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ABSTRACT: Machine learning is widely used in drug development
to predict activity in biological assays based on chemical structure.
However, the process of transitioning from one experimental setup
to another for the same biological endpoint has not been extensively
studied. In a retrospective study, we here explore different modeling
strategies of how to combine data from the old and new assays when
training conformal prediction models using data from hERG and
NaV assays. We suggest to continuously monitor the validity and
efficiency of models as more data is accumulated from the new assay
and select a modeling strategy based on these metrics. In order to
maximize the utility of data from the old assay, we propose a strategy
that augments the proper training set of an inductive conformal
predictor by adding data from the old assay but only having data
from the new assay in the calibration set, which results in valid (well-calibrated) models with improved efficiency compared to other
strategies. We study the results for varying sizes of new and old assays, allowing for discussion of different practical scenarios. We also
conclude that our proposed assay transition strategy is more beneficial, and the value of data from the new assay is higher, for the
harder case of regression compared to classification problems.

■ INTRODUCTION
Assessing properties of novel compounds using one or several
biological and biochemical assays is a common methodology in
preclinical drug discovery.1 Important properties include on-
and off-target effects, ADME (Absorption, Distribution,
Metabolism, Excretion) and Toxicity, and there exist a large
number of assays developed for these and other endpoints.2

Predicting the result of an assay using in silico methods such as
Machine Learning (ML), prior to performing the assay or even
before synthesizing the compound,3−5 has increased in
popularity over the years. When the chemical structure is
used to represent the compound in such ML modeling, the
method is referred to as QSAR or SAR (Quantitative
Structure−Activity Relationships)6 and falls under what is
called ligand-based methods. QSAR has been used to model a
wide range of endpoints, such as interaction with various
targets.7,8 The database ChEMBL9 collects a great deal of
curated data from different compounds and assays, and it is a
common approach to merge data for the same target from
different assays into a single data set that is subjected to ML
modeling.10,11

When evaluating the accuracy of a model, the standard
protocol is to split the data set in a training set for training the
model and a test set to evaluate its accuracy. There are also
methods such as cross-validation that can be used to produce a
balanced accuracy measure. The accuracy of QSAR models
typically depends on the number of compounds/experiments

in the training set. In pharmaceutical companies, the data
generating process leads to a continuous expansion of assay
data and hence over time increases the accuracy of their
models. However, sometimes the organization might want to
switch to another experimental setup to report on the same
endpoint; this might be due to better capture the underlying
phenomenon, decrease variance, or to reduce time and cost.
Before transitioning to a new assay, it is common to run a set
of compounds with both the old and the new assay in order to
study the agreement between the measurements, referred to as
assay concordance.12,13 These sets typically contain well
characterized tool compounds covering the biological
phenomena of interest (e.g., mode of actions) and compounds
that are chemically diverse and span a wide potency range.
Assay concordance may be determined by a statistical
approach that analyzes the mean difference of both assays
and produces an agreement interval accounting for 95% of the
differences between both assays.14 However, how to use data
from the old assay as efficiently as possible in downstream ML
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applications leads to several questions: (1) When the
organization starts to generate data from the new assay, how
should the data from the old assay be used; (2) Should models
be trained exclusively on the new assay data, potentially
resulting in low accuracy until a sufficient number of
experiments have been run; (3) Should data from the old
assay be pooled with the new assay, even though there is a
known difference between them.
A core assumption of all ML methods is that the data used

for training the model is i.i.d., i.e., independent and identically
distributed. If data from, e.g., an old assay and a new assay stem
from different distributions, then a model trained on pooled
data from both assays might not be valid and predictions
cannot necessarily be trusted. There are methods devised to
detect violations against i.i.d., commonly called data set
shifts,15,16 but these are restricted to specific versions of shifts
(e.g., covariate shift or concept shift). Several methods have
also been proposed to increase the accuracy of the trained
model when knowing that a data set shift is present.17−20

Conformal prediction (CP) is a mathematical framework
developed for ML with the objective to produce well-calibrated
predictions where the predictions adhere to a user-defined
conf idence (e.g., requiring 80% confidence results in at least
80% accurate predictions).21,22 CP assumes exchangeability
between all data, which is a similar but a slightly weaker
assumption than i.i.d. A benefit of using CP is that the

calibration of test data can be inspected, and poor calibration
can intrinsically reveal data shifts and improper handling of
data. In recent work, we assessed CP for improving the
calibration when a data drift has occurred and concluded that
updating the calibration set improved calibration across all
evaluated data sets.23 CP has been used extensively in various
drug discovery applications.24−29

In this manuscript, we perform a retrospective analysis of
how old data can be used most efficiently when a decision has
been made to switch to a new assay system, using data from
the hERG and NaV endpoints at AstraZeneca. We refer to this
specific problem as Assay Transition, and a distinguishing
property of the problem is that it includes a continuous
decision making process during the transition from one specific
assay to another. We apply conformal prediction which enables
us to evaluate the level of calibration and efficiency for different
modeling strategies and discuss their implications.

■ MATERIALS AND METHODS

Data. In-house bioassay data sets from AstraZeneca were
used, containing dose−response data for the two ion channels
hERG and NaV.

30,31 These are routinely screened in the early
phases of drug discovery as they are tightly linked to
cardiovascular risks32 and are thus among the largest data
sets generated from single assays. The raw, unprocessed data
sets contained in excess of 152,000 and 16,000 records for

Figure 1. Analyzing compounds measured in both the old and new assays. The top panels show the overlap in hERG (1,169 compounds), and the
bottom panels show NaV (56 compounds). Panels A and D plot new measurements vs old measurements in pIC50, requiring exact assay values
without qualifier, cutting down the overlap to 972 and 17 compounds, respectively. Fitting a linear model between old and new endpoint values
(equations shown in the panels) indicate a positive correlation between new and old assays but with a slope far from the ideal (slope of 1). For
hERG, the measurements were statistically different using a paired t-test (p = 1.95 × 10−9). The NaV overlap, only containing 17 compounds, was
too small to prove statistically different. Panels B and E display the change in categorical activity, when applying a 10 μM threshold. Both data sets
retain the same activity-class for the majority of the compounds. Finally, panels C and F plot the computed logP (cLogP) versus molecular weight,
with no apparent clusters in this “chemical space” and indicate that all compounds originate from druggable chemical space.34
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hERG and NaV, respectively. Some records included a qualifier
(“>” or “<”), indicating that the endpoint value was not
determined exactly but that the IC50 value was either larger or
smaller than the tested concentrations. From late 2016 until
early 2017, the in-house routine voltage-gated ion-channel
assays were moved from the existing medium-throughput
electrophysiology IonWorks33 device to the high-throughput
SyncroPatch 384 PE platform. This switch facilitated technical
improvements (reduced screening turnaround time, increased
capacity, reduction of consumables spent) as well as the ability
to detect slow onset ion-channel blockers. To assess how well
the assays are agreeing, compounds tested in both assays were
studied (Figure 1). Overall, 78.2% of hERG and 89.3% of NaV
compounds retained their categorical label after the transition
(assuming a 10 μM threshold, see Data Preparation), see
Figure 1B,E. Considering the measured endpoint values, the
measurements for hERG were statistically different (p = 3.06 ×
10−12 for IC50 and p = 1.95 × 10−9 for pIC50, using paired t-
tests). NaV only contained 17 compounds with exact assay
values, too few to give a statistical difference, albeit visually
there is a large variance in assay measurements in Figure 1D.
Data Preparation. Data was acquired in CSV format

including compound ID, signature feature counts35 using
heights 1−3, test date, measured endpoint value, an optional
qualifier (“>” or “<”), and some additional descriptors such as
molecular weight and computed LogP. The qualifier indicates
whether the endpoint value was determined to be that exact
value, or if the IC50 value was either larger or smaller than the
tested concentrations. A 10 μM threshold was used for
categorizing compounds as active (A) or nonactive (N),
according to ref 36. We define Anew to represent a data set
containing observations from the new assay and Aold to
represent the equivalent for observations from the old assay;
the actual number of observations depends on the context. The
data preparation steps are outlined in Box 1.

For the NaV data set, step 2 also included removing all
records with an IC50 of 33.3 μM, as it was found to be over-
represented in the data set and likely an artifact. The exclusion

of compounds recorded at over 100 μM was due to the typical
experimental range was only up to 100 μM. Too few active
compounds, i.e., with IC50 ≤ 10, were measured in the new
NaV assay, so the classification data set was excluded for further
analysis. The size of the final data sets used in the analysis is
found in Table 1, and the total number of signature descriptors
was in excess of 27,000 (NaV), 80,000 (hERG regression), and
120,000 (hERG classification).

Investigating potential divergences between the assays was
also performed using the final data sets, in both descriptor
space and the distribution of the measured assay values (Figure
2A−F). Truncated singular value decomposition (Truncated
SVD) was used to compress the descriptor space into two
dimensions, the score space was computed using the new assay
data matrices (independently for hERG and NaV), and all
records were then projected into the resulting score space
(Figure 2A,D). Although only new data was used for
computing the score space, there is an overall high similarity
between the old and new assays. The old assays (green) are
covering a larger area, suggesting that the diversity of
compounds was higher for the old assays, or alternatively
this could be a remnant of the sheer difference in the number
of tested compounds, with the total explained variance of
around 13% it is impossible to determine.
Figure 2B,E shows the result of t-SNE (t-distributed

Stochastic Neighbor Embedding) dimensionality reduction
computed using both old and new data combined
(independently for hERG and NaV) after an initial step of
truncated SVD into 50 dimensions. Similarly as for the
truncated SVD, the old assay (green) covers a larger area
compared to the new assay (orange). Here the records group
into separate clusters, characteristic of the t-SNE algorithm,
and not necessarily all due to true clusters in data. Nonetheless,
panel E shows that many of the clusters are exclusively green
(old assay records), and many of the orange triangles (new
assay records) cluster together rather than spread uniformly
with the green records. These clusters could be due to the
typical drug discovery process, where in the lead optimization
process many similar compounds are tested.37

Lastly, the distribution of the measured endpoint values
from the assays was plotted in Figure 2C,F. Interestingly the
difference between the old and new assays is the opposite for
hERG and NaV, where the new hERG assay had a higher
proportion of compounds with a stronger interaction and thus
indication of a higher safety risk. For NaV, the change is the
opposite, where the new assay has measured compounds with a
lower degree of interaction. Possibly this difference could be
due to the development process where the hERG assay is
performed prior to NaV, and high risk compounds are excluded
before further testing is performed.

Table 1. Final Data Sets Used in the Experiments, after
Filtration Steps and Applying the 10 μM Threshold for
Generating Categorical Labelsa

data set Anew Aold % active [new] % active [old]

hERG classification 4,800 64,000 45% 30%
hERG regression 3,300 36,400
NaV regression 190 4,900

aNote that the final sizes are slightly rounded off for the
confidentiality of AstraZeneca.
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The combination of the results shown in Figure 2A−F
indicates that both hERG and NaV assays are not i.i.d. between
the old and new data, both in terms of descriptor space and the
measured activity. Simply merging data from the legacy assay
and the new assay would violate the requirement of i.i.d., and
the resulting models would likely be unreliable.
Augmented Data Set. Apart from the hERG and NaV

data sets, corresponding to real life data, an augmented data set
was generated for simulating a scenario when transitioning
between assays with less agreement. To keep the relevance to
biological assays in the simulation, the augmented data set was
constructed based on the hERG regression data sets. The
descriptors were kept unchanged, while the assay measure-
ments were altered with the goal of increasing the mismatch
between the old and new assays. For hERG, the old assay
reported compounds on average 2.54 μM (median 0.70 μM)
higher than the new assay when analyzing the compounds
measured in both assays (see Figure 1A). To increase the
disagreement between the assays, the measurements of the old
assay data were altered according to eq 1, where G5,0.5 denotes
Gaussian random noise with μ = 5 and σ = 0.5.

= + + GIC IC 0.002(IC )augmented
50 50 50

2
5,0.5 (1)

The transition of the augmented data set (altered old assay
values) to the new hERG assay thus corresponds to a larger
mismatch between the assay measurements compared to the
original problem, see Figure 2G,H. The alteration includes a
quadratic term in order to increase the mismatch for higher
concentrations, as well as a randomized term that both
performs a fixed shift and adds noise, resulting in an assay with
different characteristics compared with the original.

Conformal Prediction. Conformal prediction (CP)21,25 is
a mathematical framework sitting on top of standard ML
algorithms, proven to produce well-calibrated predictions
adhering to user-defined conf idence levels. To achieve this,
the conformal predictor outputs prediction intervals (regres-
sion) or prediction sets (classification). A prediction is
considered accurate if the true label is located within the
interval or is part of the prediction set. Two types of conformal
predictors, the transductive conformal predictor (TCP) and
the inductive conformal predictor (ICP), are proven to
produce well-calibrated predictions where the accuracy of the

Figure 2. Visual analysis of the data sets. Aold is plotted in green, Anew is plotted in orange, the first row (A−C) shows hERG data, the second row
(D−F) shows NaV, and the third row (G−I) shows the hERG augmented data set. Panels A and D plot the truncated SVD of the signature
descriptors, explaining 13.28% and 13.62% of the total variance in data. Panels B and E plot the computed signature descriptors using t-SNE
dimensionality reduction. Panels C and F plot the distribution of measured assay values, where the dashed lines show the mean for each assay.
Panels G and H display the augmentation made to the hERG measurements in Aold, expressed in IC50; the dashed line in panel G corresponds to a
1:1 relation between the original and augmented data (i.e., no change). The dashed line in panel H is the mean value of the plotted distribution.
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predictions is equal to or greater than the specified confidence
the user asks for, given that data is exchangeable.21 Standard
ML methods already impose the stricter requirement for data
being i.i.d., so CP does not introduce any further requirements
from what is already present.
Another group of inductive conformal predictors, collec-

tively called Aggregated Conformal Predictors (ACPs), is
based on training and combining several ICPs and merging
their individual predictions into a single, final prediction. These
are probably the most practically useful, with an improved
informational efficiency (see the definition in the section
Efficiency and Validity) compared to a single ICP,38 but do not
retain the guaranteed validity which thus requires more effort
to be put in validating the calibration of the resulting models.
Nonconformity. CP operates on the notion of non-

conformity, or “strangeness”, of observations. The non-
conformity of an object is calculated using a nonconformity
function (or measure) which is typically derived from an
underlying ML algorithm, and the nonconformity of test
objects is what is used for generating the final prediction by a
ranking against the nonconformity scores of a calibration set.
For inductive conformal predictors, the type of predictors that
is used herein, the calibration set is derived by sampling
observations without replacement from the full training set.
The remaining observations in the training set are called the
proper training set, and these are used for training the
underlying ML algorithm that is used in the nonconformity
function. The nonconformity function is a parameter of the CP
algorithm, and choosing a good function is key to optimal
predictive performance.39

Efficiency and Validity. Conformal predictors are evaluated
based on two concepts; validity and ef f iciency. Validity refers to
the calibration of the predictions, verifying that the predictor
adheres to the user-provided confidence level, and is typically
confirmed with calibration curves where the accuracy is plotted
against the desired confidence. Deviations from perfect
calibration is, however, possible due to, e.g., test set size or
calibration set size, and there is no strict method to definitively
decide if a model is valid or not. The efficiency of a predictor
quantifies the informativeness of the predictions and can be
measured in many different ways,40 e.g., by the width of the
prediction intervals (regression) or by the fraction of
prediction sets that include a single label (classification).
Compared with traditional model accuracy estimates for ML
based on an external test set or cross-validation, where the
same estimate is given to all test examples, CP delivers object-
specific prediction intervals that depend both on the predicted
object and on the user-defined confidence level.
Study Design. The design of the experiments was aimed at

benefiting readers in many scenarios of transitioning between
assays, hence a large range of different sizes of Aold and Anew
was evaluated, trying to simulate a wide range of possible
combinations. After a transition to a new assay, the goal will be
to predict the measurement that the new assay would generate
for new compounds. Thus, testing was exclusively performed
on data from the new assay. Each combination of Aold and Anew
was evaluated with a 10-fold cross-validation (CV) of all the
Anew data, repeated with ten replicates (N = 10). For each fold
in the CV, the fixed number of samples was then drawn
randomly from the training split of Anew from the CV and from
the full Aold data set. Each replicate experiment had a fixed seed
used for shuffling, CV splitting, sampling of data, and seeding
the modeling algorithm, and the seeds were reused for all

combinations of Aold, Anew, and a modeling strategy. Using this
experimental setup facilitates the comparison of all results from
the figures, as the test sets were identical at all points. All
experiments using a specific Aold size (i.e., a single panel of the
result plots) will have had access to exactly the same
observations for training, and the same applies to a specific
Anew size.
An artifact that comes with the study design is that the

variance between replicates will become smaller as the data
sizes increase, simply due to sampling more records out of the
full data set will lead to more overlaps among the replicates.
E.g., when using all observations in Aold, the only difference
between replicate experiments will be the splits of Anew in the
CV, the sampling into calibration and proper training set in the
CP algorithm, and the seed used for the modeling algorithm.
We consider this to still be practically useful, even though
statistically the plotted confidence intervals in the results are
for the mean result of the population fixed to the complete
data sets, rather than the mean for any possible set of
compounds.

Evaluated Assay Transitioning Strategies. In this section,
we describe the evaluated strategies for transitioning between
two assays; a list with definitions can be found in Table 2. As

mentioned previously, the ICP and TCP types of conformal
predictors have been mathematically proven to be valid given
exchangeable data. However, the TCP version is computa-
tionally demanding, as it requires retraining the underlying
algorithm for every new prediction and is thus impossible for
all but the smallest modeling problems. ICP, on the other
hand, trains a single model using the proper training set, and
this model is then used for all predictions, still producing valid
models; but to some degree, reduced efficiency due to some
training examples is set aside in a calibration set. One of the
evaluated strategies was an ICP, termed ICPold

new, where the
proper training set was fixed to be all of the Aold data and the
calibration set of all of the Anew data. Exchangeability is thus
preserved between the testing data and calibration data, and it
should thus be guaranteed to be valid and act at least as a
reference point when inspecting the calibration curves, albeit
presumably with lower efficiency than the other strategies.
All remaining strategies were based on Cross-Conformal

Predictors (CCPs),41 a type of ACP where data is randomly

Table 2. Modeling Strategies Evaluated in the Studya

strategy
aggregated
models

proper training
set

calibration
set exchangeable

CCPnew 10 9
10
Anew

1
10
Anew

×

CCPold 10 9
10
Aold

1
10
Aold

CCPpool 10 9
10
(Aold ∪Anew)

1
10
(Aold

∪Anew)
ICPold

new 1 ∀Aold ∀Anew ×
CCPAT 10 9

10
Anew ∪ ∀Aold

1
10
Anew

×

CCPAT2 10 9
10
Aold

1
10
Aold ∪
∀Anew

aThe 1
10
A and 9

10
A notation should be interpreted as 1 or 9 parts of a

10-fold split of the data set A, where the folds are shifted for each ICP
model in a similar fashion as in cross-validation test-train splits. The
last column indicates whether the model’s calibration set is
exchangeable with the test data, i.e., theoretically guarantees valid
models.
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split into a calibration set and a proper training set in a folded
fashion similar to k-fold cross-validation, consequently training
k independent Inductive Conformal Predictors (ICPs), each
with one fold for a calibration set and k−1 folds for a proper
training set. The conformal p-values (classification) and
intervals (regression) from the k predictions were aggregated
using the median value, being the preferred method to retain
good calibration of the final models.42 For the classification
data set, the calibration was conducted in a Mondrian fashion,
where the calculation of p-values is performed independently
for each class, which has been shown to work well for
imbalanced data sets without requiring under/oversampling,
boosting, or similar techniques.43,44 Mondrian calibration was
also performed in the ICPold

new modeling strategy.
The evaluated CCP-based strategies and their rationales

were as follows (see also Table 2 for definitions):

• CCPnew which only uses Anew data and thus avoids
potential issues of mixing data from different distribu-
tions.

• CCPold which only uses Aold data, maximizing the
number of training observations while avoiding mixing
of data.

• CCPpool which pools all Aold and Anew data, producing
the largest data set, but potentially violating the i.i.d.
assumption.

• CCPAT which uses Anew data in the k-fold CCP splits but
augments the proper training set of all ICPs by adding all
Aold data−maximizing the amount of data in the proper
training set but exclusively calibrating the predictions
using observations from the new assay.

• CCPAT2 which uses Aold in the k-fold CCP splits and
instead augments the calibration set of all ICPs by
adding all available Anew data to the calibration set.

From these strategies, we expect the CCPnew and CCPAT
strategies to produce well-calibrated predictions, as the
calibration sets are exchangeable with the test data which is
only drawn from Anew.
Hyperparameters. A linear Support Vector Machine

(SVM)45 was used as an underlying learning algorithm,
successfully applied in previous QSAR studies in combination
with the signature molecular descriptor,46,47 while being
computationally less demanding compared to other kernel-
based SVMs.47 The SVM cost parameter was set to 0.25, and ϵ
(termed p in LIBLINEAR) in ϵ-SVR was set to 0.01. These
parameters were found using grid-search of cost and ϵ without
applying CP and instead optimizing the RMSE of the trained
models. The full hERG regression data set, both exclusively
using the new assay data and with a combination of both
assays, and NaV, using only the new assay, were evaluated in
the grid-search for cost and ϵ. The results in terms of RMSE
were stable across the data sets, and the obtained cost value was
close to an earlier benchmark study of SVM parameters,48 so
no further tuning was conducted. The LIBLINEAR solver type
was set to L2R_L2LOSS_SVR_DUAL for regression and
L2R_L2LOSS_SVC for classification. The tolerance of the
termination criterion was set to 0.001 following the default in
the software that was used.
This study was conducted utilizing the implementation of

ICP and CCP from the software CPSign version 1.5.0-beta4,49

with customized sampling strategies to match the sampling
strategies of Table 2. The goal of the study was to compare
different strategies of how the available data should be used,

and improvements in absolute efficiency were of less interest.
To facilitate the extensive number of experimental runs, no
effort was put into finding optimal hyperparameters for each
experimental setup; instead the cost and ϵ from the non-CP
grid-search were used in all setups to give similar advantage/
disadvantage to all setups. The number of folds in CCP (k)
was set to 10.
The nonconformity function for classification was defined as

the negative distance to the decision surface of the SVM
(termed “NegativeDistanceToHyperplane” in CPSign). For
regression, a normalized nonconformity function was used,
which normalizes the prediction interval width depending on
the predicted accuracy of the scoring model, following the
definition in Papadopoulos and Haralambous50 (termed
“LogNormalized” in CPSign). Both the scoring and error
model were linear SVMs, with the nonconformity function
outlined in eq 2, where α is the nonconformity score, y is the
true label, ŷ is the predicted label from the scoring model, and
μ̂ is the predicted error from the error model, all for instance i.
The smoothing factor, β, was set to 0.01.

α
β

=
| − |

+

̂
μ ̂

y y

ei
i i

i (2)

Linear interpolation of p-values and prediction intervals
were used to accommodate for small calibration sets.51,52

Code Availability. All essential code and instructions
needed for running the experiments can be found in a GitHub
repository at https://github.com/pharmbio/assay-transition-
study. Note that the data preparation steps were left out as
they were deemed too specific for the particular data sets, and
the reader is instead referred to Box 1 and adapting it
depending on their particular data.

■ RESULTS
The results are divided into subsections for each data set, and
to simplify the interpretations, the models with insufficient
calibration were excluded from the analysis in the paper; but all
results can be found in the Supporting Information, alongside
calibration plots for all experiments. As pointed out in the
Conformal Prediction section, there is no definitive way to
decide if a model is valid or not; here, we based our assessment
on whether the calibration plot for the largest Aold size put the
accuracy clearly below the expected accuracy to judge a
modeling strategy to be invalid.
The result plots are arranged so that the reader can pick the

Aold size that is of interest (i.e., picking one of four panels) and
follow the trends of what happens when more data is generated
with the new assay (i.e., changes along the x-axis). Efficiency is
plotted using the 95% confidence intervals (CI) of the mean
result values assuming a t-distribution, computed from the 10
replicates for each experiment combination (Anew size, Aold size,
and strategy). As described in the Study Design section, the CI
will become smaller for larger Anew and Aold sizes, due to
training data having larger overlaps of observations as more
data is sampled.

hERG Classification Data Set. hERG classification was
the largest data set, and it was evaluated using Observed
Fuzziness (OF) as efficiency metric. OF is a confidence-
independent metric, which is favorable as the desired (or
required) confidence can vary between use cases. OF is
calculated using the average sum of the p-values for the
nontrue classes; following Vovk et al.,40 smaller values are
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preferable. The results are shown in Figure 3, where the 95%
CIs are plotted with colored ribbons. Only strategies CCPnew,
CCPAT, and ICPold

new produced well-calibrated models for all
setups, whereas CCPpool produced valid models for the three
smallest Aold data sets and were slightly below the desired
accuracy when using all Aold data (see Supporting Information

Figure S1 for all calibration plots). It was thus included, even
though borderline invalid.
Strategies CCPnew and CCPAT were removed when using

Anew only contained 50 observations, as the calibration sets
became too small (10-fold CCP uses 10% of all data as the
calibration set, i.e., only five observations out of two different

Figure 3. hERG classification results for all well-calibrated strategies, plotting the Observed Fuzziness (smaller values are better). The colored areas
correspond to the 95% confidence intervals computed from the ten replicate runs. Note that the CCPnew strategy is independent of Aold size and will
thus be the same in all four panels. The overall winning strategies are CCPpool and CCPAT, depending on the combination of Anew and Aold size,
shifting from CCPpool to CCPAT when the number of compounds in Anew exceeds 10% of that of Aold.

Figure 4. hERG regression results for all valid models. Efficiency is expressed in terms of prediction interval width at a fixed confidence of 0.8;
smaller values are preferable. The colored areas correspond to the 95% CI computed from the ten replicate runs. The overall winning strategy is the
CCPAT, having overlapping CIs for the smaller Anew sizes but favorable when more data is used from Anew. The results are more prominent in the
second row of panels, where more Aold observations are used.
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classes, which was not allowed in the CP implementation that
was used).
The overall trend is that the efficiency improves as the

number of training observations increases, which is expected.
The ICPold

new strategy is the worst in terms of efficiency,
consistent with literature and the reason for using ACPs.
CCPnew and CCPAT are very similar in terms of OF and have
overlapping CIs in many cases, with only a clear separation in
favor for CCPAT when including all Aold data. Analyzing the
four panels jointly, the overall most efficient strategy is to use
the CCPpool when having more than ten times as many
compounds in the Aold assay and then start to use CCPAT (the
CCPpool, CCPnew, and CCPAT overlap at 500, 2,500, and 4,300
for panels 2−4). If requiring strictly well-calibrated models, the
CCPpool has to be excluded in panel 4, making CCPAT the
preferred strategy in that case.
hERG Regression Data Set. The hERG regression data

set was slightly smaller than the corresponding categorical data
set. Efficiency was computed as the median prediction interval
width at a fixed confidence of 0.8, expressed in pIC50 (negative
log molar concentration). The choice of 80% confidence was
based on domain and data set knowledge, as the data was
known to have too much variance and noise for realistically
expecting informative results at a higher confidence. For this
data set and the following regression data sets, only three
strategies produced well-calibrated models in all experimental
setups: CCPnew, CCPAT, and ICPold

new. The results are shown in
Figure 4, plotting the 95% CI for the ten replicate runs.
Similarly as for the classification data set, the ICPold

new strategy
was overall inferior in terms of efficiency. The only scenario
where ICPold

new is preferable was for the smallest Anew size,
explainable by the size of the calibration set where CCPnew and
CCPAT only have five observations and the ICPold

new can use all
50 observations for calibration. The overall best strategy was

CCPAT, especially in panels 3−4 with more available data from
Aold.
Compared to the classification setting, the CCPpool strategy

was mostly invalid (see the Supporting Information), having a
lower accuracy than the desired confidence. In the calibration
plot in Figure S2, it looks like the CCPpool is overconservative
for the smallest Aold data set and thus a valid strategy, but when
reviewing the calibration for each combination of Aold and Anew
size (data not shown), it was evident that valid models were
only produced when Anew made up at least 20% of the total
training set (i.e., the two largest Anew sizes, where CCPpool was
less efficient than both CCPAT and CCPnew). Thus, the
CCPpool either produced invalid models or was outperformed
by other strategies.

NaV Regression Data Set. The NaV data set was the
smallest data set, only containing 190 tested compounds in the
new assay, possibly making it the most interesting and
potentially beneficial to include additional data in the
modeling. Results are shown in Figure 5, again using median
prediction interval width at confidence 0.8 as the efficiency
metric, expressed in units of pIC50. Similar to hERG, the three
strategies CCPnew, CCPAT, and ICPold

new were the only ones
producing well-calibrated models at all experimental setups.
The CCPpool was again mostly invalid, but for panel 1, with the
least amount of Aold data, it was producing valid predictions
and thus would be the preferred strategy when only having 30
compounds in Anew and then getting surpassed by the CCPnew
and CCPAT (Figures S3 and S7).
The results are similar to those found for the hERG

Regression Data Set section but less pronounced. CCPAT and
CCPnew are in most cases overlapping in terms of efficiency,
with possibly CCPAT improving the efficiency compared to
CCPnew with more data in the old assay, but nothing definitive
can be said. Interestingly, the ICPold

new improves in efficiency

Figure 5. NaV regression results for all valid models. Efficiency is expressed in terms of prediction interval width at a fixed confidence of 0.8; smaller
values are preferable. The colored areas correspond to the 95% CI computed from the ten replicate runs. The ICPold

new was the only possible strategy
to use when only having 30 available compounds in Anew but was surpassed in efficiency in all other experimental setups. CCPAT and CCPnew have
very similar efficiencies, and there is no clear winning strategy.
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with the inclusion of more Aold data, more so than for the
hERG experiments; extrapolation of the results from all panels
indicate that there could be a scenario where this strategy
could become better than the other two, if more Aold data were
available.
hERG Augmented Data Set. For the augmented data set,

simulating a larger divergence between assay measurements by
altering the labels of the Aold observations, the evaluation was
performed in the same way as for the hERG regression data set
experiments, and the results are shown in Figure 6. Comparing
these results to those of the unaltered data (Figure 4) makes it
possible to assess the usefulness of additional data even when
there is less agreement between the assays. Note that strategy
CCPnew is identical to those of the unaltered experiments as it
uses no augmented data.
The results are similar to the unaltered experiments, but the

improvement in efficiency of CCPAT over CCPnew seen in the
previous experiment is less pronounced and only found when
including 2,500 or all of the Anew data. Another interesting
difference is that the ICPold

new had an improved efficiency
compared to the unaltered experiments and is arguably the
best strategy when only having 50 records in Anew.

■ DISCUSSION

Over time as new assays are incorporated and old ones are
phased out, organizations are faced with challenges on how to
maintain predictive models that are valid and as accurate as
possible. If the accumulated data from old assays is small in
relation to the data generation in the new assay, this might not
constitute a big problem. However, if the organization has
invested significant efforts in building up a knowledge base for
predictive modeling based on one type of assay, it would be
highly profitable to maximize the usefulness of this data after
transitioning to a new assay−especially if it will take some time

for the accumulated data from the new assay to reach levels
where models with high accuracy can be trained. It is generally
advised to perform experiments to assert assay concordance
between the old and new assays before deciding and
implementing a change; but once a new assay has been
implemented, the problem still remains as to how new machine
learning models should be trained on data from both the old
and new assays. Herein, we investigated modeling strategies
based on conformal prediction in order to produce valid (well-
calibrated) models with the highest informational efficiency.
The overall trends in the results are consistent across the

four data sets, with the exception of the CCPpool modeling
strategy which was producing valid models for most runs for
the classification experiments (Figure 3), whereas for the
regression data sets, it was invalid. Out of the remaining
strategies, the three modeling strategies CCPnew, CCPAT, and
ICPold

new were found to always be valid, which can be linked back
to the discussion in the section Conformal Prediction, as these
three strategies are the only ones that theoretically would be
valid according to standard conformal prediction proofs
(disregarding the potential invalidity of CCP and variances
in calibration due to the finite number of test samples). These
conflicting results are likely due to classification problems
being typically easier to model than regression problems but
nevertheless make the CCPpool a strategy necessary to evaluate
as it had cases with a clear advantage over the other strategies
in terms of efficiency.
Between the regression experiments, the overall best strategy

was to use ICPold
new when there is an insufficient amount of data

in the new assay (50 examples for hERG and 30 for NaV) to
produce efficient models and then start to use either CCPnew or
CCPAT. Overall, there are no scenarios where the CCPnew is
preferred over the CCPAT, as their CIs either overlap or
CCPAT is superior. Comparing the augmented data set

Figure 6. hERG augmented data set results for all valid models. Efficiency is expressed in terms of prediction interval width at a fixed confidence of
0.8; smaller values are preferable. The colored areas correspond to the 95% CI computed from the ten replicate runs. The overall results are similar
to those in Figure 4 but with CCPAT performing slightly worse here. CCPAT and CCPnew strategies are mostly overlapping but with CCPAT having a
small advantage in the last two panels and the two largest sizes of Anew.
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experiments with the unaltered experiments demonstrates that
there is less advantage of the CCPAT when there is a larger
discrepancy between the assays, where CCPAT is only favorable
in the scenarios with access to a great deal of data from both
the old and new assays. For the classification data set, these
three strategies had similar trends as for the regression data
sets, but the CCPpool strategy was clearly preferable in
scenarios with access to at least a 10-fold excess of Aold
observations over that of Anew.
Our overall objective was to demonstrate and evaluate

several different scenarios of transitioning between assays and
how to use data from a legacy assay with conformal prediction.
The results show that the best possible usage of old data
depends both on the amount of data each assay has and
agreement between the assays. Figures 3−6 for hERG and NaV
assays allow for discussing different practical scenarios relating
to size of old and new assays and assay concordance. A key
finding is that the best possible strategy can change while
gathering more data using the new assay, and we therefore
propose that the way data from the old assay is used should be
evaluated continuously when data from the new assay is
produced, instead of performing a single evaluation and then
persisting with that strategy indefinitely. Such one-time
evaluation could potentially result in a suboptimal strategy in
the long term. The results in our study show that a simple
strategy such as pooling old and new data might lead to invalid
models, even if the assays are deemed to have enough
concordance. Further, we show that training models based
only on new data will lead to less efficient models until enough
data has been produced.
Classification is normally a simpler task than regression, and

when comparing Figures 3 and 4, we see that the value of old
data and our proposed assay transition modeling strategy
(CCPAT) is larger in the case of regression compared to
classification. Further, comparing the results in Figure 3 with
Figure 6 shows that the value of data from the old assay is
lower when it is disturbed (hence a lower assay concordance),
and the benefit of the CCPAT strategy is also lower.
A benefit of using conformal prediction compared to

traditional ML is that the calibration of the predictions can
be monitored alongside the efficiency metrics, making it
possible to discover data drifts or improper handling of data
(e.g., by pooling data incorrectly). Although we point out that
there is no absolute way to determine the validity of a model in
a strict sense, deviation from perfect calibration can occur due
to the finite number of test examples (making statistical
fluctuations have an impact) and choice of predictor type.
One assumption that was made in this study was that the

goal is to predict the outcome of the new assay, exclusively
evaluating performance on observations from the new assay.
We argue that this is preferable as new experiments will only be
conducted in the new setup. We also expect a natural drift in
the tested compounds (i.e., exploring new regions of chemical
space), making compounds tested more recently being more
relevant for future projects. The evaluation will thus be more
useful compared to performing the evaluation of pooled data
from both assays, but we expect the validity of the strategies to
be very much affected based on the testing strategy.
To facilitate the large number of evaluated scenarios,

minimal parameter tuning was performed, which could have
some effects on the results as the SVM cost and ϵ parameters
were determined using all available data which could be
suboptimal for the smaller data set sizes. Another angle of

investigation would be to replace the linear SVM with a more
complex learning algorithm, such as an RBF kernel SVM, in
those cases where it is feasible with respect to run time. This
alternative strategy could lower, e.g, the benefit of using
CCPAT over CCPnew in scenarios where a great deal of old data
is used, making the CCPAT infeasible to train using an RBF
kernel, while practically possible when only using new data.
This, however, is arguably a more data set dependent analysis
and thus not pursued herein but could potentially have an
impact in some situations.

■ CONCLUSIONS

We show that it is important to continuously monitor
predictive models when transitioning between assays, in
order to maximize the usefulness of data from the old assay.
We suggest to use conformal prediction in this transitioning
process to measure both the level of calibration in addition to
efficiency of models, thereby ensuring that invalid models can
be identified and dismissed. We also propose a modeling
strategy where data from the old assay is used to expand the
proper training set of an inductive conformal predictor and
where calibration is performed exclusively on data from the
new assay, resulting in valid models and the best overall
efficiency across all experiments.
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