North Alwyn platform in the northern North Sea.
By examining high-quality data signals from all three devices, comparison is made between
estimates of directional spreading using the single probe LWM and conventional methods. Where
data are of insufficient quality from any of the three devices, comparison is drawn with hindcast
data obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF).

The paper is structured as follows. Section 2 describes the data sources. Section 3 presents the
methodology. Section 4 investigates the sensitivity of the method. Section 5 details the results.
Section 6 lists the conclusions.

2. Data

(a) North Alwyn platform
The ocean wave data considered herein were all obtained from single point gauges located
on the North Alwyn platform, a fixed jacket offshore structure located in the northern North
Sea at (60◦48.5′ N, 1◦44.17′ E) about 150 km east of the Shetland Isles. Mean water depth at the
platform was 130 m. The platform comprised two structures, North Alwyn A and North Alwyn
B, connected by a bridge. The platform substructure was sparse, with each support column of
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Figure 1. Schematic showing arrangement of North Alwyn measurement array in plan.

diameter D = 1.5 m. The wavelength of incoming waves was typically of the order of L = 100 m.
Hence, D/L � 0.2 and the North Alwyn platform can be considered as being composed of small
diameter cylinders, meaning that wave–structure interactions such as reflections and diffraction
were negligible [19] and did not significantly affect the recorded observations of the surrounding
wave field.

The measurement devices were all located on North Alwyn A, and comprised three Thorn EMI
infrared laser probes that simultaneously measured sea surface elevations (figure 1). The probes
were set out in plan as nodes of a triangle with side lengths of about 50, 51 and 72.5 m. The probe
resolution was ±5 cm (i.e. accurate to within 1%). It should be noted that the water elevation time
series measured by the probes contained a number of wild points and occasional signal drop-out
exhibited as plateaux in the data [20]. A Labtech Notebook on the platform was used to control
data acquisition, undertake preliminary data processing, and provide local data storage. The PC
acquired data at 5 Hz, via an XE software package. Raw data were split into 20 min blocks for
statistical treatment. Further details are given by Wolfram et al. [21].

Free surface elevation data were recorded over a 10 year period from 1994 to 2004. The data
measurements were continuously monitored, and values stored when either the significant wave
height Hs exceeded 3.5 m or the wind speed was greater than 16 ms−1. A total of 448 individual
‘storms’ made up the North Alwyn dataset, comprising 16 422 separate 20 min duration files, each
containing three concurrent sets of measurements. Prior to analysis, data were screened using a
strict quality control process based on a procedure outlined by Christou & Ewans [20,22]. All data
that passed these tests were subjected to further analysis. Directional analysis was performed
by conventional methods when the measurements from all three probes were simultaneously
of good quality. Table 1 summarizes these results, listing the number of measurements that
passed the quality control process. Of the unprocessed measurements, 20 802 from any of the
three sensors passed the quality control procedure, and of these 391 were suitable for multi-probe
directional analysis.

(b) Hincast data from European Centre for Medium Range Weather Forecasts
The ECMWF provides publicly available meteorological datasets produced by hindcast models.
The data used herein were taken from the ERA-20C model, which provided hindcast atmospheric
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Table 1. North Alwyn Dataset: availability of measurements between 1994 and 2005, and results of quality control process.

year storms files QC passed 3 probes QC passed

1994 1 177 172 124
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1995 5 658 595 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1996 1 71 148 22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1997 5 1241 1659 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2000 176 5972 7698 185
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2001 100 2272 2581 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2002 108 4019 4792 44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2003 52 2012 3157 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

total 448 16 422 20 802/49 266 391/16 422
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

information based on an assimilation of historic global observations for the entire twentieth
century. Model outputs included a wide range of meteorological data; of these, the key metocean
parameters were hindcast using a WAM model. The WAM model outputs spectra, discretized
at 36 directions and frequencies. The ‘wave spectral directional width’ σE output had a spatial
resolution of δx = 28 km and temporal resolution of δt = 3 h. A full specification of the wave model
is given by ECMWF [23].

3. Method

(a) Linearization
In order to calculate the bound waves for a given time series of free surface elevation above the
mean water level η(t), the linear free waves ηL must first be extracted. The data were linearized
following the procedure outlined by Walker et al. [12]. Second-order difference waves η2F− were
removed by high-pass filtering the data at half the peak frequency. Second-order sum nonlinearity
was then removed by adjusting the Stokes’ S22 parameter to minimize the skewness of the
resulting linear time series.

ηL = ηF − S22

h
(η2 − η̂2), (3.1)

where h is the mean water depth, and ηL is the linearized, ηF is the high-pass filtered, and η̂ is the
Hilbert-transformed, time series obtained from η. The skewness of ηL is calculated using

γ = 1
Nσ 3

N∑
n=1

η3
L, (3.2)

where N is the number of data points and σ is the standard deviation of the linearized
time series.

(b) Second-order calculations
Wave–wave interaction of linear freely propagating waves causes nonlinear bound waves which
occur at increasing order with decreasing amplitude. Second-order bound waves occur as a result
of interacting wave pairs, at the sum and difference of their constituents. The sum terms occur
in the tail of the spectrum and overlap the linear waves. However, the difference terms occur at
the low end of the spectrum where they dominate linear waves, owing to the faster decay of the
linear spectrum. This makes it easier to separate out the difference waves.
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Difference waves resulting from a linear spectrum may be calculated using the interaction
kernels derived by Dalzell [13] for finite depth. Starting with the linear spectrum expressed as a
complex Fourier series

η =
n=N∑
n=1

xn exp(iωnt), (3.3)

in which xn is the nth constituent of the complex vector x generated by performing a fast Fourier
transform (FFT) on the free surface time series, ωn is the corresponding angular frequency of the
nth constituent, and t is time. Calculating the interaction of each wave pair gives the second-order
difference waves

η2− =
i=N∑
i=1

j=N∑
j=1

n=N∑
n=1

m=N∑
m=1

d(θi)xn d(θj)xmK− exp(i(ωn − ωm)t), (3.4)

where d is the assumed spreading function, dependent on wave incidence angle θ , and K− is
the interaction kernel for difference terms. K− is a function of ω, θ , h, and wavenumber k, and is
defined as

K− = ω2
n + ω2

m
2g

+ ωnωm

2g

(
1 + cos(θn − θm)

tanh(|kn|h) tanh(|km|h)

)

×
(

(ωn − ωm)2 + g|kn − km| tanh(|kn − km|h)
Dm(kn, km)

)

+ (ωn − ωm)
2gDm(kn, km)

[
ω3

n

sinh2(|kn|h)
− ω3

m

sinh2(|km|h)

]
(3.5)

where

Dm(kn, km) = (ωn − ωm)2 − g|kn − km| tanh(|kn − km|h). (3.6)

(i) Numerical implementation

Equation (3.4) involves a quadruple summation over both frequency and direction. This incurs
large computational cost, which is reduced using the following procedure. Dropping the
exponential term in equation (3.4), the complex vector that represents the difference waves may
be expressed as

x2− =
i=N∑
i=1

j=N∑
j=1

n=N∑
n=1

m=N∑
m=1

d(θi)xn d(θj)xmK−. (3.7)

Noting that d(θ ) is the only independent variable in equation (3.7) for a given time series, then
K− can be expressed as an element of the n × m matrix K−(θδ), where θδ is simply the angle
between interacting wave pairs. Hence, for frequency-independent cases xnxm and d(θi) d(θj) can
be expressed in matrix form as

X(n, m) = xTx, (3.8)

and

D(i, j) = dTd. (3.9)

D can be transformed to a function of θδ = θi − θj, by summation over its diagonals

d(θδ) =
i−j=N∑
i−j=0

Dij. (3.10)

Summing over all angles of separation gives the complex matrix X2−, which represents the
interaction of all frequency pairs over all directional pairs. Diagonal elements of this matrix
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Figure 2. NewWave verification: (a) linear focused wave group free surface elevation time series η at x = 0; and (b) second-
order difference wave time series showing interaction kernelsη2T− (solid line) and fully nonlinear potential flowη2F− (dashed
line) [24].

represent values of equal resultant frequency, therefore summation over diagonals provides the
complex vector x2− from

x2− =
n−m=N∑
n−m=0

X2−nm , (3.11)

where

X2−(n, m) =
δ=N∑
δ=0

d(θδ)XK−(θδ). (3.12)

Finally, performing the inverse FFT on x2− gives the second-order difference waves

η2− =
n=N∑
n=1

x2−n exp(iω2−n t), (3.13)

in which ω2−,n is the nth difference frequency.
This method was tested against fully nonlinear potential flow simulations of a directionally

spread focused NewWave group on water of infinite depth carried out by Gibbs & Taylor [24],
using a numerical solver developed by Bateman et al. [25]. Figure 2 shows the linear free surface
of the simulations and the corresponding bound difference waves obtained using the present
method and that of Gibbs & Taylor [24]. Excellent agreement is obtained regarding the long
waves; there is nevertheless a slight discrepancy at focus which is the result of narrowing of the
directional spectrum due to nonlinearity.

(c) Spreading estimation
(i) Point measurement: long-wave method

Theoretical difference waves can be produced for any arbitrary spreading distribution using
equation (3.5) to (3.13) for the linearized time series ηL. Here, the predicted difference waves, η2T− ,
are compared with observed difference waves, η2F− from (3.13), that were extracted by filtering
the measured free surface time series η. By taking the Euclidean norm,

�LW =
√∑

(η2T− − η2F− )2√∑
(η2F− )2

. (3.14)
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The value of �LW is then minimized by varying the assumed spreading distribution. In this case,
a wrapped-normal distribution is used, where the spreading value σ corresponds to standard
deviation of a normal distribution wrapped around a full circle

d(θ ) = 1

σ
√

2π
exp

(
− θ2

2σ 2

)
. (3.15)

It is assumed that spreading is frequency independent. The value σopt that minimizes �LW and
hence provides the optimum fit between the observed and theoretical difference waves η2T− and
η2F− is determined as the best estimate of the local spreading.

By performing the foregoing LWM analysis on the entire dataset, any data for which the
method did not successfully minimize the long-wave difference between 0–90◦ were discarded.
Data where freak waves were located were also removed, because such waves have been shown
to cause anomalous second-order difference waves [16]. Here, a freak wave is defined as a wave
with up or down-crossing height greater than twice the significant wave height Hm0 [26].

(ii) Array measurements

Where data of sufficiently high quality were simultaneously available from the three gauges
at North Alwyn, the iterative maximum likelihood method (IMLM) is used to estimate
the directional spectrum d(θ )s(ω). From this spectrum, the spectrally weighted frequency-
independent spreading distribution d(θ ) is calculated, and a wrapped-normal spreading
distribution with standard deviation σD fitted to d(θ ).

4. Sensitivity

(a) Goodness of fit
The long-wave difference �LW is primarily used as a goodness-of-fit parameter, in finding the
optimal assumed spreading value σopt. However, �LW also provides information on the quality
of fit that was achieved in finding σopt. High values of �LW corresponding to σopt imply that
the fit may not be particularly satisfactory despite σopt being the best fit. Where a good fit is
not achieved, the accuracy of σopt may be affected adversely. Figure 3 shows how �LW varies
against the spreading error σE − σopt, where σE is the value of spreading predicted by the ECMWF
hindcast. In this instance, hindcast data are used for mainly illustrative purposes; the validity of
this comparison is discussed in §5a. However suitable the comparison may be, large differences in
spreading are clearly indicative of error. For �LW � 1, the error σopt − σE → +, meaning σopt < σE
and the spreading is underestimated. As �LW → 0, the error also reduces. However, for �LW <

0.8, the spreading is overestimated. In such cases a seemingly good fit is achieved (as indicated
by the very low value of �LW) despite a large discrepancy in the predicted value of spreading.
Visual inspection of the results indicated that this arose from erroneous measurements. Figure 4
shows an example of this type of error, where near flat sections or sudden changes in slope that
are missed by the quality control process cause pronounced set-ups in the filtered second order
difference waves η2F−. In this example, there are two similarly sized waves in η(t) occurring at
around 580 and 775 s, of crest height ∼10 m. Both waves cause set-ups in η2F− as may be expected
for large amplitude crests. The set-ups associated with the waves are of amplitude ∼2 m and
∼0.5 m, respectively. The flat section measured in the first wave is clearly an error, and not an
artefact of the wave profile. This type of error typically occurs when the sensor loses the free
surface temporarily and logs the previously recorded value until the surface is found once more.
To assess the effect this error has on η2F−, the flat error was artificially smoothed out as shown by
the dashed line in figure 5a. Referring to the array shown in figure 1, the solid line corresponds to
measurements at Probe 1 and the grey line to Probe 3 for comparison. Measurements at Probe 2
are omitted in figure 5 owing to poor quality.
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Figure 3. Scatter plot of goodness-of-fit estimates against spreading error for the LWM compared with the ECMWF hindcast.
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Figure 4. Free surface elevation and second-order difference time series at North Alwyn for a selected storm where there is
a large set-up in second-order waves owing to measurement error: η(t) free surface elevation (black); and η2F−(t) filtered
difference waves (grey).
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Figure 5. Wave free surface elevation time series at North Alwyn showing unmodified signal (Probe 1, solid black line),
smoothed signal (Probe 1, black dashed line) and concurrent measurement from Probe 3 (grey line): (a) free surface elevation
time series, η(t); and (b) filtered second-order difference waves η2F−(t).

Linear interpolation was used to remove instrumentation error at the crest of the first large
wave, and so the resulting shape of the wave measured at Probe 1 is slightly larger but not
dissimilar in shape to the corresponding wave recorded at Probe 3 figure 5a. Filtering the modified
time series to obtain η2F− results in the dashed line shown in figure 5b; the black solid line shows
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Table2. Spreadingestimates producedusing rawandmodified time serieswhich correspond to threeoutlying estimates ofσopt

in Storm 369, that were a result of measurement errors.

raw modified

outlier σopt(◦) �LW σopt(◦) �LW

(a) 76.6 0.942 39.6 0.971
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) 46.4 0.915 31.1 0.989
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) 52.4 0.839 28.1 0.996
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η2F− for the unmodified time series. The modified time series has an amplitude of ∼0.65 m, which
is comparable to that associated with the second large wave at 775 s.

The LWM spreading estimates from the modified and unmodified time series are 34.6◦ and
86.3◦, respectively. The modified value concurs with the prediction made by the ECMWF hindcast
of 30.8◦, as well as the other values of σopt estimated during the rest of the storm.

This approach was extended to Storm 369 of the North Alwyn dataset, discussed in more
detail in §5b. This storm was selected because it possesses three outlying results that derive from
obvious measurement errors that have passed the QC process. Additionally, 15 measurements
taken during the storm allow for IMLM estimation of σD, which provides further confidence
in the expected values of spreading. Again, available concurrent measurements were used as a
guide when smoothing out measurement errors. Table 2 lists the results obtained after modifying
the erroneous time series. The modified estimates of σopt lie much closer to the values of both σE
and σD which indicate that the σ ≈ 31◦ for Storm 369. For all three cases, this relatively simple
approach reduces the associated error in predicted spreading, despite reducing the goodness of
fit. The interpolation method used to smooth out errors has a significant effect on the estimate
of σopt. As there is no way of establishing for certain the true waveform, it is not suggested
that this approach is used as a means of producing spreading estimates. However, the results
presented here illustrate a particular source of sensitivity which does not lie with the LWM itself. It
is obvious that errors undetected by the quality control process can result in gross overestimation
of the spreading. Herein, visual inspection was used. In practice, a more robust means of error
detection is desirable.

(i) NewWave comparison

NewWave [27], depicted in figure 2a, constitutes a focused wave group where all free wave
components are in phase at x = 0 and t = 0. In practice, this waveform is used as a design wave
because it provides an accurate approximation to the shape of the largest waves contained within
ocean observations (e.g. [28]). Similarly, the second-order difference waves η2NW− corresponding
to this profile can be used to provide an approximation to those expected in large wave events
[29]. The phasing and shape of actual waves affect the amplitude of η2F−, causing some scatter
about the NewWave approximation. Even so, this approach provides a general guide to the
amplitude that should be expected for a given set of conditions. For a given spectral density
S(ω), the corresponding new wave profile is calculated as

ηNW(t) =
∑N

n=1 S(ωn) cos(ωnt)∑N
n=1 S(ωn)

, (4.1)

in which t is time from focus, located at x = 0. Using the linear NewWave profile ηNW, the
second-order difference bound waves η2NW− are calculated using equation (3.4). The second-
order difference amplitude associated with the NewWave profile normalized by significant wave
height a2NW−/Hs can then be used to establish whether or not the observed set-up in amplitude
a2F−/Hs found in η2F− is feasible. When normalized in this way, the value of a2NW−/Hs depends
upon the peak period Tp and spreading angle, with the assumption that the corresponding linear
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Figure 6. Scatter diagram showing LWM estimate spreading values filtered using NewWave amplitude ratio, a−2/a−2NW

plotted against hindcast estimates of spreading (grey dots), with superimposed contours showing 95% confidence values;
results screened using amplitude ratio a2−/a2NW− values less than 100 (solid line), 25 (dashed line), less than 10 (dotted line)
and less than 5 (dot-dashed line).

amplitude of the NewWave profile is a/Hs = 1 for a JONSWAP spectrum with peak enhancement
factor 3.3. Therefore, a NewWave amplitude can be calculated for each measurement using the
appropriate values of Tp and σE. The ratio of a2F−/Hs to a2NW−/Hs provides an understanding of
whether the set-up in η2F− is likely to be the result of a large wave or arising from an anomaly.
Figure 6 shows the effect of using a2F−/a2NW− as a quality control parameter. Values of σopt are
plotted against the corresponding values of σE. Overlaid are the 95% contours when the data
are screened using decreasing ratios of a2F−/a2NW− from 100 to 5. At high ratio of a2F−/a2NW−
the amplitude observed in the measurement is much larger than would reasonably be expected;
conversely as the ratio is reduced, results where the long wave estimate is grossly overestimated
are progressively filtered out. This further illustrates the method’s sensitivity to measurement
errors. The results from the North Alwyn data confirm that NewWave provides an effective
a posteriori method for error detection.

(b) Cut-off frequency
Abnormal set-ups in the filtered difference waves, η2F−, have been shown above to result from
errors in the measured time series η. Moreover, if the linear spectrum does not decay as sharply
as expected, large-amplitude linear components arise in η2F− that can dominate the smaller-
amplitude second-order components. The resulting increases in η2F− amplitude may adversely
affect the values estimated by the LWM. To overcome this, we reduce the frequency at which the
original data η are filtered in order to obtain η2F− which is uncontaminated by the effect of any
linear components that lie close to the original frequency cut-off. This was examined by applying
the LWM to the entire dataset with difference waves filtered at 0.5fp, 0.4fp and 0.3fp. No difference
in the estimated values of σopt was discernible when different frequency cut-offs were used.

5. Results

(a) Correlation with European Centre for Medium-Range Weather Forecasts hindcast
For the majority of the data, measurement quality does not permit conventional directional
estimation, and so an indirect means of comparison is necessary. Here, the ‘wave spectral
directional width’ σE produced by the ECMWF ERA-20C model is used. The indirect nature and
low resolution relative to that of the North Alwyn dataset means that direct comparison between
the values of σopt and σE is of limited use on a measurement by measurement basis. However, as
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Figure 7. Storm 50 of the North Alwyn dataset which shows a bias between ECMWF and LWM estimates of directional
spreading:σopt (black dots);σE (grey line); andσD (×). (Online version in colour.)

opposed to comparing individual values, examination as to how the two sets of data correlate in
time is much more informative. From figure 6, it is apparent that the values of spreading produced
by the hindcast model are limited to the range of approximately 20◦ ≤ σE ≤ 60◦, this may be a
result of the 10◦ directional resolution of the hindcast model. It is therefore not possible to assess
values of σopt < 20◦, through this means of comparison.

The majority of storms in the North Alwyn dataset are relatively short in duration with an
average length of 12 h, and consequently their spreading shows little temporal variation. For such
storms, it is difficult to find correlation, and accordingly it is difficult to establish whether either
σopt or σE correctly predict spreading if their values are different. Figure 7 shows an example of a
storm where this is the case. Both the values of σopt and σE show little variation over the duration
of the storm, with a gradual increase in spreading as the storm progresses and a mean difference
of ∼15◦, and it is difficult to draw any immediate conclusions. However, for this particular
storm two of the measurement files were suitable for conventional estimation, as shown by the
crosses. At about 03.00, the hindcast prediction σE = 46.6◦ and the mean of two values either
side of 03.00 are 36.2◦ and 34.5◦ for σD and σopt, respectively. This limited additional information
suggests that the values of σopt are more likely to be correct, and the hindcast model overestimates
the spreading.

When there is variation in spreading predicted by the hindcast model it is possible to establish
whether σopt is correctly measuring the local spreading. If a strong correlation exists between the
values of σopt and σE, it is clear that the hindcast is modelling the same conditions as the LWM is
measuring. A means of parametrizing the correlation observed between the two variables is the
correlation coefficient. The covariance of two variables A and B is given by

cov(A, B) = 1
N − 1

N∑
i=1

(Ai − μA)(Bi − μB), (5.1)

where μ is the mean value of each signal, and N is the number of samples. The correlation
coefficient ρ is then calculated by normalization, using the standard deviation of both signals,

ρ = cov(A, B)
σAσB

. (5.2)

Figure 8 shows the temporal behaviour of the ‘long wave estimate’ of spreading obtained for six
storms chosen from the dataset. These storms were selected because they exhibited the strongest
correlation between σopt and σE corresponding to the largest values of ρ, while having significant
temporal variation over their duration. Effects of random uncertainty and/or noise are evident in
the values of σopt. This variability stems from noise that is naturally found in real measurements,
causing the standard deviation of the resulting estimates to increase. Adcock & Taylor [14] used
numerically generated examples with artificially added noise to demonstrate that the standard
deviation of the resulting values of σopt increased as the signal-to-noise ratio decreased. However,
the mean value of the estimates remained correct.
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Figure 8. LWM spreading estimate and ECMWF hindcast predictions with time. (a) Storm 28, (b) Storm 30, (c) Storm 134,
(d) Storm 301, (e) Storm 320 and (f ) Storm 435 as detailed in table 3: σopt (black dots); σE (grey line); and where available
σD (×). (Online version in colour.)

Noise contained within the values of σopt has an effect on the calculation of ρ. For two perfectly
correlated signals where ρ is 1, the introduction of random errors invariably reduces the value of
ρ [30]. To achieve a better understanding of the true correlation of the results, raw values of σopt

were smoothed in the time domain with local regression using weighted linear least squares and
a second degree polynomial model. Table 3 lists values of ρ for both the smoothed and raw LWM
estimates. For the raw results, the values of ρ are relatively low due to noise in the data. Even so,
ρ � 0.5, except for storms 28 and 134, meaning a weak correlation exists. After data smoothing, all
the values of ρ are well above 0.5, with some approaching unity, illustrating a strong correlation
between σopt and σE.

Not all of the storms in the dataset show such strong correlation. The indirect nature of
the hindcast data means that negative comparisons are fairly inconclusive. However, when
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Table 3. Fit parameters of well-correlated storms, correlation coefficient ρ for raw and smoothed estimates, and number of
high-quality time series NQC.

ρ

storm start end raw smoothed NQC
28 9 Feb 2000 08.58.28 14 Feb 2000 02.39.12 0.268 0.653 207

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 3 Mar 2000 02.14.06 5 Mar 2000 02.34.26 0.528 0.917 166
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

134 19 Sep 2000 14.47.46 22 Sep 2000 04.32.10 0.316 0.775 196
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

301 24 Jan 2002 10.21.18 26 Jan 2002 03.21.28 0.648 0.889 140
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

320 22 Feb 2002 16.09.18 26 Feb 2002 03.29.50 0.494 0.809 222
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

435 12 Dec 2003 09.12.14 16 Dec 2003 03.32.46 0.566 0.759 265
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the hindcast and measurements exhibit high correlation, this provides conclusive evidence that
the LWM is capturing the dynamically changing directional conditions being modelled by the
hindcast. It is very unlikely that these two predictions correlate by pure coincidence without being
an accurate measure of actual observed conditions.

(b) Comparison with iterative maximum-likelihood method estimates
Of the 448 storms considered herein, 66 storms contain a total of 391 individual measurements
for which all three probes pass the quality control process, allowing estimation of σD. This
represents a very small portion of the entire dataset of 16 422 measurements. Unlike the hindcast
data estimate σE, calculation of σD provides a direct measurement of local spreading. Figure 9a
shows a direct comparison between the values of σD and σopt calculated for each set of concurrent
measurements. The data are scattered about the line σD = σopt; as the apparent value of spreading
increases, the agreement between the two estimates appears to reduce. Figure 9b presents the
Bland–Altman plot which displays the difference between σD and σopt against their average
value. The Bland–Altman plot illustrates the uncertainty inherent to both sets of estimates and
the relationship between magnitude and level of agreement, without assuming that one method
is better than the other [31]. The mean difference for all data, shown by the solid grey line, is 4.98◦;
this represents the bias between the two methods. As the mean value increases, the agreement
between the two methods reduces, and the uncertainty increases. The dashed lines show 95%
confidence intervals, which are calculated as twice the standard deviation from the mean; the
majority of the data sit within these limits.

Given that the LWM requires only one measurement for each estimate, the number of available
estimates means that it is possible to reduce the effects of random uncertainty by smoothing
the data in the time domain. Smoothing is achieved using the same approach described in §5a.
Figure 9c,d shows the effect of smoothing the LWM results on the agreement between the two
methods. This removes some of the uncertainty associated with σopt (as addressed in the previous
section) and has two effects. Firstly, the agreement increases for the majority of the data, as
evident in figure 9d where the data are more tightly clustered about the mean. Secondly, it serves
to highlight the uncertainty associated with the values of σD. As the mean value of spreading
increases, agreement decreases with a positive bias, owing to the larger values of σD.

Considering the relatively small sample size, the comparison is sensitive to the presence of
outliers in the data. The majority of outliers stem from Storm 18. Figure 10a presents IMLM,
LWM and ECMWF hindcast estimates of spreading over the duration of the storm. In this storm,
both σopt and σE follow the same general trend, whereas in the latter half of the storm σD
presents larger values (about 20◦ greater). The correlation between σopt and σE may suggest that
the IMLM is in error in this case. The apparent error in σD may be a result of crossing-wave
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Figure 9. Comparison of IMLM and LWM estimates: scatter plot of σopt against σD, (a) raw σopt, and (c) smoothed σopt;
and Bland–Altman plot of mean spreading against difference in spreading estimates, (b) raw σopt, and (d) smoothed σopt.
Superimposedmean difference (grey solid line), two standard deviation limits of agreement (grey dashed line), all 386 analysed
data (black dots), and the results from storm 18 (crosses). (Online version in colour.)

conditions. Figure 10b shows the mean directions of wind and swell waves predicted by the
ECMWF hindcast for Storm 18. The hindcast results suggest that the predominant wind and swell
waves were propagating in quite different directions during the storm. Therefore, the complex
crossing conditions are being detected by the frequency-dependent IMLM causing an increase in
the value σD. The simplicity of the assumed frequency-dependent spreading distribution used
by LWM only allows for the detection of the average spreading about the mean direction. This
is highlighted by figure 11, which shows frequency-dependent directional spectra produced by
the IMLM at the start and one day into the storm, indicated by dashed vertical lines in figure 10.
Figure 11a shows the spectrum calculated from measurements made at 06.47 on 1 February 2000.
At this point in the storm, the spectrum has an obvious predominant direction with no signs of
major crossing components, and the spreading estimates made by all three sources agree well,
as illustrated in figure 10a. Figure 11b depicts the spectrum calculated at 04.08 on 2 February
2000. The corresponding spreading estimates shown in figure 10a differ significantly (σD = 78.5◦,
σE = 37.8◦ and σopt = 39.8◦), and the directional spectrum exhibits several crossing wind and swell
components.

Figure 9 shows that the results from IMLM and LWM have mean bias of 5.0◦, and are in close
agreement which reduces slightly as spreading increases. The scatter of results indicates there is
uncertainty associated with both methods. Figure 12 presents the histograms and kernel density
estimates of error between IMLM estimates and both raw, and smoothed LWM results. The
histogram in figure 12a, for the raw LWM results, displays symmetry with a normal distribution,
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Figure 10. Wave spreading results for Storm 18 which exhibit significant disagreement between σopt and σD: (a) σopt (black
dots), σE (grey line) and σD (×); and (b) mean directions of wind waves (black) and total swell (grey). Dashed lines in both
plots indicate the measurement times of figures 11a,b. (Online version in colour.)
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Figure 11. Frequency-dependent direction spectrum measured during Storm 18, calculated using IMLM: (a) 06.47 1 February
2000; (b) 04.08 2 February 2000. (Online version in colour.)

suggesting the errors primarily arise from random noise. The histogram in figure 12b is slightly
asymmetric as a result of smoothing σopt, and exhibits better agreement as a narrowing of the
distribution.

In the dataset, there are four storms for which IMLM estimation is possible over their duration
and a better understanding can thus be gained of the relative uncertainty of the LWM and IMLM
methods. Figure 13 displays the four storms detailed in table 4. The first section of Storm 3
was included, and the remainder rejected, in order to preserve data quality and the relative
stationarity of spreading. For all four storms, σopt (black) and σD (×) follow the same trend as the
hindcast predictions σE, with relatively little temporal variation. These examples further reinforce
that LWM has correctly estimated the local spreading given that all three estimates are in good
agreement. In figure 13d, there is a slight time lag between the values of σE and the other two
estimates which are better correlated. This storm also shows slightly more variation in spreading,
whereas the other storms remain virtually stationary. Table 5 lists values of the mean and standard
deviation of the spreading estimates obtained using IMLM and LWM for the four storms. Where
the value of spreading remains constant, the standard deviation of each set of estimates provides
a satisfactory analogue to uncertainty associated with the particular method employed, assuming
that a near-constant value of spreading is a true representation of the actual conditions. Dividing
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Figure 13. LWM, IMLM, and ECMWF hindcast predictions of wave spreading for (a) Storm 3, (b) Storm 57, (c) Storm 369 and
(d) Storm 448 as detailed in table 4:σopt (black dots),σD (×) andσE (grey line). (Online version in colour.)

the standard deviation by the square root of the number of samples gives the standard error (s.e.),
which is a measure of variability accounting for the number of samples [32]. The standard error
of σopt is roughly two to three times that of σD for all but Storm 369 where σopt is just over half the
value of σD. This storm happens to have the lowest spreading value predicted by both methods
(σopt = 27.9◦, σD = 30.5◦ and σE = 31.8◦).



17

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160781

...................................................

20 25 30 35
s

opt
(°)

40 45 50 55
0

2

s.
e.

 (
°)

4

Figure 14. Uncertainty measured by standard error versus mean predicted value of spreading for each storm: meanσopt (grey
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Table 4. Details of selected storms with IMLM directional data, showing the number of high-quality time series NQC and
directional data NDir.

storm start end NQC NDir
3* 23 Mar 1997 06.19.14 29 Mar 1997 09.26.32 851 110

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57 1 Apr 2000 05.38.48 2 Apr 2000 01.58.58 161 36
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

369 22 Nov 2002 03.40.26 23 Nov 2002 03.20.38 202 15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

448 26 Sep 1996 15.58.30 27 Sep 1996 06.38.30 148 22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5. Fit parameters of IMLM storms, standard deviation (s.d.), standard error (s.e.), and mean σm for all three estimates
of spreading.

s.d. s.e. σm

storm σopt σD σE σopt σD σE σopt σD σE

3 8.87 3.29 0.919 0.820 0.208 0.255 38.1 36.3 33.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57 7.90 2.94 0.496 0.987 0.298 0.175 30.6 32.2 29.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

369 4.39 3.93 0.819 0.450 0.744 0.237 27.9 30.5 31.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

448 9.93 4.61 4.92 1.20 0.610 1.64 33.5 35.7 36.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Making the assumption that the smoothed value of σopt for each storm is the actual local
spreading, the data can be de-trended and a similar analysis performed on the entire dataset.
Figure 14 shows how the standard error of σopt varies with the mean value of σopt over the
duration of each storm plotted as grey dots. The values for the four storms plotted in figure 13
and listed in table 4 are overlaid. There is a clear positive correlation between the predicted
spreading and the standard error. This is an intuitive result because the simplified assumption
of frequency-independent wrapped-normal spreading becomes less valid as spreading increases.

As discussed in §5a, there are a number of estimates σopt < 20◦ which are not within the range
of σE. Figure 9a also shows values of σopt < 20◦; however, after smoothing the number reduces
(figure 9c). Figure 14 shows that no storms with multiple concurrent measurements have a mean
value of σopt < 20◦, therefore these values are most likely the result of noise.

6. Conclusion
Adcock & Taylor [14] devised a means of determining directional spreading, the LWM, which they
verified for several deterministic cases and later applied to the 1 January 1995 Draupner wave
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[16]. Herein, we extend the approach of the LWM to a large dataset of in situ ocean observations
of free surface elevation obtained from the North Alwyn platform in the northern North Sea.
The approach taken to implement the LWM, greatly reduced its computational cost. The LWM
analysis was based on an assumption that directional spreading was independent of frequency,
and excluded records containing freak waves. A method for detecting the influence of erroneous
measurements is also presented, which allows a posteriori identification of spurious values of
estimated spreading. The results of the LWM are compared with values predicted by the ECMWF
hindcast model using the North Alwyn data. Despite the indirect nature of this comparison, good
temporal correlation is found between the two estimates of spreading for selected storms. This
provides confidence in the ability of the LWM to track dynamically varying directional spreading
conditions. By comparing results using a small sample of the overall dataset, it is found that
close agreement is achieved between the spreading estimates made by LWM and the IMLM,
with the former giving smaller values indicating a slight bias. The LWM exhibits slightly greater
uncertainty than the IMLM; however, given that LWM requires only a single measurement, the
uncertainty can be reduced by averaging. To gain better understanding of the small bias that exists
between the two measurement approaches and the performance of LWM at values of σ < 20◦, it is
recommended to extend the analysis in future to a dataset containing a much higher proportion of
accurate, concurrent measurements. This would enable a quantitative assessment of the relative
uncertainty of both methods. This study has demonstrated that the LWM can be effectively
extended to noisy real sea observations, such as prevail at North Alwyn. Available additional
information has been used to provide confidence in the accuracy of the results. As with the
conventional IMLM method, the LWM is susceptible to the effects of noise which manifests itself
in the form of random uncertainty. However, where sufficient results exist, averaging effectively
removes uncertainty without requirement of further post-processing. In short, the study has
provided further confirmation that the LWM is a viable alternative to conventional means of
directional spreading estimation. In practice, LWM offers a very promising opportunity to gain
vital directional information on ocean waves from single-point measurements.
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