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Abstract

Tying the hands behind the back has detrimental effects on sensorimotor perceptual tasks.

Here we provide evidence that beta band oscillatory activity in a resting state condition

might play a crucial role in such detrimental effects. EEG activity at rest was measured from

thirty young participants (mean age = 24.03) in two different body posture conditions. In one

condition participants were required to keep their hands freely resting on the table. In the

other condition, participants’ hands were tied behind their back. Increased beta power was

observed in the left inferior frontal gyrus during the tied hands condition compared to the

free hands condition. A control experiment ruled out alternative explanations for observed

change in beta power, including muscle tension. Our findings provide new insights on how

body postural manipulations impact on perceptual tasks and brain activity.

Introduction

It is well known that the physical body plays a key role in the way in which the brain encodes

the environment; in fact, in everyday life cognitive processes are influenced by the sensory and

motor experiences of the body. This idea, which stems from the broader theoretical framework

of Embodied Cognition [1], claims that many aspects of cognition are shaped by features of

the body [2]. As a consequence, if cognition derives from bodily experiences, the individuals’

physical features might play a critical role in shaping it [3]. A clear example is provided by

studies on mental rotation of body parts [4–7], in which participants have to judge the lateral-

ity of pictures representing hands and feet while standing in two different postural conditions.

In one condition, the subjects’ right hand is placed on the right knee and the left hand behind

the back; in the other one, the hand position is reversed. For right-handed subjects, response

times increase when participants judge images representing the right hands keeping their right

hand behind the back. This effect is not present for images of the left hand, nor for images of

the feet. Other studies show analogous results, highlighting an interference of hand posture on

the ability to perform mental rotations of hand images [8]. Similarly, subjects’ body orientation
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has been shown to affect perception of both static and moving objects [9]. All these results sug-

gest that information regarding the current positioning of body or body parts is required for the

encoding of visual information. Furthermore, it has been showed that body posture affects the

way in which autobiographical memories are accessed and retained by both younger and older

adults [10]. Specifically, response times decrease when body position during prompted retrieval

of autobiographical events is congruent or similar to the body position in the original events

than when body position is incongruent [10]. Nevertheless, the impact of body posture on visual

encoding of actions is still under debate. A feasible way to understand how body posture shapes

visual encoding of actions is looking at the interaction between posture manipulations and

intrinsic brain activity. Specifically, intrinsic brain activity is spontaneously generated by the

brain and is not organized in a casual way [11]. The interaction between intrinsic brain activity

and posture manipulations is better explained by a study of Thibault and collegues [12]. In this

study, prominent alterations of intrinsic brain activity over occipital and frontal regions were

induced through orthostatic manipulations. Specifically, an increase of beta and gamma activity

was observed while participants lied supine compared to the condition in which they either

stand or sat inclined at 45 degrees. Moreover, there is converging evidence showing that intrin-

sic brain activity plays a key role in perceptual processes [13] involving high-frequency bands

(i.e. beta and gamma) [14–16]. For instance, during tasks requiring mental simulation of actions

it has been observed a decrease of oscillatory beta power over the sensorimotor regions [17].

Such a decrease reflects the engagement of the motor system corresponding to the disinhibition

of motor areas [18]. Conversely, an increased beta power has been shown to reflect inhibition

mechanisms related to perceptual and motor systems [19–22]. It is therefore conceivable that

postural manipulations may impact visual perception by altering beta-band oscillations. Draw-

ing from this, we investigated the effects of postural manipulations on the intrinsic brain activ-

ity, focusing on the beta frequency band. EEG activity was measured in a resting state condition

from thirty healthy participants in two different body posture conditions. In one condition, par-

ticipants were required to keep their hands freely resting on the table. In the other condition,

participants were required to keep hands tied behind their back. Moreover, we conducted an

EEG-EMG control experiment in order to rule out the presence of confounding variable (i.e.

muscle tension). Specifically, subjects were asked to contract and to keep the contraction of spe-

cific muscles during the tied hands condition.

Materials and method

Participants

Thirty right-handed healthy participants (12 males, mean age = 24.03; SD = 3.2; range = 20–

33) were recruited to take part in the study from the student pool. The participants took part

in the experiment at ITAB (Institute for Advanced Biomedical Technologies) in Chieti. Partici-

pants did not have any personal or close family history of neurological or psychiatric disorders,

any brain surgery and any active medication, as self-reported. The study was approved by the

local ethics committee of the province of Chieti-Pescara (ID07022013). Participants gave their

informed consent before taking part in the study. The study was conducted in accordance with

the ethical standards of the 1964 Declaration of Helsinki.

We calculated the power achieved in our study a posteriori. The achieved power was 87%

with an α value = 0.05, two tails test.

Procedure

EEG resting-state recording and pre-processing. All participants went through two dif-

ferent conditions (within-subject design): i) EEG resting-state when their hands were free (free
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condition) and ii) EEG resting-state when their hands were tied behind the back (tied condi-

tion). The two conditions were randomized across subjects. In the two blocks, participants had

to keep their eyes open and fixate a cross in front of them placed on the computer screen. EEG

activity was measured at rest for 4 minutes.

We used a 64 electrodes cap (model BrainCap, BrainAmp MR Plus amplifier, Brain Prod-

ucts), placed according to the 10–20 International System. We used 2 electro-oculographic

channels on the right and left temple to monitor eye movement and for off-line artefact rejec-

tion. The reference electrode was positioned in correspondence of FCz electrode while the

ground electrode was placed in the Inion (Iz).

The impedance was measured before each recording and was kept below 10 kO. All the

data were processed using EEGLAB software implemented in MATLAB [23].

We acquired online data at 5 kHz, band-pass filtered from 0.016 to 250 Hz. Data were off-

line filtered between 1 Hz (high-pass filtering) to 30 Hz (low-pass filtering) and downsampled

at 250 Hz for the current analysis. We detected and removed bad channels using a threshold

with a probability at 5% (pop rejchan). Subsequently, we rejected the continuous data using a

threshold with a probability at 10% (pop rejcont).
Finally, we computed the Independent Component Analysis, using the FastICA algorithm

[24] to identify and reject manually noise, ocular, cardiac, muscular artefacts and bad channels.

At this point, we interpolated rejected channel and EEG signal was re-referenced to the com-

mon average reference.

To exclude that differences in the beta band power in the tied hands with respect to free

hands condition is not a consequence of muscular tension during the condition of tied hands,

a control experiment was done. We co-registered EEG-EMG resting-state activity in 4 subjects

(3 males, mean age = 26.75; SD = 3.6; range = 24–32) during a low-level isometric contraction

of the muscles for 4 minutes, recorded along with the EMG. During the tied hands condition,

we asked to participants to contract deltoids, triceps, pectorals and dorsal muscles and to keep

the contraction for 4 minutes as stable as possible.

Specifically, we recorded the contraction through 8 electromyographic channels: right and

left deltoid, right and left pectoral, right and left dorsal, right and left triceps. A 32 electrodes

cap (model BrainCap, BrainAmp MR Plus amplifier, Brain Products) was used. As the aim of

the recording was to check the muscular artefact topography over the scalp, only ocular, car-

diac and movement artefacts was rejected by ICA procedure. We computed the power spec-

trum density only for the beta band. The aim was to confirm a qualitative difference between

the beta power spectrum scalp topography of the difference between tied versus free hands

condition, obtained in the main experiment and the difference between the beta power scalp

topography of the difference between contraction (tied hands condition) versus free hands

condition, obtained in the control experiment. For the control experiment, for each subject we

performed the beta power spectrum scalp topography of the difference between the two

conditions.

EEG cleaning: Criteria of exclusion. In order to rule out the presence of confounding

variables (i.e. muscular artefacts) and to better identify them from neural activity per sé, we

applied high-pass filtering (1 Hz) EEG signals before applying FastICA [24]. It is well known

that such artefacts are typically caused by muscle activity near the head, such as head move-

ments and are characterized by high-frequency activity (> 20 Hz) [25].

It is well known that high-pass filtering EEG signals before applying ICA may improve the

quality of the artefacts separation. In fact, this procedure represents a standard procedure to

remove drifts prior to ICA-based artefact removal and the benefit has been demonstrated in

several studies [26]. This standard procedure allowed us to isolate the EEG signal from the
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EMG and finally to compare the topographies of the EEG signal of the main experiment with

those of the control experiment.

EEG data analysis

Main experiment. We computed the power spectrum density for all electrodes using the

periodogram Welch procedure (Hamming windowing function; window length 4 seconds; no

overlap). The four classical EEG frequency bands were considered (delta: 1–4 Hz, theta: 4–8

Hz, alpha: 8–13 Hz and beta: 13–30 Hz). Delta, theta and alpha bands were used to control

that the difference tied versus free hands condition was specific for the beta band.

Then we extracted the power of delta, theta, alpha and beta bands calculating the mean val-

ues of the power spectrum for all frequency bands and for the two conditions (free and tied)

described above. The mean values were transformed into decibel scale (10 × log10[μV2]) in

order to normalize the data [27].

To establish whether there were significant differences in power for all frequency bands

between two conditions, a non-parametric cluster-based permutation test was performed

using FieldTrip toolbox in MATLAB [28]. To investigate cortical generators of electrophysio-

logical oscillations, we computed signal source analyses on the basis of the results obtained at

the scalp level.

The exact low resolution brain electromagnetic tomography (eLORETA) method in fre-

quency domain was used to compute the cortical three-dimensional distribution of current

density [29]. Computations are made in a realistic head model [30] using the Montreal Neuro-

logical Institute (MNI) Colin27 T2 template obtained from BrainWeb, (http://www.bic.mni.

mcgill.ca/brainweb/).

Starting from estimated cortical distribution of generators of beta electrophysiological oscil-

lations, the analysis of differences between free and tied hands condition showed a specific

modulation whose significant neural source is localized in a specific cortical area.

EEG results

Main experiment. To test our hypothesis, we performed a non-parametric cluster-based

permutation test for the power of all frequency bands between the two conditions (free and

tied).

For each sample, a dependent-sample t-value was computed. All samples were selected for

which this t-value exceeded an a priori threshold (uncorrected p< 0.05) and these were subse-

quently spatially clustered. The sum of the t values within a cluster was used as the cluster-level

statistic. A reference distribution of cluster t-values was obtained by randomization of data

across the two conditions for 5000 times and was used to evaluate the statistic of the actual

data.

The non-parametric cluster-based permutation test revealed a significant difference

between free and tied condition only in the beta band power (ps = 0.02). The analysis revealed

increased beta power in tied hands condition compared to free hands condition and the differ-

ence between these two conditions was most pronounced over left inferior frontal electrodes

(Table 1 and Fig 1).

The non-parametric cluster-based permutation test did not reveal any significant differ-

ences between free and tied condition in the other frequency bands (all ps> 0.05).

As regards signal source localization, the comparison between electrophysiological activity

for beta power between free and tied hands conditions showed that the main signal source was

in the left inferior frontal gyrus (l-IFG) (MNI: x = -35, y = 10, z = 15; t = 7.21) (Fig 2).
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Control experiment. To exclude that differences in the beta band power in the tied hands

with respect to free hands condition is not a consequence of muscular tension during the con-

dition of tied hands, we compared the scalp distributions of average beta power relating to the

difference between tied versus free hands condition, obtained in the main experiment and the

scalp distributions of average beta power relating to the difference between contraction (tied

hands condition) versus free hands condition, obtained in the control experiment. For each

subject, we performed the beta power spectrum scalp topography of the difference between

contraction (tied hands condition) versus free hands condition.

From each scalp topography, the maximum of the muscular artefact was located in the tem-

poral, fronto-polar and parietal regions. In particular, muscular contamination was not pres-

ent over the EEG channels where a significant difference between tied and free hands

condition was found in the main experiment (F3, C3, F7, FC1, C1, FC3, F5, FT7) (Fig 3).

Moreover, a similar topography was not found by visual inspection of beta band topogra-

phies of single subjects before the ICA algorithm application for artefact removal.

Discussion

Our physical body plays a key role in the way in which the brain encodes stimuli from the envi-

ronment; in fact, in everyday life cognitive processes are deeply influenced by the sensory and

Table 1. Fronto-central electrodes in the significant cluster in beta power band (decibel: 10 × log10[μV2]) in the

two experimental conditions (ps = 0.02).

Free Condition Tied Condition

Electrodes Mean SD Mean SD

F3

C3

F7

FC1

C1

FC3

F5

FT7

-14,44

-15,89

-14,50

-15,30

-16,72

-15,58

-14,18

-13,74

3,16

2,94

2,72

3,26

3,07

3,13

2,57

2,86

-13,63

-15,04

-13,60

-14,48

-15,95

-14,68

-13,13

-13,15

4,25

3,96

3,87

3,86

3,75

3,68

3,30

3,28

https://doi.org/10.1371/journal.pone.0218977.t001

Fig 1. Scalp distributions of average beta power (decibel: 10 × log10[μV2]) in the free condition (Panel A) and tied condition (Panel B). Panel C represents the

differences in beta power between the two conditions. Red dots represent electrodes in the significant cluster (ps = 0.02).

https://doi.org/10.1371/journal.pone.0218977.g001
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motor experiences of our body. This theory of cognition, known under the general topic of

Embodied Cognition [1], claims that many aspects of cognition are shaped by body features

[2]. This theoretical framework implies that if knowledge is obtained through bodily experi-

ences, it is constrained not only by the experiences and situations encountered, but also by the

physical features of the individuals [3]. In the present study, resting state EEG activity was

measured from thirty healthy participants in two different body posture conditions. In the free

hands condition, participants were required to keep their hands freely resting on the table; in

the tied hands condition, participants were required to keep hands tied behind their back.

Power spectrum analysis revealed an increased beta power in the tied hands condition com-

pared to the free hands condition. This difference was most pronounced over left frontal

electrodes.

The way in which body posture manipulations modulate sensorimotor perceptual tasks is

well known, as well as the involvement of beta power in the inhibition and disinhibition of

motor mechanisms; however, the impact of the body posture on beta band oscillatory activity

in a resting state condition is still unknown. Our results suggest that an increased beta power

in the tied hands condition, compared to free hands condition, which might also explain the

constrained hands effect commonly observed when participants perform perceptual action-

related tasks.

However, does beta power activity in sensorimotor regions effectively play a role in process-

ing such stimuli? And to which extent is it involved in their processing? Previous studies have

Fig 2. Source localization for beta power spectral data between free hands and tied hands conditions: eLORETA best match. Three-dimensional model

reconstruction.

https://doi.org/10.1371/journal.pone.0218977.g002
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shown that observation of graspable objects, which is known to recruit sensorimotor resources

[30] and to be affected by postural manipulations, is associated with a decrease in beta band

power. Similarly, suppression of oscillatory activity within the mu (8–13 Hz) and beta (13–30

Hz) frequency bands over sensorimotor regions has been associated with action execution, as

well as action observation [31–35]. Moreover, it has been found that also passive observation

of manipulatable objects elicits neural responses similar to the ones elicited during passive

observation of others’ actions [36–39].

Hence, increasing evidence suggests that the power of beta rhythm typically decreases dur-

ing the preparation and the execution of a movement [40]; it increases in the motor cortex

during active immobilization [41], postural maintenance [42], proactive inhibition [43], as

well as when a movement have to be withheld or voluntary suppressed [44], but also before an

expected postural challenge [45]. Moreover, strong pieces of evidence have demonstrated that

beta power enhancement with transcranial alternating cortical stimulation has been shown to

induce motor inhibition [46].

Similar results have been found when rhythmic activity is induced in the motor cortex of

healthy participants using transcranial current stimulation. Specifically, the stimulation in the

beta band frequency range, reflecting an increased beta power, is particularly effective in slow-

ing movements and increasing the threshold of inducing a motor response [47–49].

Moreover, the role played by the beta band in inhibition/disinhibition of neural motor sys-

tem is supported also by studies on clinical populations. Specifically, the functional relevance

of the beta band rhythm in the disinhibition of neuronal populations becomes particularly

clear in Parkinson’s disease (PD), where pathological high beta band activity severely compro-

mises movement initiation and execution [50, 51]. Taken together, these findings support the

idea that the beta band power maintains the functioning of the sensorimotor cortex. Our data

also support the hypothesis that beta band activity may signal the tendency of the sensorimotor

Fig 3. Scalp distributions of average beta power (decibel: 10 × log10[μV2]) of difference between tied versus free condition (Panel A) and 4 scalp distributions of average

beta power (decibel: 10 × log10[μV2]) of difference between contraction (tied hands condition) versus free condition for each subject (Panel B).

https://doi.org/10.1371/journal.pone.0218977.g003
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system to maintain the status quo [52]. An interesting hypothesis is that beta band activity may

allow the more efficient processing of feedback (e.g. proprioceptive signals) which is required

for monitoring the status quo and recalibrating the sensorimotor system [52].

Furthermore, in order to investigate cortical generators of electrophysiological oscillations

of beta frequency band, we performed signal source localization for beta power spectral data.

The comparison between electrophysiological activity in the free hands and tied hands condi-

tion showed that the main signal source was localised in the left inferior frontal gyrus (l-IFG).

The involvement of the l-IFG in processing action related stimuli has been shown by a large

amount of studies. For instance, it has been shown that this cortex is critically involved not

only in planning and executing object-related hand actions [53, 54], but also in processing

both others’ object-related actions and action-related features of objects. Moreover, a large

number of studies have demonstrated that viewing another’s object related action recruits the

left ventral premotor cortex (PMv) as if the viewer were performing that action herself [55–

60]. Finally, this area has been shown to be involved in response inhibition in a Go/NoGo task,

demonstrating how the integrity of this area is critical for successful implementation of inhibi-

tory control over motor responses [61], as well as it is crucially involved in processing visual

features of objects in terms of the actions they might afford [62–65]. In this context, it has been

demonstrated how l-IFG and PMv are significantly activated during gesture planning and tool

use actions [66].

Furthermore, regardless of the origin of the observed effect (muscle tension during the

tying hands), we have shown how the neural outcome, namely the increase in beta power in

the tied hands with respect to free hands condition, cannot be considered as a consequence

of muscular tension during the condition of tied hands. In this regard, we compared the

scalp topography of beta power distribution of the control experiment and the main experi-

ment. To confirm that the data obtained were not caused by muscular tension, we compared

the scalp topography of beta power distribution relating to the difference between contrac-

tion (tied hands condition) versus free hands condition for each subject obtained during

the control experiment and the topography of the average beta power distribution relating

to the difference between tied versus free hands condition obtained during the main

experiment.

To this aim, we conducted an EEG-EMG control experiment. The two conditions were the

same as the main experiment (free and tied hands). Specifically, during the tied hands condi-

tion we asked participants to contract deltoids, triceps, pectorals and dorsal muscles and to

keep the contraction as stable as possible. EEG activity in a resting state condition and EMG

muscle activity in a resting state condition were measured from four participants. Results

showed that muscular contamination was not present over the EEG channels where a signifi-

cant difference between tied and free hands condition was found in the main experiment. To

sum up, we have shown the effect of tying the hands on intrinsic brain activity and how this

manipulation can change the activity in the beta frequency band in a resting state condition.

Our result might contribute to explain the constrained hand effect commonly observed when

participants perform perceptual action-related tasks.

Limitations and future perspectives

In the control experiment, a main limitation could be represented by the small-size of sample

which could make the results inaccurate because the data collected is not enough: in fact, we

recruited only 4 participants for EMG-EEG study. Indeed, it would be appropriate to increase

the sample size of the EMG-EEG study to make the two samples of the main experiment and

of the control experiment comparable.
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