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Pancreatic cancer is known as “the king of cancer,” and ubiquitination/
deubiquitination-related genes are key contributors to its development. Our study aimed
to identify ubiquitination/deubiquitination-related genes associated with the prognosis
of pancreatic cancer patients by the bioinformatics method and then construct a risk
model. In this study, the gene expression profiles and clinical data of pancreatic cancer
patients were downloaded from The Cancer Genome Atlas (TCGA) database and the
Genotype-tissue Expression (GTEx) database. Ubiquitination/deubiquitination-related
genes were obtained from the gene set enrichment analysis (GSEA). Univariate Cox
regression analysis was used to identify differentially expressed ubiquitination-related
genes selected from GSEA which were associated with the prognosis of pancreatic
cancer patients. Using multivariate Cox regression analysis, we detected eight optimal
ubiquitination-related genes (RNF7, NPEPPS, NCCRP1, BRCA1, TRIM37, RNF25,
CDC27, and UBE2H) and then used them to construct a risk model to predict the
prognosis of pancreatic cancer patients. Finally, the eight risk genes were validated by
the Human Protein Atlas (HPA) database, the results showed that the protein expression
level of the eight genes was generally consistent with those at the transcriptional level.
Our findings suggest the risk model constructed from these eight ubiquitination-related
genes can accurately and reliably predict the prognosis of pancreatic cancer patients.
These eight genes have the potential to be further studied as new biomarkers or
therapeutic targets for pancreatic cancer.

Keywords: pancreatic cancer, bioinformatics, prognosis, ubiquitination-related genes, risk model

INTRODUCTION

Pancreatic cancer is a highly fatal disease, with 43,090 deaths every 5 years (Siegel et al., 2017), the
5-year overall survival rate is only 6% (Miller et al., 2019). Many factors contribute to low survival
rates for pancreatic cancer. The most important factor may be that more than half of patients are
diagnosed with advanced pancreatic cancer, and the 5-year survival rate of advanced pancreatic
cancer is only 3% (Ilic and Ilic, 2016). Pancreatic cancer is characterized not only by early recurrence
and invasion but also by chemical and radiation resistance (Adamska et al., 2018). In recent years,
targeted therapy and emerging immunotherapy have opened up new prospects for the treatment of
pancreatic cancer. However, the exploration of new therapeutic targets and prognostic biomarkers
for pancreatic cancer still needs to be further carried out. Over the past decade, numerous studies
have identified some sensitive and effective biomarkers for pancreatic cancer.
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Ubiquitination/deubiquitination is an ATP-dependent
reversible reaction that binds small ubiquitin molecules to the
target protein through multi-step reactions involving ubiquitin-
activating enzyme E1, ubiquitin-binding enzyme E2, and
ubiquitin-ligase E3 (Hershko et al., 1979). ATP provides energy,
E1 is activated, and the Glycine residue at the Carboxy terminal
of ubiquitin and the active Cystine of E1 forms a thioester bond.
Next, E1 transfers the ubiquitin to the cysteine residue of the
ubiquitin carrier protein E2. E3 is specific in that it coordinates
ubiquitin covalently to specific target proteins. The way ubiquitin
molecules bind plays an important role in the function of the
modified protein (Dikic et al., 2009). Ubiquitination produces a
protein that is either monoubiquitinated or polyubiquitinated
when one of the seven Lysine residues of ubiquitin binds to the
C-terminal Glycine of another ubiquitin. The reverse process of
ubiquitination is called deubiquitination. Ubiquitination is best
known for its role in mediating protein degradation. Besides,
ubiquitination is also involved in the processes of meiosis,
autophagy, DNA repair, immune response, and apoptosis.
Ubiquitinated proteasome pathway is involved in almost all
intracellular molecular biological processes, affecting gene
expression and signal transduction in the regulation of DNA
damage repair, participating in the differentiation of senescent
cells, regulating tumor progression of malignant transformation,
and mediating therapeutic resistance (Welchman et al., 2005).

Previous studies have shown that
ubiquitination/deubiquitination play important roles in
pancreatic cancer. Lian et al. (2020) found that ubiquitin specific
peptidase 5 (USP5) enhances STAT3 signaling and promotes
migration and invasion in pancreatic cancer. Chen et al. (2020)
found that E3 ubiquitin ligase UBR5 promotes pancreatic
cancer growth and aerobic glycolysis by downregulating
FBP1 via destabilization of C/EBPα. Yang et al. (2019) found
that USP44 suppresses pancreatic cancer progression and
overcomes gemcitabine resistance by deubiquitinating FBP1.
There is no doubt that ubiquitination/deubiquitination is closely
related to the progression of pancreatic cancer. Exploration
of ubiquitination/deubiquitination related genes in pancreatic
cancer is also necessary.

In this study, by analyzing the dataset from TCGA and
GTEx database, we aim to study and verify the expression
characteristics of ubiquitination-related genes. We then selected
several ubiquitination-related genes that were significantly
associated with the prognosis of pancreatic cancer patients
through a series of statistical methods. Finally, we established a
new and reliable risk model to predict the prognosis of pancreatic
cancer patients based on the screened risk genes.

MATERIALS AND METHODS

Databases
To download the transcriptome data of 178 patients (The Cancer
Genome Atlas database, TCGA database) with pancreatic cancer
and the transcriptome data of 36 cases of normal pancreatic tissue
(Genotype-Tissue Expression database, GTEx database) from the

UCSC XENA website1. Clinical information of pancreatic cancer
patients was obtained from the TCGA database. All data are
processed using R software2. The clinical features of pancreatic
cancer patients, include age, gender, pathological grade, T-stage,
N-stage, M-stage, and TNM-stage.

Gene Set Enrichment Analysis
GSEA3 was used to explore whether the transcriptome data
showed statistically significant difference between the two groups
(normal and tumor). The expression data of mRNAs, including
36 normal pancreatic tissue and 178 pancreatic cancer samples
were analyzed. Normalized P value (P < 0.05) and normalized
enrichment score (NES) were used to determine what functions
had to be selected for further analysis.

Screening for Differentially Expressed
Genes (DEGs)
We screened DEGs from these ubiquitination/deubiquitination
related genes obtained from GSEA analysis. The “limma” package
was used to screen out the DEGs (Log2 fold change 6= 0, P< 0.05).

GO Analysis and KEGG Analysis
Gene Ontology (GO) database is a kind of free and open
database, the database includes three aspects of information:
biological process, cellular component, and molecular function.
The biological functions of genes can be classified and these
genes included in the functions that we selected can be further
understood through the GO analysis. DAVID online tool4 was
used for GO analysis (Xia et al., 2015). Kyoto Encyclopedia
of Genes and Genomes (KEGG) database is a database that
systematically analyzes the metabolic pathways of gene products
in cells and the functions of these gene products. The database
is useful for studying gene and expression information as a
whole network. KEGG integrates the data of genomic chemical
molecules and biochemical systems, including the sequence and
genome of metabolic pathways, drugs, and diseases. We used the
“clusterProfiler” package (Yu et al., 2012) from Bioconductor to
do KEGG analysis of these DEGs. P-value < 0.05 was used as the
inclusion standard in the analysis.

Identification and Inclusion of Prognostic
Ubiquitination-Related Genes for the
Construction of a Risk Model
As in previous studies (Li et al., 2020), univariate Cox regression
(p < 0.05) was used to screen out the ubiquitination-related
genes that were significantly associated with the prognosis
of pancreatic cancer patients from the DRGs. Multivariate
Cox proportional hazards regression analysis (with forwarding
selection and backward selection) was then used to analyze
these ubiquitination-related genes selected by univariate Cox
regression. Finally, optimal ubiquitination-related genes (risk

1https://xenabrowser.net/
2https://www.r-project.org/
3http://www.broadinstitute.org/gsea/index.jsp
4http://david.ncifcrf.gov/

Frontiers in Genetics | www.frontiersin.org 2 December 2020 | Volume 11 | Article 612196

https://xenabrowser.net/
https://www.r-project.org/
http://www.broadinstitute.org/gsea/index.jsp
http://david.ncifcrf.gov/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-612196 December 16, 2020 Time: 15:24 # 3

Zuo et al. Ubiquitination-Related Genes for Pancreatic Cancer

genes) were obtained to be incorporated into the risk model. The
alteration of these risk genes is shown online5.

Construction of the Prognostic Risk
Model in Pancreatic Cancer Cohort
Multivariate Cox proportional hazards regression analysis was
used to select the optimal risk genes and construct the Cox
regression model. In this process, we can obtain the estimated
regression coefficients of each gene. The expression levels of
mRNA and estimated regression coefficients of the risk genes
were used to calculate a risk score for each pancreatic cancer
patients. The risk score model was established with the following
formula: Risk score = expression level of Gene1 ∗ β1 + expression
level of Gene2 ∗ β2+. . .+ expression level of Genen

∗ βn; where β is
the estimated regression coefficient calculated by the multivariate
Cox regression model.

The risk model was used to measure the prognostic risk for
each pancreatic cancer patient. The median risk score was used
as the cut-off value to divide all the pancreatic cancer patients
into two groups: the high-risk group and the low-risk group. The
low-risk group has a better prognosis.

Independent Prognostic Value of the Risk
Model in the Pancreatic Cancer Cohort
Next, univariate and multivariate Cox regression analysis were
performed to assess whether the risk model was independent of
other clinical features (age, gender, pathological grade, T-stage,
and N-stage) as a prognostic factor for pancreatic cancer patients
(p < 0.05). The X-tile software was used to identify the optimal
cut-off value of the age significantly correlated to the prognosis of
pancreatic cancer patients. Because there are too many patients
in M0-stage and too few patients in stage III/IV, we excluded
these two clinical features (M-stage and TNM-stage) from this
analysis. Besides, cases with incomplete clinical information were
also excluded. Then, we constructed receiver operating curves
(ROC) and calculated the area under the curve (AUC) to assess
whether our model accurately predicted the overall survival (OS)
of pancreatic cancer patients. C-index value of 0.75 or greater
were considered to have excellent predictive value, and value of
0.6 or greater were considered acceptable for survival predictions
(Cho et al., 2019).

Validation of the Eight-mRNA Model in
Predicting Survival Using Kaplan–Meier
Curves
Kaplan–Meier curves and the log-rank test were used to validate
the prognostic significance of the risk model (p < 0.05).

Validation of the Risk Genes in Protein
Level
Furthermore, the Human Protein Atlas database6 was used to
validate the protein expression level of these risk genes compared
to the level of gene transcription.

5http://www.cbioportal.org/
6https://www.proteinatlas.org/

RESULTS

Gene Set Enrichment Analysis
Expression data set for 55242 mRNAs from the TCGA
database and GTEx database were analyzed. Five
ubiquitination/deubiquitination-related gene sets we validated
by GSEA analysis and there were two gene sets, including
REACTOME_ANTIGEN_PROCESSING_UBIQUITINATION_
PROTEASOME_DEGRADATION, and REACTOME_
PROTEIN_UBIQUITINATION were significantly enriched
(Table 1 and Figure 1). These 441 ubiquitination-related genes
in the two functions were selected for the subsequent analysis.

GO Analysis and KEGG Analysis
Of these 441 ubiquitination-related genes in the two functions,
134 DEGs were screened. These 134 ubiquitination-related
DEGs were used to do the GO analysis and KEGG analysis.
The results of the GO analysis showed that the functions
of the ubiquitination-related genes were concentrated in the
functions of the protein polyubiquitination, post-translational
protein modification, and proteasome-mediated ubiquitin-
dependent protein catabolic process, as shown in Table 2.
The results of KEGG analysis showed that the functions
of the ubiquitination-related genes were concentrated in
ubiquitin-mediated proteolysis, proteasome, and cell cycle, as
shown in Table 2.

Identification and Inclusion of Prognostic
Ubiquitination-Related Genes for the
Construction of a Risk Model
Sixty-three ubiquitination-related genes significantly correlated
with the prognosis of pancreatic cancer patients were screened
through the univariate Cox regression analysis from the
134 DEGs. Next, eight optimal ubiquitination-related genes
(risk gene) obtained by multivariate Cox analysis were used to
construct a risk model (Table 3): RNF7, NPEPPS, NCCRP1,
BRCA1, TRIM37, RNF25, CDC27, and UBE2H. The effect
of the expression value of these genes on the prognosis of
pancreatic cancer is shown in Figures 2A–H. Then, the alteration
of the seven genes in 175 clinical pancreatic cancer samples was
analyzed in the cBioPortal database. Results showed that there
were 33(19%) sequenced cases among the 175 pancreatic cancer
samples with the eight genes altering. The alterations of the

TABLE 1 | Gene sets enriched in pancreatic cancer.

Gene sets enriched in pancreatic cancer

GS follow link to MSigDB NES NOM
p-value

GO_UBIQUITIN_DEPENDENT_ERAD_PATHWAY −1.46 0.075

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS −1.45 0.067

REACTOME_ANTIGEN_PROCESSING_UBIQUITINATION_
PROTEASOME_DEGRADATION

−1.72 0.002

REACTOME_DEUBIQUITINATION 1.38 0.085

REACTOME_PROTEIN_UBIQUITINATION 1.75 0.008
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FIGURE 1 | GSEA results for the enrichment plots of two gene sets (REACTOME_ANTIGEN_PROCESSING_UBIQUITINATION_PROTEASOME_DEGRADATION,
and REACTOME_PROTEIN_UBIQUITINATION) that were significantly differentiated in normal and pancreatic cancer tissues based on TCGA database.
(A) Enrichment plot of the REACTOME_ANTIGEN_PROCESSING_UBIQUITINATION_PROTEASOME_DEGRADATION gene set. (B) Enrichment plot of the
REACTOME_PROTEIN_UBIQUITINATION gene set.

TABLE 2 | Result of GO and KEGG analysis for these ubiquitination-related DEGs.

ID Description P-adjust Q-value

GO analysis

GO:0000209 Protein polyubiquitination <0.001 <0.001

GO:0043687 Post-translational protein modification <0.001 <0.001

GO:0043161 Proteasome-mediated
ubiquitin-dependent protein catabolic
process

<0.001 <0.001

GO:0010498 Proteasomal protein catabolic process <0.001 <0.001

GO:0031145 Anaphase-promoting
complex-dependent catabolic process

<0.001 <0.001

GO:0006513 Protein monoubiquitination <0.001 <0.001

GO:0031146 SCF-dependent proteasomal
ubiquitin-dependent protein catabolic
process

<0.001 <0.001

KEGG analysis

hsa04120 Ubiquitin mediated proteolysis <0.001 <0.001

hsa03050 Proteasome <0.001 <0.002

hsa04110 Cell cycle <0.001 <0.003

hsa04141 Protein processing in endoplasmic
reticulum

<0.001 <0.004

hsa04114 Oocyte meiosis 0.017 0.016

hsa05017 Spinocerebellar ataxia 0.018 0.016

hsa04144 Endocytosis 0.020 0.018

hsa05169 Epstein-Barr virus infection 0.023 0.020

hsa04115 p53 signaling pathway 0.043 0.038

eight genes are shown in Figure 3A. We also investigated the
different expressions of the eight genes between pancreatic cancer
tissues and normal pancreatic tissues. Among the eight genes,

five genes (BRCA1, TRIM37, RNF25, CDC27, and UBE2H)
were significantly upregulated and three genes (RNF7, NPEPPS,
and NCCRP1) were significantly down regulated in the tumor
tissues (Figure 3B).

Construction of the Prognostic Risk
Model in Pancreatic Cancer Cohort
Finally, 171 pancreatic cancer patients were included in the
risk model. The computational formula was as follows: Risk
score = (2.3538× expression of RNF7) + (−1.0029 × expression
of NPEPPS) + (0.2271 × expression of NCCRP1) + (1.1898 ×
expression of BRCA1) + (−1.6370 × expression of TRIM37) +
(−1.5668 × expression of RNF25) + (1.9902 × expression of
CDC27) + (1.0606× expression of UBE2H).

Patients were divided into two groups, the high-risk group
(n = 85) and the low-risk group (n = 86). The high-risk group
had a worse outcome than the low-risk group (p < 0.001). The
1- and 3-year OS of pancreatic cancer patients in the high-risk
group were 87.7 and 64.7%, respectively, while the corresponding
OS in the low-risk group was 57.5 and 17.9%, respectively.
The AUC (ROC) value of the risk model in 1-year, and 3-year
were 0.756, and 0.810, respectively (Figures 4A,B). Then, risk
scores of these pancreatic cancer patients were ranked and their
distribution was analyzed. We divided pancreatic cancer patients
into low-risk and high-risk groups by the median risk score
for all patients enrolled in the study (Figure 4C). The survival
status of each patient in the pancreatic cancer patients was
shown in Figure 4D. As can be intuitively seen from Figure 4D,
the higher the risk score, the shorter the OS of pancreatic
cancer patients.
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TABLE 3 | The detailed information of eight prognostic mRNAs significantly associated with the prognosis of pancreatic cancer patients.

The detailed information of eight prognostic mRNAs significantly associated with the prognosis of pancreatic cancer patients

mRNA Official name Ensemble ID Location β (Cox) HR (95% CI) p-value

RNF7 Ring finger protein 7 ENSG00000114125 Chr3: 141, 738, 209-141, 747, 560 2.3538 10.526 (3.759, 29.475) <0.001

NPEPPS Aminopeptidase puromycin sensitive ENSG00000141279 Chr17: 47, 522, 933-47, 623, 276 −1.0029 0.367 (0.154, 0.875) 0.024

NCCRP1 NCCRP1, F-box associated domain
containing

ENSG00000188505 Chr19: 39, 196, 964-39, 201, 884 0.2271 1.255 (1.061, 1.484) 0.008

BRCA1 BRCA1 DNA repair associated ENSG00000012048 Chr17: 43, 044, 295-43, 125, 364 1.1898 3.286 (1.543, 7.001) 0.002

TRIM37 Tripartite motif containing 37 ENSG00000108395 Chr17: 58, 968, 010-59, 106, 880 −1.6370 0.195 (0.081, 0.469) <0.001

RNF25 Ring finger protein 25 ENSG00000163481 Chr2: 218, 663, 874-218, 672, 002 −1.5668 0.209(0.087, 0.502) <0.001

CDC27 Cell division cycle 27 ENSG00000004897 Chr17: 47, 117, 703-47, 189, 295 1.9902 7.317 (2.672, 20.037) <0.001

UBE2H Ubiquitin conjugating enzyme E2 H ENSG00000186591 Chr7: 129, 830, 732-129, 952, 960 1.0606 2.888 (1.392, 5.991) 0.004

FIGURE 2 | Kaplan-Meier curves of the effect of the gene expression level of the risk genes (RNF7, NPEPPS, NCCRP1, BRCA1, TRIM37, RNF25, CDC27, and
UBE2H) on the prognosis of pancreatic cancer patients. (A) Kaplan-Meier curve of the effect of RNF7 gene expression level. (B) Kaplan-Meier curve of the effect of
RNF25 gene expression level. (C) Kaplan-Meier curve of the effect of NPEPPS gene expression level. (D) Kaplan-Meier curve of the effect of NCCRP1 gene
expression level. (E) Kaplan-Meier curve of the effect of CDC27 gene expression level. (F) Kaplan-Meier curve of the effect of BRCA1 gene expression level.
(G) Kaplan-Meier curve of the effect of TRIM37 gene expression level. (H) Kaplan-Meier curve of the effect of UBE2H gene expression level.
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FIGURE 3 | Identification of mRNAs associated with patient survival. (A) The alteration proportion for the eight selected genes in 175 clinical samples of pancreatic
cancer in the cBioPortal database. (B) Different expression of eight genes in the normal pancreatic tissues and tumor tissues based on TCGA database. (*P < 0.05,
**P < 0.01, ***P < 0.001).

Independent Prognostic Value of the
Risk Model in the Entire Pancreatic
Cancer Cohort
A total of 163 pancreatic cancer patients were included in
this analysis. Results of the univariate analysis showed that
age, pathological grade, T-stage, N-stage, and risk score were
significantly correlated with the prognosis of pancreatic cancer
patients. The result of multivariate analysis showed that the risk
score was independently correlated with the OS for patients with
pancreatic cancer (Table 4).

Validation of the Eight-mRNA Signature
in Predicting Survival Using
Kaplan–Meier Curves
The results of the univariate analysis showed that age was
an independent prognostic factor for pancreatic cancer, and
the X-tile software found that 62 and 76 were the optimal
cut-off values for the prognosis of pancreatic cancer patients
(Supplementary Figure 1). The result of Kaplan–Meier curves

showed the effects of age, gender, histological grade, T-stage,
N-stage, and risk score on the prognosis of pancreatic cancer
patients (Figures 5A–F). The result of Kaplan–Meier curves
showed that our risk model was a stable predictive tool for the
prognosis of pancreatic cancer patients stratified by age (<62, 62–
76, and >76), gender (male and female), pathological grade
(G1/2, or G3/4), T-stage (T1/2, or T3/4), and N-stage (N0 or
N1) (Figures 6A–K). Patients with pancreatic cancer in the high-
risk group had significantly shorter OS than those in the low-risk
group when the patients were stratified into different subgroups
based on age, gender, pathological grade, T-stage, and N-stage.

Validation of the Risk Genes
The protein levels of immunohistochemistry (IHC) staining
obtained from the HPA database showed that the expression of
the protein in four risk genes (BRCA1, TRIM37, RNF25, and
UBE2H) was significantly higher in pancreatic cancer tissues than
in normal pancreatic tissues, three genes (RNF7, NPEPPS, and
NCCRP1) do the opposite, which was consistent with that at the
transcriptional level. Only CDC27 protein expression levels was
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FIGURE 4 | Prognostic analysis of the pancreatic cancer cohort. (A) 1-year ROC curve analysis of the prognostic model. (B) 3-year ROC curve analysis of the
prognostic model. (C) Risk score distribution of patients in the prognostic model. (D) Survival status scatter plots for patients in the prognostic model.

TABLE 4 | Effects of various clinical features on pancreatic cancer patients.

Univariate analysis Multivariate analysis

Clinical feature Number HR 95% CI p-value HR 95% CI p-value

Age (<62/62–76/>76) 58/83/22 1.028 1.005–1.052 0.016 1.550 0.919–2.614 0.100

Gender (female/male) 75/88 0.768 0.499–1.183 0.232 0.825 0.530–1.285 0.394

Grade (G1/2/G34) 114/49 1.387 1.001–1.924 0.049 1.243 0.777–1.990 0.364

N-stage (N0/N1) 45/118 2.004 0.999–4.021 0.050 1.229 0.589–2.563 0.583

T-stage (T1/2/T3/4) 25/138 2.222 1.286–3.838 0.004 1.598 0.890–2.869 0.116

Risk score (low/high) 86/85 1.284 1.207–1.367 <0.001 1.250 1.172–1.333 <0.001
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FIGURE 5 | Kaplan-Meier curves of the effect of clinical features (risk score, age, gender, pathological grade, T-stage, and N-stage) on the prognosis of pancreatic
cancer. (A) Kaplan-Meier curve of the effect of age. (B) Kaplan-Meier curve of the effect of gender. (C) Kaplan-Meier curve of the effect of pathological grade.
(D) Kaplan-Meier curve of the effect of T-stage. (E) Kaplan-Meier curve of the effect of N-stage. (F) Kaplan-Meier curve of the effect of risk score.

high in both the normal and tumor group in the HPA database
(Figures 7A–H).

DISCUSSION

One or more pathway data sets are used to assess the
ranking list of statistically significant genes/proteins using GSEA.
GSEA can not only detect statistically significant genes and
proteins group-wise but also enrich the previous research
characteristics of gene sets in functional genomes in a large
database of pathway gene sets (Subramanian et al., 2005;
Wu et al., 2014). In our study, mRNA expression data from
178 patients with pancreatic cancer and 36 normal pancreatic
tissues were used for GSEA analysis, and significant differences
were found in two functions. These two functions are all
related to ubiquitination, indicating that ubiquitination changes
significantly in the development of pancreatic cancer. And then,
these ubiquitination-related genes in the two functions were
selected for subsequent analysis.

Combined with GO enrichment analysis and KEGG
enrichment analysis, the results suggest that these genes are
closely related to the ubiquitination process of pancreatic

cancer. Next, eight optimal ubiquitination-related genes were
identified via multivariate Cox proportional hazards regression
analysis, and they were used to construct a risk model. The
reliability and stability of the model were further validated.
The results showed that the model could accurately distinguish
pancreatic cancer patients with different survival outcomes.
The results of univariate and multivariate analysis showed
that our model could independently predict the outcome of
pancreatic cancer patients. The result of Kaplan–Meier curves
shows that our risk model has excellent stability and reliability
in predicting the prognosis of pancreatic cancer at all age,
gender, pathological grade, T-stage, and N-stage. Therefore,
our risk model can screen high-risk patients for personalized
treatment. Finally, the eight risk genes were validated by the HPA
database, and the results showed that the protein expression
level of the eight genes was generally consistent with those at
the transcriptional level. These results suggest that the genes we
identified deserve further study.

Of the eight genes identified, seven genes (RNF7, NCCRP1,
BRCA1, TRIM37, RNF25, CDC27, and UBE2H) have been
reported to play roles in ubiquitination (Asamitsu et al., 2003;
Kallio et al., 2011; Link et al., 2016; Cho et al., 2018; Lim
and Joo, 2020; Meitinger et al., 2020; Zhang et al., 2020). It
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FIGURE 6 | Kaplan–Meier curves for the prognostic value of risk model for the patients grouped according to each clinical feature. (A–C) Kaplan–Meier survival
curves of the age patient group (<62, 62–76, and >76). (D,E) Kaplan–Meier survival curves of the gender patient group (male and female). (F,G) Kaplan–Meier
survival curves of the pathological grade patient group (G1/2 and G3/4). (H,I) Kaplan–Meier survival curves of the T-stage patient group (T1/2 and T3/4).
(J,K) Kaplan–Meier survival curves of the N-stage patient group (N0 and N1).

has not been reported that NPEPPS directly participates in
the process of ubiquitination, but NPEPPS is also known to
degrade the tau protein, which accumulates and polymerizes
in some neurodegenerative diseases (Kudo et al., 2011). In
our study, the expression of these ubiquitination-related genes
was significantly associated with the prognosis of patients with
pancreatic cancer, providing us with a new key to the study of
pancreatic cancer. Among these genes, some have been studied
as biomarkers for cancer. For example, BRCA has been proved
to be a biomarker in many cancers, and its mutation or not
has a guiding role in the application of targeted drugs, such
as pancreatic cancer (Wu and Shi, 2020). RNF7, an apoptosis-
sensitive gene, has been shown in several previous studies to
play an important role in the development and progression

of tumors such as prostate cancer and lung cancer (Li et al.,
2014; Tan et al., 2016). There are also relevant studies showing
that RNF7 regulates ionizing radiation-induced apoptosis in
pancreatic cancer (Kim et al., 2011). TRIM37 has also been shown
to promote the proliferation, invasion and migration in breast
cancer, lung cancer, gastric cancer, glioma, and pancreatic cancer
(Jiang et al., 2016; Li et al., 2018; Tang et al., 2018; Hu et al.,
2019; Fu et al., 2020). CDC27 promotes the progression and
affects PD-L1 expression in T-cell lymphoblastic lymphoma, and
also promotes epithelial-to-mesenchymal transition in colorectal
cancer (Qiu et al., 2017; Song et al., 2020). There are few
studies on the role of NCCRP1, RNF25, and UBE2H in cancer,
but the existing research results suggest that these three genes
also have the potential to become new tumor biomarkers
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FIGURE 7 | Validation of risk genes at the translational level. (A) Validation of BRCA1 by The Human Protein Atlas database (IHC). (B) Validation of CDC27 by The
Human Protein Atlas database (IHC). (C) Validation of NCCRP1 by The Human Protein Atlas database (IHC). (D) Validation of NPEPPS by The Human Protein Atlas
database (IHC). (E) Validation of ZNF7 by The Human Protein Atlas database (IHC). (F) Validation of ZNF25 by The Human Protein Atlas database (IHC).
(G) Validation of TRIM37 by The Human Protein Atlas database (IHC). (H) Validation of UBE2H by The Human Protein Atlas database (IHC).

or targets for cancer (Miwa et al., 2017; Cho et al., 2018;
Zhu et al., 2018).

Of the eight genes we identified, three genes (RNF7,
NPEPPS, and NCCRP1) were down-regulated and the
remaining five (BRCA1, TRIM37, RNF25, CDC27, and
UBE2H) were up-regulated in tumor tissue compared to normal

pancreatic tissue. But we found that even though some genes
(RNF7, NPEPPS, and NCCRP1) were down-regulated in tumor
group, patients with pancreatic cancer with high expression of
these genes had a worse prognosis. Some genes are up-regulated
(TRIM37 and RNF25), but high expression of these genes has a
better prognosis. So we suspect that these genes play an opposite
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role in the development and progression of pancreatic cancer.
For example, NPEPPS may inhibit tumor formation in normal
tissue but may promote tumor progression once the tumor
has formed. This phenomenon has been reported in previous
literature. In retrospect, the study has shown that TGF-β is a
key negative regulator of cell proliferation, but the abnormal
function of retinoblastoma protein can lead to the inhibition of
the function of TGF-β and promote the progression of pancreatic
cancer (Gore et al., 2014). Another study showed that Daple is
also a tumor-suppressor gene, although it appears only in the
early stages of cancer to function as a tumor-suppressor gene.
In the later stages of cancer, when cancer cells escape from their
primary sites and circulate in the blood, the expression of Daple
makes cancer cells more aggressive and more likely to spread
(Aznar et al., 2015).

Many previous studies have explored new potential
biomarkers and therapeutic targets for pancreatic cancer through
bioinformatic methods. Wu et al. (2019) screened nine DEGs
(MET, KLK10, COL17A1, CEP55, ANKRD22, ITGB6, ARNTL2,
MCOLN3, and SLC25A45) through the joint analysis of GEO
and TCGA databases and construct a risk score model. They
also analyzed the relationship between the nine gene models
and tumor immune infiltration. Wei et al. (2019) constructed a
risk model to predict the prognosis of pancreatic cancer patients
by screening nine immune-related lnRNAs from the TCGA
database. Compared with the previous studies, we use GSEA
enrichment analysis to explore the function of ubiquitination in
pancreatic cancer, and on this basis, identify eight ubiquitination-
related genes to construct a risk model. There has been no
previous study on the bioinformatics related to the ubiquitination
of pancreatic cancer, and our study provides a new idea for
relevant studies on the progression of pancreatic cancer.

Of course, our study also has some shortcomings. First, our
study was a retrospective study based on a public database. The
data we used has not been validated by prospective clinical trials.
Besides, the identified mechanism of ubiquitination-related genes
affecting the development of pancreatic cancer needs further
support from basic experimental studies. Next, we need to collect
clinical specimens and data for subsequent studies.

CONCLUSION

Using GSEA enrichment analysis, we found that the
ubiquitination-related functions of pancreatic cancer were

significantly different from those of normal pancreatic tissues.
Subsequently, we extracted and screened the genes in these
functions, and finally selected eight genes significantly related
to the prognosis of pancreatic cancer patients as risk genes to
construct a risk model. This model has a good predictive effect on
the prognosis of pancreatic cancer patients. Moreover, these eight
genes have the potential to be further studied as new biomarkers
or therapeutic targets for pancreatic cancer.

DATA AVAILABILITY STATEMENT

The datasets supporting the conclusions of this article are
obtained from The Cancer Genome Atlas (TCGA) portal
website (https://portal.gdc.cancer.gov/) and the Genotype-
Tissue Expression (GTEx) database (https://xenabrowser.net/).
The alteration of these genes is from an online database
(http://www.cbioportal.org/). The authors did not have special
access privileges.

AUTHOR CONTRIBUTIONS

NL and QS: conception and design. HZ and LC: data acquisition,
data analysis and interpretation, and article writing and revision.
All authors have read and agreed to the published version
of the manuscript.

FUNDING

This research was supported by National Natural Science
Foundation of China (81802980).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.612196/full#supplementary-material

Supplementary Figure 1 | The result of the best cut-off values for the age by
using the X-tile software.

REFERENCES
Adamska, A., Elaskalani, O., Emmanouilidi, A., Kim, M., Abdol Razak,

N. B., Metharom, P., et al. (2018). Molecular and cellular mechanisms of
chemoresistance in pancreatic cancer. Adv. Biol. Regul. 68, 77–87. doi: 10.1016/
j.jbior.2017.11.007

Asamitsu, K., Tetsuka, T., Kanazawa, S., and Okamoto, T. (2003). RING
finger protein AO7 supports NF-kappaB-mediated transcription
by interacting with the transactivation domain of the p65
subunit. J. Biol. Chem. 278, 26879–26887. doi: 10.1074/jbc.M21183
1200

Aznar, N., Midde, K. K., Dunkel, Y., Lopez-Sanchez, I., Pavlova, Y., Marivin, A.,
et al. (2015). Daple is a novel non-receptor GEF required for trimeric G protein
activation in Wnt signaling. eLife 4:e07091. doi: 10.7554/eLife.07091

Chen, L., Yuan, R., Wen, C., Liu, T., Feng, Q., Deng, X., et al. (2020). E3 ubiquitin
ligase UBR5 promotes pancreatic cancer growth and aerobic glycolysis by
downregulating FBP1 via destabilization of C/EBPalpha. Oncogene doi: 10.
1038/s41388-020-01527-1

Cho, J. H., You, Y. M., Yeom, Y. I., Lee, D. C., Kim, B. K., Won, M., et al.
(2018). RNF25 promotes gefitinib resistance in EGFR-mutant NSCLC cells by
inducing NF-kappaB-mediated ERK reactivation. Cell Death Dis. 9:587. doi:
10.1038/s41419-018-0651-5

Frontiers in Genetics | www.frontiersin.org 11 December 2020 | Volume 11 | Article 612196

https://www.frontiersin.org/articles/10.3389/fgene.2020.612196/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.612196/full#supplementary-material
https://doi.org/10.1016/j.jbior.2017.11.007
https://doi.org/10.1016/j.jbior.2017.11.007
https://doi.org/10.1074/jbc.M211831200
https://doi.org/10.1074/jbc.M211831200
https://doi.org/10.7554/eLife.07091
https://doi.org/10.1038/s41388-020-01527-1
https://doi.org/10.1038/s41388-020-01527-1
https://doi.org/10.1038/s41419-018-0651-5
https://doi.org/10.1038/s41419-018-0651-5
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-612196 December 16, 2020 Time: 15:24 # 12

Zuo et al. Ubiquitination-Related Genes for Pancreatic Cancer

Cho, S. H., Pak, K., Jeong, D. C., Han, M. E., Oh, S. O., and Kim, Y. H. (2019).
The AP2M1 gene expression is a promising biomarker for predicting survival
of patients with hepatocellular carcinoma. J. Cell Biochem. 120, 4140–4146.
doi: 10.1002/jcb.27699

Dikic, I., Wakatsuki, S., and Walters, K. J. (2009). Ubiquitin-binding domains -
from structures to functions. Nat. Rev. Mol. Cell Biol. 10, 659–671. doi: 10.1038/
nrm2767

Fu, T., Ji, K., Jin, L., Zhang, J., Wu, X., Ji, X., et al. (2020). ASB16-AS1 up-regulated
and phosphorylated TRIM37 to activate NF-kappaB pathway and promote
proliferation, stemness, and cisplatin resistance of gastric cancer. Gas. Cancer
doi: 10.1007/s10120-020-01096-y [Epub ahead of print].

Gore, A. J., Deitz, S. L., Palam, L. R., Craven, K. E., and Korc, M. (2014). Pancreatic
cancer-associated retinoblastoma 1 dysfunction enables TGF-beta to promote
proliferation. J. Clin. Invest. 124, 338–352. doi: 10.1172/JCI71526

Hershko, A., Ciechanover, A., and Rose, I. A. (1979). Resolution of the ATP-
dependent proteolytic system from reticulocytes: a component that interacts
with ATP. Proc. Natl. Acad. Sci. U.S.A. 76, 3107–3110. doi: 10.1073/pnas.76.7.
3107

Hu, X., Xiang, D., Xie, Y., Tao, L., Zhang, Y., Jin, Y., et al. (2019). LSD1 suppresses
invasion, migration and metastasis of luminal breast cancer cells via activation
of GATA3 and repression of TRIM37 expression. Oncogene 38, 7017–7034.
doi: 10.1038/s41388-019-0923-2

Ilic, M., and Ilic, I. (2016). Epidemiology of pancreatic cancer. World J.
Gastroenterol. 22, 9694–9705. doi: 10.3748/wjg.v22.i44.9694

Jiang, J., Tian, S., Yu, C., Chen, M., and Sun, C. (2016). TRIM37 promoted
the growth and migration of the pancreatic cancer cells. Tumour Biol. 37,
2629–2634. doi: 10.1007/s13277-015-4078-7

Kallio, H., Tolvanen, M., Janis, J., Pan, P. W., Laurila, E., Kallioniemi, A., et al.
(2011). Characterization of non-specific cytotoxic cell receptor protein 1: a new
member of the lectin-type subfamily of F-box proteins. PLoS One 6:e27152.
doi: 10.1371/journal.pone.0027152

Kim, S. Y., Yang, E. S., Lee, Y. S., Lee, J., and Park, J. W. (2011). Sensitive
to apoptosis gene protein regulates ionizing radiation-induced apoptosis.
Biochimie 93, 269–276. doi: 10.1016/j.biochi.2010.09.020

Kudo, L. C., Parfenova, L., Ren, G., Vi, N., Hui, M., Ma, Z., et al. (2011).
Puromycin-sensitive aminopeptidase (PSA/NPEPPS) impedes development of
neuropathology in hPSA/TAU(P301L) double-transgenic mice. Hum. Mol.
Genet. 20, 1820–1833. doi: 10.1093/hmg/ddr065

Li, H., Tan, M., Jia, L., Wei, D., Zhao, Y., Chen, G., et al. (2014).
Inactivation of SAG/RBX2 E3 ubiquitin ligase suppresses KrasG12D-driven
lung tumorigenesis. J. Clin. Invest. 124, 835–846. doi: 10.1172/JCI70297

Li, J. P., Li, R., Liu, X., Huo, C., Liu, T. T., Yao, J., et al. (2020). A seven
immune-related lncRNAs model to increase the predicted value of lung
Adenocarcinoma. Front. Oncol. 10:560779. doi: 10.3389/fonc.2020.560779

Li, Y., Deng, L., Zhao, X., Li, B., Ren, D., Yu, L., et al. (2018). Tripartite motif-
containing 37 (TRIM37) promotes the aggressiveness of non-small-cell lung
cancer cells by activating the NF-kappaB pathway. J. Pathol. 246, 366–378.
doi: 10.1002/path.5144

Lian, J., Liu, C., Guan, X., Wang, B., Yao, Y., Su, D., et al. (2020). Ubiquitin specific
peptidase 5 enhances STAT3 signaling and promotes migration and invasion in
pancreatic cancer. J. Cancer 11, 6802–6811. doi: 10.7150/jca.48536

Lim, K. H., and Joo, J. Y. (2020). Predictive potential of circulating Ube2h mRNA as
an E2 ubiquitin-conjugating enzyme for diagnosis or treatment of Alzheimer’s
disease. Int. J. Mol. Sci. 21:3398. doi: 10.3390/ijms21093398

Link, L. A., Howley, B. V., Hussey, G. S., and Howe, P. H. (2016). PCBP1/HNRNP
E1 protects chromosomal integrity by translational regulation of CDC27. Mol.
Cancer Res. 14, 634–646. doi: 10.1158/1541-7786.MCR-16-0018

Meitinger, F., Ohta, M., Lee, K. Y., Watanabe, S., Davis, R. L., Anzola, J. V.,
et al. (2020). TRIM37 controls cancer-specific vulnerability to PLK4 inhibition.
Nature 585, 440–446. doi: 10.1038/s41586-020-2710-1

Miller, K. D., Nogueira, L., Mariotto, A. B., Rowland, J. H., Yabroff, K. R., Alfano,
C. M., et al. (2019). Cancer treatment and survivorship statistics, 2019. CA
Cancer J. Clin. 69, 363–385. doi: 10.3322/caac.21565

Miwa, T., Kanda, M., Koike, M., Iwata, N., Tanaka, H., Umeda, S., et al. (2017).
Identification of NCCRP1 as an epigenetically regulated tumor suppressor

and biomarker for malignant phenotypes of squamous cell carcinoma of the
esophagus. Oncol. Lett. 14, 4822–4828. doi: 10.3892/ol.2017.6753

Qiu, L., Tan, X., Lin, J., Liu, R. Y., Chen, S., Geng, R., et al. (2017). CDC27
induces metastasis and invasion in colorectal cancer via the promotion of
epithelial-to-mesenchymal transition. J. Cancer 8, 2626–2635. doi: 10.7150/jca.
19381

Siegel, R. L., Miller, K. D., and Jemal, A. (2017). Cancer statistics, 2017. CA Cancer
J. Clin. 67, 7–30. doi: 10.3322/caac.21387

Song, Y., Song, W., Li, Z., Song, W., Wen, Y., Li, J., et al. (2020). CDC27 promotes
tumor progression and affects PD-L1 expression in T-Cell Lymphoblastic
lymphoma. Front. Oncol. 10:488. doi: 10.3389/fonc.2020.00488

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A.
102, 15545–15550. doi: 10.1073/pnas.0506580102

Tan, M., Xu, J., Siddiqui, J., Feng, F., and Sun, Y. (2016). Depletion of SAG/RBX2
E3 ubiquitin ligase suppresses prostate tumorigenesis via inactivation of the
PI3K/AKT/mTOR axis. Mol. Cancer 15:81. doi: 10.1186/s12943-016-0567-6

Tang, S. L., Gao, Y. L., and Wen-Zhong, H. (2018). Knockdown of TRIM37
suppresses the proliferation, migration and invasion of glioma cells through the
inactivation of PI3K/Akt signaling pathway. Biomed. Pharmacother. 99, 59–64.
doi: 10.1016/j.biopha.2018.01.054

Wei, C., Liang, Q., Li, X., Li, H., Liu, Y., Huang, X., et al. (2019). Bioinformatics
profiling utilized a nine immune-related long noncoding RNA signature as
a prognostic target for pancreatic cancer. J. Cell Biochem. 120, 14916–14927.
doi: 10.1002/jcb.28754

Welchman, R. L., Gordon, C., and Mayer, R. J. (2005). Ubiquitin and ubiquitin-
like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599–609.
doi: 10.1038/nrm1700

Wu, B., and Shi, L. (2020). Cost-effectiveness of maintenance olaparib for germline
BRCA-mutated metastatic pancreatic cancer. J. Natl. Compr. Cancer Netw. 18,
1528–1536. doi: 10.6004/jnccn.2020.7587

Wu, M., Li, X., Zhang, T., Liu, Z., and Zhao, Y. (2019). Identification of a nine-
gene signature and establishment of a prognostic nomogram predicting overall
survival of pancreatic cancer. Front. Oncol. 9:996. doi: 10.3389/fonc.2019.
00996

Wu, X., Hasan, M. A., and Chen, J. Y. (2014). Pathway and network analysis in
proteomics. J. Theor. Biol. 362, 44–52. doi: 10.1016/j.jtbi.2014.05.031

Xia, J., Gill, E. E., and Hancock, R. E. (2015). Network analyst for statistical,
visual and network-based meta-analysis of gene expression data. Nat. Protoc.
10, 823–844. doi: 10.1038/nprot.2015.052

Yang, C., Zhu, S., Yang, H., Deng, S., Fan, P., Li, M., et al. (2019). USP44 suppresses
pancreatic cancer progression and overcomes gemcitabine resistance by
deubiquitinating FBP1. Am. J. Cancer Res. 9, 1722–1733.

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS 16, 284–287.
doi: 10.1089/omi.2011.0118

Zhang, F., Yan, P., Yu, H., Le, H., Li, Z., Chen, J., et al. (2020). L ARP7 Is a BRCA1
ubiquitinase substrate and regulates genome stability and Tumorigenesis. Cell
Rep. 32:107974. doi: 10.1016/j.celrep.2020.107974

Zhu, Y. C., Wang, W. X., Song, Z. B., Zhang, Q. X., Xu, C. W., Chen, G., et al. (2018).
MET-UBE2H fusion as a novel mechanism of acquired EGFR resistance in lung
Adenocarcinoma. J. Thorac. Oncol. 13, e202–e204. doi: 10.1016/j.jtho.2018.
05.009

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Zuo, Chen, Li and Song. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 12 December 2020 | Volume 11 | Article 612196

https://doi.org/10.1002/jcb.27699
https://doi.org/10.1038/nrm2767
https://doi.org/10.1038/nrm2767
https://doi.org/10.1007/s10120-020-01096-y
https://doi.org/10.1172/JCI71526
https://doi.org/10.1073/pnas.76.7.3107
https://doi.org/10.1073/pnas.76.7.3107
https://doi.org/10.1038/s41388-019-0923-2
https://doi.org/10.3748/wjg.v22.i44.9694
https://doi.org/10.1007/s13277-015-4078-7
https://doi.org/10.1371/journal.pone.0027152
https://doi.org/10.1016/j.biochi.2010.09.020
https://doi.org/10.1093/hmg/ddr065
https://doi.org/10.1172/JCI70297
https://doi.org/10.3389/fonc.2020.560779
https://doi.org/10.1002/path.5144
https://doi.org/10.7150/jca.48536
https://doi.org/10.3390/ijms21093398
https://doi.org/10.1158/1541-7786.MCR-16-0018
https://doi.org/10.1038/s41586-020-2710-1
https://doi.org/10.3322/caac.21565
https://doi.org/10.3892/ol.2017.6753
https://doi.org/10.7150/jca.19381
https://doi.org/10.7150/jca.19381
https://doi.org/10.3322/caac.21387
https://doi.org/10.3389/fonc.2020.00488
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1186/s12943-016-0567-6
https://doi.org/10.1016/j.biopha.2018.01.054
https://doi.org/10.1002/jcb.28754
https://doi.org/10.1038/nrm1700
https://doi.org/10.6004/jnccn.2020.7587
https://doi.org/10.3389/fonc.2019.00996
https://doi.org/10.3389/fonc.2019.00996
https://doi.org/10.1016/j.jtbi.2014.05.031
https://doi.org/10.1038/nprot.2015.052
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1016/j.celrep.2020.107974
https://doi.org/10.1016/j.jtho.2018.05.009
https://doi.org/10.1016/j.jtho.2018.05.009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Identification of a Ubiquitination-Related Gene Risk Model for Predicting Survival in Patients With Pancreatic Cancer
	Introduction
	Materials and Methods
	Databases
	Gene Set Enrichment Analysis
	Screening for Differentially Expressed Genes (DEGs)
	GO Analysis and KEGG Analysis
	Identification and Inclusion of Prognostic Ubiquitination-Related Genes for the Construction of a Risk Model
	Construction of the Prognostic Risk Model in Pancreatic Cancer Cohort
	Independent Prognostic Value of the Risk Model in the Pancreatic Cancer Cohort
	Validation of the Eight-mRNA Model in Predicting Survival Using Kaplan–Meier Curves
	Validation of the Risk Genes in Protein Level

	Results
	Gene Set Enrichment Analysis
	GO Analysis and KEGG Analysis
	Identification and Inclusion of Prognostic Ubiquitination-Related Genes for the Construction of a Risk Model
	Construction of the Prognostic Risk Model in Pancreatic Cancer Cohort
	Independent Prognostic Value of the Risk Model in the Entire Pancreatic Cancer Cohort
	Validation of the Eight-mRNA Signature in Predicting Survival Using Kaplan–Meier Curves
	Validation of the Risk Genes

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


