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ABSTRACT
Aims/Introduction: We recently reported the beneficial effect of the combination of
sodium–glucose cotransporter 2 inhibitor and dipeptidyl peptidase-4 inhibitor on daily gly-
cemic variability in patients with type 2 diabetes mellitus. Additional favorable effects of
combination therapy were explored in this secondary analysis.
Materials and Methods: The CALMER study was a multicenter, open-label, prospec-
tive, randomized, parallel-group comparison trial for type 2 diabetes mellitus involving
continuous glucose monitoring under meal tolerance tests. Patients were randomly
assigned to switch from teneligliptin to canagliflozin (SWITCH group) or to add canagliflo-
zin to teneligliptin (COMB group). The continuous glucose monitoring metrics, including
time in target range, were investigated.
Results: All 99 participants (mean age 62.3 years; mean glycated hemoglobin 7.4%)
completed the trial. The time in target range was increased in the COMB group (71.2–
82.7%, P < 0.001). The extent of the reduction in time above target range was significantly
larger in the COMB group compared with the SWITCH group (-14.8% vs -7.5%, P < 0.01).
Area under the curve values for glucose at 120 min after all meal tolerance tests were sig-
nificantly decreased in the COMB group compared with the SWITCH group (P < 0.05).
Conclusions: Sodium–glucose cotransporter 2 inhibitor combined with dipeptidyl pep-
tidase-4 inhibitor improved the quality of glycemic variability and reduced postprandial
hyperglycemia compared with each monotherapy.

INTRODUCTION
A goal for treatment of patients with type 2 diabetes mellitus is
to prevent the development of diabetic complications by bring-
ing their blood glucose level as close to normal as possible.
Although glycated hemoglobin (HbA1c) has been recognized as
a marker of diabetic complications for many years, it does not

exactly reflect daily glycemic variability, postprandial hyper-
glycemia and hypoglycemia1,2. Previous studies showed that
minimization of glucose variability reduced the frequency of
cardiovascular events and dementia3,4. Postprandial hyper-
glycemia is also a well-known risk factor of the onset and pro-
gress of microvascular and macrovascular complications5.
Continuous glucose monitoring (CGM) systems have been
investigated, and are currently the most suitable devices forReceived 25 August 2020; revised 19 December 2020; accepted 1 January 2021
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evaluating daily glycemic variability, postprandial hyperglycemia
and asymptomatic hypoglycemia in clinical practice6.
The addition of a DPP-4 inhibitor (DPP-4i) or a sodium–

glucose cotransporter 2 inhibitor (SGLT2i) to type 2 diabetes
mellitus treatments was reported to show benefits in improving
daily glycemic variability7,8. We recently reported, in the CAL-
MER study, that DPP-4i–SGLT2i combination therapy had
synergetic effects on reducing the mean amplitude of glycemic
excursions, as the primary outcome, without increasing hypo-
glycemia9. Today, the concept of time ranges (TRs) has been
well recognized in glycemic control10. Several previous studies
showed time in target range (TIR) had a strong correlation
with diabetic complications11.
In the present study, we carried out secondary analyses of

the CALMER study to investigate the merits of combination
therapy with DPP-4i and SGLT2i by evaluating various CGM
metrics other than mean amplitude of glycemic excursions,
with a particular focus on TIR and postprandial hyperglycemia.

MATERIAL AND METHODS
Study overview
The present study comprised secondary analyses of the CAL-
MER study, a multicenter (10 sites), open-label, prospective,
randomized, parallel-group comparison trial using CGM and
meal tolerance tests (MTTs) involving four consecutive meals
(dinner, breakfast, lunch and dinner). All patients provided
written informed consent before enrollment. The rationale and
protocol of the CALMER study were described elsewhere9, and
the full list of inclusion and exclusion criteria is provided in
Data S1. Briefly, eligible participants included patients with
type 2 diabetes mellitus, aged 20–80 years, HbA1c of 6.5–9.0%,
body mass index (BMI) of ≥23 kg/m2, estimated glomerular fil-
tration rate of ≥45 mL/min/1.73 m2 and treatment with teneli-
gliptin 20 mg/day for >12 weeks. All participants who met the
criteria for enrollment were randomly assigned (1:1) to switch
from teneligliptin 20 mg/day to canagliflozin 100 mg/day
(SWITCH group) or to add canagliflozin 100 mg/day to teneli-
gliptin 20 mg/day (COMB group), followed by 14 days of
CGM. Allocation factors included age, BMI, HbA1c and esti-
mated glomerular filtration rate. After performance of the first
MTT while the patients were taking teneligliptin, the allocated
medication was started in each group. After 7 days, the second
identical MTT was carried out. For MTTs, we prepared the fro-
zen food dish and several sides of packed rice (100, 130 and
200 g/meal) according to BMI. The total calorie intake was set
to 30–35 kcal/the participant’s ideal bodyweight (height
[m]2 9 22 kg)/day, and its carbohydrate ratio was approxi-
mately 50–65%. Participants were asked to maintain their life-
style as similar as possible between the first and second MTTs.
The CALMER study was registered with the University Hospi-
tal Medical Information Network (UMIN) Center Clinical Tri-
als Registry (UMIN000029628), and protocol was approved by
the institutional review board at Hokkaido University Hospital
Clinical Research and Medical Innovation Center (017-0037),

and it was carried out in accordance with the Declaration of
Helsinki and its amendments.
In this analysis, we did not include the first dinner in the

analyses, and thus used 24-h data including three consecutive
meals (breakfast, lunch and dinner). The outcomes for the sec-
ondary efficacy end-points were designed before starting the
original study. The changes in percentages of time per day in
target glucose range (70–180 mg/dL; TIR), time per day below
target range (<70 mg/dL; TBR), time per day above target
range (≥180 mg/dL; TAR) and mean blood glucose (MBG)
were investigated as core CGM metrics. The differences
between pre-prandial and 120 min post-prandial glucose levels
(D0–120) and the area under the curve values during 0–
120 min (AUC 0–120) were analyzed for each meal during the
MMTs.

Statistical analysis
Differences in the baseline characteristics between the two
groups were evaluated by ANCOVA for continuous variables, and
by a v2-test or Fisher’s exact test for categorical variables. Cor-
relations were evaluated by Spearman’s rank-order correlation
analysis. Logistic regression models were applied to identify fac-
tors independently associated with the rise of TIR in the
COMB group, and a receiver operating characteristic curve
analysis was used to define the cut-off values. Multiple regres-
sion analysis was used to determine predictors for the change
in AUC (DAUC). The results within each group were com-
pared by a paired-sample t-test or the Wilcoxon signed-rank
test. Data were analyzed using JMP Pro v14.1.1 software (SAS
Institute, Cary, NC, USA), and values of P < 0.05 were consid-
ered statistically significant.

RESULTS
A total of 99 patients were randomly assigned either to the
SWITCH group (n = 48) or to the COMB group (n = 51),
and all participants completed the study. The baseline charac-
teristics of the study participants have already been reported9.
Briefly, 61.6% of patients were men, the mean age was
62.3 years, mean BMI was 26.3 kg/m2, mean HbA1c was 7.4%
(57.0 mmol/mol) and 49 patients used sulfonylurea or insulin.
As shown in Table 1, MBG and TAR were significantly

decreased in both groups, and the extents of the reductions
were significantly larger in the COMB group compared with
the SWITCH group (MBG: COMB, -22.3 mg/dL [143.9 – 28.7
to 121.6 – 26.1 mg/dL] vs SWITCH, -10.6 mg/dL
[148.1 – 27.0 to 137.5 – 23.0 mg/dL], P < 0.01; TAR: COMB,
-14.8% (26.5–11.6%) vs SWITCH, -7.5% (26.8–19.3%),
P < 0.01). Meanwhile, TIR and TBR were significantly
increased in both groups, but the extents of the increases did
not differ significantly between the two groups (TIR: COMB,
+11.5% [71.2–82.7%] vs SWITCH, +5.8% [72.5–78.3%],
P = 0.09; TBR: COMB, +3.3% [2.4–5.7%] vs SWITCH, +1.7%
[0.8–2.5%], P = 0.13). TRs <54 mg/dL (%) were rare and com-
parable between the groups (COMB 0.1–0.4% vs SWITCH 0.0–
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0.0%, P = 0.21). The use of insulin/sulphonylurea/glinide in the
COMB group did not affect the difference in TBR (using
[n = 17] 6.4%; not using [n = 34] 5.0%, n = 0.66). Among the
baseline parameters in the COMB group, baseline MBG was an
independent predictor for the increase in TIR based on multi-
variate logistic regression analysis (odds ratio 1.10, 95% confi-
dence interval 1.05–1.17, P < 0.01; Table 2). Using a receiver
operating characteristic analysis, the MBG cut-off value for the
increase in TIR was 145.4 mg/dL (AUC 0.93, sensitivity 73.5%,
specificity 100.0%), implying that when the baseline MBG value
was higher than this, the combination of a DPP-4 inhibitor
and an SGLT2 inhibitor increased TIR.
When the postprandial hyperglycemia at individual meals

was considered separately (Figure 1), the AUC 0–120 values for
all meals were significantly decreased in the second MTT com-
pared with the first MTT in the COMB group (breakfast
401.1 – 100.4 to 326.4 – 82.6 mg/dL h, P < 0.001; lunch
325.3 – 92.6 to 278.0 – 65.3 mg/dL h, P < 0.001; dinner
329.4 – 91.4 to 285.8 – 90.9 mg/dL h, P < 0.001), whereas the
AUC 0–120 value at breakfast only was decreased in the
SWITCH group (384.5 – 91.2 to 344.1 – 91.4 mg/dL h,
P < 0.01). The decrease in the COMB group was greatly

superior to that in the SWITCH group (P < 0.05; Table 3, Fig-
ure 2). When postprandial hyperglycemia was analyzed using
the D0–120 values, similar tendencies to the AUC 0–120 values
were seen in both groups, although the improvement in D0–
120 values did not reach statistical significance for lunch in the
COMB group (Table 4).

DISCUSSION
The present analyses showed beneficial effects of the combina-
tion of teneligliptin and canagliflozin on two distinctive fea-
tures: TRs and postprandial glycemic excursions. TRs are
currently used for assessment of glycemic control in patients
with diabetes, with TIR >70% and TAR <25% recommended
as an international consensus in 201910,11. In the present study,
the combination therapy increased the mean TIR to 82.7%
(+11.5%) and the achievement rate of TIR >70% was increased
from 58.0 to 79.2% by adding canagliflozin to teneligliptin.
Increases in TIR contribute to a decline in diabetic complica-
tions, at least for some classical microvascular complications
and atherosclerosis12–15, because TIR is determined by not only
the average glycemic control, but also the extent and magnitude
of hyperglycemia16. Furthermore, 10% improvement in TIR

Table 1 | Comparisons of mean blood glucose and time range in the switched from teneligliptin to canagliflozin and added canagliflozin to
teneligliptin groups

SWITCH (n = 48) COMB (n = 51) P

First MTT Second MTT First MTT Second MTT

MBG (mg/dL) 148.1 – 27.0 137.5 – 23.0 143.9 – 28.7 121.6 – 26.1** <0.01
TAR (%) 26.8 19.3*** 26.5 11.6*** <0.01
TIR (%) 72.5 78.3** 71.2 82.7*** 0.09
TIR >70% achievement (%) 62.5 77.1* 58.0 79.2*** 0.20
TBR (%) 0.8 2.5* 2.4 5.7* 0.13

Values are presented as the mean – standard deviation. The P-values were calculated for the mean changes from first meal tolerance test (MTT;
baseline) to second MTT (after allocation) between the switched from teneligliptin to canagliflozin (SWITCH) group and the added canagliflozin to
teneligliptin (COMB) group (ANCOVA, v2-test or Fisher’s exact test). *P < 0.05, **P < 0.01, ***P < 0.001 between first MTT and second MTT (paired-
sample t-test, v2-test or Fisher’s exact test). MBG, mean blood glucose; TAR, time above target range; TBR time below target range; TIR, time in tar-
get range; TR, time range.

Table 2 | Logistic regression analysis for baseline parameters to identify independent factors associated with time in target range of increase in the
added canagliflozin to teneligliptin group

Simple logistic regression P Multiple logistic regression P

Age 0.98 (0.94–1.03) 0.48 1.03 (0.95–1.11) 0.43
BMI 1.07 (0.92–1.25) 0.39 1.14 (0.88–1.48) 0.32
FPG 1.03 (1.01–1.05) <0.01 1.02 (0.99–1.05) 0.29
MBG 1.08 (1.05–1.12) <0.01 1.10 (1.05–1.17) <0.01
MAGE 1.02 (1.00–1.03) 0.01 1.00 (0.98–1.03) 0.66
HbA1c 3.81 (1.39–10.42) 0.02 1.23 (0.24–6.24) 0.80
CPR 1.68 (0.95–2.96) 0.06 2.13 (0.81–5.64) 0.13
eGFR 1.01 (0.98–1.05) 0.36 1.06 (0.99–1.12) 0.16

Values are presented as odds ratio (95% confidence interval). BMI, body mass index; CPR, C-peptide; FPG, fasting plasma glucose; HbA1c, glycated
hemoglobin; MAGE, mean amplitude of glycemic excursions; MBG, mean blood glucose.
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was identified as a useful indicator for preventing diabetic com-
plications15,17. TIR was increased by >10% in the COMB group,
meaning that the combination therapy could be one of the
promising therapies for comprehensive control of diabetic com-
plications. We showed in a logistic regression analysis that
MBG was a key characteristic predicting the improvement of
TIR in the combination therapy (Table 2). It indicates that
adding SGLT2i to DPP-4i in type 2 diabetes mellitus patients

with a higher level of baseline MBG might lead to greater
effects on increasing TIR. The combination therapy could be a
crucial strategy for patients with type 2 diabetes mellitus who
are at high risk of diabetic complications.
For strict glycemic control, appropriate reduction of insulin

or sulfonylurea should be always considered18. The combination
therapy slightly, but significantly, increased TBR (2.4–5.7%) in
the COMB group, although the group difference was not signif-
icant and the TRs <54 mg/dL were not increased. Because gly-
cemic variability is a significant and independent determinant
of hypoglycemia in patients with type 2 diabetes mellitus on
insulin therapy19, once the dose of insulin or sulfonylurea has
been adjusted appropriately, TBR should be rather decreased by
the combination therapy through an improvement in glycemic
variability9. Previous studies showed that CGM values were
lower than self-monitoring blood glucose values in the low glu-
cose range20, and that capillary and venous glucose concentra-
tions can differ under dynamic conditions21. Therefore, CGM
data might not be highly accurate and the possibility of such
inaccuracies should be considered, especially in the low glucose
region.
The combination therapy showed marked improvement of

postprandial hyperglycemia in the present study. Previous stud-
ies showed that postprandial hyperglycemia was associated with
an increased risk of death22,23, and was an independent factor
for arteriosclerosis and cardiovascular events24. Postprandial
hyperglycemia induced oxidative stress25, decreased vasodilator
response26 and damaged endothelial cells27. We previously

BG (mg/dL)

200.0

100.0

0.0
0 60 120 0 60 120 0 60 120

Time (min)
Breakfast Lunch Dinner

SWITCH (1st MTT)

SWITCH (2nd MTT)

COMB (2nd MTT)

COMB (1st MTT)

Figure 1 | Blood glucose concentrations during meal tolerance tests (MTTs). Dashed lines indicate the data at the first MTT while taking
teneligliptin. Solid lines indicate the data at the second MTT. Grey lines indicate the group that switched from teneligliptin to canagliflozin
(SWITCH). Black lines indicate the group that added canagliflozin to teneligliptin (COMB). BG, blood glucose.

Table 3 | Comparisons of the area under the curve values for glucose
at 120 min after meal tolerance tests between the groups

First MTT Second MTT P

Breakfast
SWITCH (mg/dL h) 384.5 – 91.2 344.1 – 91.4** <0.05
COMB (mg/dL h) 401.1 – 100.4 326.4 – 82.6***

Lunch
SWITCH (mg/dL h) 334.6 – 97.9 320.5 – 72.5 <0.05
COMB (mg/dL h) 325.3 – 92.6 278.0 – 65.3***

Dinner
SWITCH (mg/dL h) 337.4 – 99.1 331.1 – 75.9 <0.05
COMB (mg/dL h) 329.4 – 91.4 285.8 – 90.9***

Values are presented as the mean – standard deviation. The P-values
were calculated for the differences in area under the curve values
between the switched from teneligliptin to canagliflozin (SWITCH)
group and the added canagliflozin to teneligliptin (COMB) group (ANCO-
VA). **P < 0.01, ***P < 0.001 during first meal tolerance test (MTT) and
second MTT (paired-sample t-test).
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described several possible mechanisms for the synergistic effects
of the combination therapy on reducing glycemic variability9,
including complementary effects on pancreatic a- and b-cell
functions28,29, and decreasing soluble DPP-430. These mecha-
nisms would be likewise included in the decrease of postpran-
dial blood glucose elevation by the combination therapy.
The improvement in lowering post-prandial hyperglycemia

was especially highlighted at breakfast. The glucose-lowering
effect of incretin is diminished in the hyperglycemic state and
can be improved by lowering the plasma glucose level31.
SGLT2i effectively decreases the fasting plasma glucose level,
thereby restoring the DPP-4i effect, especially after breakfast in
the combination therapy. However, the post-prandial hyper-
glycemia (AUC 0–120) at breakfast was also significantly low-
ered in the SWITCH group. Therefore, other additional
mechanisms might be involved in its improvement. Canagliflo-
zin has a different characteristic from other SGLT2i. It inhibits
SGLT2 in the kidney, as the other SGLT2is do, but also par-
tially inhibits SGLT1 in the intestinal tract and pancreatic a-
cells32,33. The combination therapy of canagliflozin and DPP-4i
increased plasma GLP-1 levels and improved glucose excursions
in diabetic fatty rats32. In a randomized controlled trial, canagli-
flozin provided smaller postprandial plasma glucose excursions
than dapagliflozin34. Furthermore, in likely support for the
hypothesis of partial SGLT1 inhibition in the intestinal tract
with canagliflozin, no significant differences were found for the
success of glycemic control in the Diversity-CVR study, which
compared dapagliflozin with DPP-4i35.
Furthermore, in this analysis, pre-prandial hyperglycemia

was improved, as well as post-prandial hyperglycemia, in the

COMB group. It is well known that alpha-glucosidase inhibi-
tors36 and glinide37 acting directly on postprandial hyper-
glycemia also improved pre-prandial hyperglycemia. DPP-4
inhibitors that improved postprandial hyperglycemia on glyce-
mic responsiveness also improve the next pre-prandial glucose
level38. It is important to ensure control of postprandial
hyperglycemia and not carry it over to the next pre-prandial.
The strong interaction of the combination therapy in the
COMB group had a positive effect on both pre-prandial glu-
cose levels and postprandial glucose, and improved glycemic
variability.
There were several limitations to the present study. First, the

trial had an open-label design, which might have contributed
to bias. Second, the study duration for the analysis was short.
Because fat mass reduction would be sustained for more than a
few months after starting SGLT2i39, the results for CGM met-
rics might be clearer after long-term use of SGLT2i. However,
SGLT2i can rapidly relieve glucose toxicity, and its glycemic
effects should be seen relatively earlier than those of other oral
hypoglycemic agents40. Furthermore, previous studies showed
that CGM during the most recent 14 days was strongly corre-
lated with long-term mean glucose, time in TRs and hyper-
glycemia metrics41,42. Therefore, we decided on a shorter
observation period to reduce the influence of various other
external factors on blood glucose fluctuations, and maintain
higher quality of the data in a randomized control style using
MTTs.
In conclusion, SGLT2i combined with DPP-4i improved the

quality of glycemic variability and reduced post-prandial hyper-
glycemia compared with each monotherapy.

0
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–50
-34.2
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Figure 2 | Changes in the area under the curve values for glucose at 120 min after meal tolerance tests. Data are shown as the mean – standard
deviation. White bars indicate the group that switched from teneligliptin to canagliflozin (SWITCH). Black bars indicate the group that added
canagliflozin to teneligliptin (COMB). *P < 0.05, significant difference between the two groups.
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