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Abstract: This study evaluated the food safety and proximate composition of shrimp head (SH).
Potentially toxic elements in SH were below European Union legislation limits. SH had a high content
of tasting amino acids (sweet and umami amino acids was 57%) and a high content of functional
amino acids (essential amino acids was 37%). Moreover, the changes of flavor and key umami
molecules in SH were studied by sensory evaluation, electronic tongue, electronic nose, automated
amino acid analyzer, and high performance liquid chromatography (HPLC). The results showed
that the significant difference of flavor in SH happened during autolysis. SH with autolysis had
the best umami taste at 6 h, which may result from the synergistic work of free amino acids and
nucleotide related compounds. Additionally, the performance of endogenous proteases in SH was
investigated to efficiently analyze autolysis. The optimum pH and temperature of endogenous
proteases in SH were 7.5 and 50 ◦C, respectively. The autolysis of SH depends on two endogenous
proteases (~50 kDa and ~75 kDa). These results suggest that the formation of flavor in SH during
autolysis can be controlled, which could provide guidance for SH recycle. SH could consider as one
of the food materials for producing condiments.

Keywords: shrimp head; autolysis; taste; umami; endogenous proteases

1. Introduction

Shrimp and shrimp products are widely popular all over the world and their demand
is increasing yearly owing to the nutritional characteristics and meat taste. In China, it is
estimated that shrimp industries produced over 1,000,000 t of shrimp in 2011 [1]. Generally,
shrimp head (SH) is removed in shrimp processing industries, and it accounts for about
35–45% of total shrimp weight [2,3]. It results in more than 300,000 t of SH annually [4].
With the ease of spoilage, SH wastes have been a severe environmental disaster, including
waste collection, disposal, and pollution problems. Therefore, there is a need to make use
of such wastes in the most efficient manner.

Economical and efficient use of SH would minimize the pollution problem while
maximizing the profitability of the processor. SH is a rich source of protein and nutritive
components (minerals, carotenoid, etc.) [5,6]. Moreover, some studies reported that the
amino acid (AAs) compositions of SH (Penaeus vannamei) contribute to a good taste and
nutritional value [2,3]. Thus, hydrolysates derived from SH could be used as raw materials
in food supplements or flavor enhancers.

There are many endogenous proteases, such as trypsin and chymotrypsin, in the
viscera of SH, which lead to degrading tissue proteins by autolysis [2,7,8]. Autolysis is an
efficient method to obtain hydrolysates from SH without expensive exogenous enzymes.
Meanwhile, the relationship between the formation of flavor and autolysis is a key factor
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for SH recycle in food products. However, there is little information about the autolysis of
SH, especially the influence on flavor. Electronic tongue (E-tongue) and electronic nose
(E-nose) are an array of sensors to simulate the tongue and nose of humans, which are
efficient analytical tools in food flavor [9]. Therefore, in order to make full use of SH and
autolysis, the change regularity of flavor in SH during autolysis was studied by E-tongue
and E-nose in this study. Additionally, the free amino acids (FAAs) and nucleotide-related
compounds in SH were analyzed during autolysis by an automated amino acid analyzer
and HPLC. Moreover, total volatile basic nitrogen (TVB-N) is one of the biomarkers of
protein and amine degradation [10], which is measured in seafood to reveal microbiological
spoilage [11]. We determined the level of TVB-N in SH to ensure its food safety. On the
other hand, the reaction times and efficiency of autolysis are affected by the kinds of
endogenous proteases and autolysis conditions that included temperature, pH, etc. The
performance of endogenous proteases was further investigated in the present study. The
aim of this study was to research an effective and low-cost autolysis method for SH recycle,
which can provide guidance in the shrimp industry through reasonably control autolysis.

2. Materials and Methods
2.1. Materials and Chemicals

SH was obtained by Guangxi Zhengwu Marine Industry Co., Ltd. (Beihai, China).
Fresh SH was stored on ice with clean sanitized containers after obtaining them from the
whole shrimp, which was transported to the laboratory and processed immediately.

The standards of the nucleotide flavor compound were purchased from Shanghai
Ocean Biotechnology Co., Ltd. (Shanghai, China), which were used to make a standard
curve for the determination of nucleotide flavor compounds in SH. Methanol was of HPLC
grade. Other chemicals were only used for analytical grade reagents.

2.2. Determination of Pb, Cd, Hg, As, and Proximate Composition

Toxic elements (Pb, As, Hg, and Cd) in SH were determined by ICP–AES. The method
was described in detail by Albuquerque et al. [12]. The SH was dried at 105 ◦C for 24 h to
determine moisture content, the protein was determined by the Kjeldahl method, and the
SH was incinerated at 550 ◦C for the determination of ash.

2.3. Autolysis of SH

The autolysis of SH was conducted by the method of Cao et al. [2], with some modifi-
cations. The fresh SH was ground by a stirrer (JYL-C022E, Joyoung Co., Ltd., Shandong,
China). After that, the SH were placed into a sterilized beaker and put into a water bath at
25 ◦C to autolysis (simulated ambient temperature). The reaction was terminated after the
reaction up to 10 h.

2.4. Determination of TVB-N

The determination of TVB-N was according to in accordance with the Chinese Stan-
dard GB 5009.228-2016 [13]. The analysis includes a perchloric acid extraction, followed
by alkalization and steam distillation by Kjeldahl Instrument (SKD.600, Peiou Analysis
Instrument Co., Ltd., Shanghai, China). The boric acid solution was used to absorb the
total volatile bases. After that, the TVB-N value was titrated with a hydrochloric solution.

2.5. Determination of AAs

The composition of AAs was measured through a fully automated amino acid analyzer
(L-8900, Hitachi, Japan) by the method described by Cao et al. [2]. Briefly, samples (2 g)
were added into 6 mol/L HCl (10 mL). The mixture was sealed and degraded at 110 ◦C
for 22 h. After that, the hydrolysate was filtered by a filter paper, and then the solution
was mixed with ultrapure water to a final volume of 50 mL. A total of 1 mL of the sample
solution was added to a 10 mL volumetric flask in a water bath at 60 ◦C to remove HCl,
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and then the solution was mixed with ultrapure water to 10 mL. The sample was filtered
via a 0.22 µm filter before determination.

FAAs were analyzed by the method of Dabadé et al. [14]. Sample (5 g) and 15 mL
water were added to the beaker and stored at 4 ◦C for 15 min. Then, 10% trichloroacetic
acid (TCA, 15 mL) was added to scale to precipitate the peptide or protein, followed by
incubation at 4 ◦C for 15 min, and then centrifuged at 10,000 r/min for 10 min (5418R,
Eppendorf, Germany). The supernatant was diluted to 250 mL in a volumetric flask with
10% TCA. The sample was filtered via a 0.22 nm filter and stored at 4 ◦C before assay.

2.6. Determination of Nucleotide-Related Compounds

The determination of nucleotide-related compounds was modestly modified according
to the methods reported by Zhang et al. [15]. The homogenized SH and ultrapure water
were added into a beaker 1:3 (g:mL) and then stored at 4 ◦C for 30 min with a magnetic
stirrer. The mixture was centrifuged at 6000 r/min (4 ◦C, 10 min) to obtain a supernatant.
After that, the supernatant (5 mL) and 8% perchloric acid (15 mL) were added into a
beaker and stored at refrigerator (4 ◦C,10 min), then centrifuged at 6000 r/min (4 ◦C,
10 min). The supernatant was collected. The precipitate was repeated again and pooled the
supernatants. Afterward, the pH of supernatants was adjusted to 6.5 by KOH with different
concentrations. The neutralized supernatant was diluted to 100 mL with neutralized
perchloric acid (pH 6.5). The sample was filtered via a 0.22 nm filter. The resulting solution
was analyzed by HPLC (Waters e2695, Milford, MA, USA) and UV/Visible Detector (Waters
2489, Milford, MA, USA).

The column was an Agilent C18 column (4.6 mm × 250 mm, 5 µm). The Column
temperature was 25 ◦C, and the injection volume was 10 µL. Additionally, mobile phase: A,
KH2PO4 / K2HPO4 buffer (pH 6.5); B, methanol. All solvents were filtered and degassed
before use. Detection at 254 nm. Speed: 0.7 mL/min. Gradient of elution: 0–6 min, 98% A
and 2% B; 6–10 min, B increased to 5%, A reduced to 95%; 10–14 min, B increased to 15%,
A reduced to 85%; 14–18 min, B reduced by 10%, A increase to 90%; 18–25 min, B reduction
of 5%, B increased to 95%. The column was equilibrated for 5 min before the next sample.

2.7. Sensory Evaluation

The sensory evaluation was the method of Yu et al. [16] and the Chinese Standard
(GB/T 12312 and GB/T 12315) [17,18]. All panelists (eight members, half males and half fe-
males) were screened by Chinese Standard GB/T 12312 (Sensory analysis—Methodology—
Method of investigating the sensitivity of taste, MOD) [17]. These people could recognize
the umami solution and had received training in descriptive sensory analysis. The homog-
enized SH and pure water were mixed at the final substrate concentration to 1:3 (g:mL)
and stored at 4 ◦C for 20 min with a magnetic stirrer. The mixture was centrifuged at
8000 r/min for 10 min and obtain the supernatant. The soluble solids content of the super-
natant was adjusted 1% (Sugar Refrectometer, WZS, Jingke, China) with pure water for
sensory analysis. Sensory evaluation was a ranking test according to the Chinese Standard
GB/T 12315 (Sensory analysis—Methodology—Ranking) [18]. Every sample was randomly
numbered before the experiment to hide its information. Every panelist ranked the samples
according to the intensity of umami taste (from 1 to 6, no same rank). The experiment was
carried out in an air-conditioned room (25 ± 2 ◦C), and panelists were separated in each
booth. The results were analyzed by the Friedman test [18].

F test =
12

j.p (p + 1)
(R2

1 + . . . + R2
x + R2

y)− 3j(p + 1) (1)

Least Significant Difference (LSD) = z

√
j.p(p + 1)

6
(2)

where F test > F means the significant difference among all samples; Rx – Ry > LSD means
the significant difference between the sample of x and the sample of y. j = the number of
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panelists; p = the number of samples; R1 = the rank sum of the sample, which was ranked
first in all samples, etc. to Rx, Ry; the value of z and F were 1.96 and 10.68, respectively,
when j = 6 and p = 8, which were obtained from the table of Friedman test according to the
Chinese Standard GB/T 12315.

2.8. E-tongue Analysis

E-tongue analysis was performed by TS-5000Z (Insent, Kanagawa, Japan). Sample
preparation was consistent with sensory evaluation. The experiment was determined by
the method of Zhu et al. [19]. A 50 mL sample was put into a cup. The measure progress
was “maintenance measurement.” Four replicates were completed for each group and then
retained three stable sets of data. The detailed information of five chemical sensors in
E-tongue is in Table S1.

2.9. E-nose analysis

The experiment was according to the method from Zhu et al. [19] (PEN3, Germany).
Briefly, a 15.00 g homogenized sample was placed into a 150 mL sterilized beaker and
sealed the top. Then, the sample was equilibrated (10 min, 25 ◦C) to minimize sensor drift
due to environmental changes [19]. The flush time, presampling time, and measurement
time were 60 s, 5 s, and 70 s, respectively. Every sample was determined three times. Four
replicates were completed for each group and then retained three stable sets of data. the
statistically significant difference (p < 0.05) in the mean of each sensor was obtained by the
least significant difference (LSD) test [19,20]. The detailed information of the 10 chemical
sensors in E-nose is in Table S2.

2.10. Determination of pH Value

The pH of homogenized SH was determined based on the method from Shi et al. [21].

2.11. Determination of Endogenous Enzyme Activity

The determination of endogenous enzyme ratio activity was determined by the
method from Hang et al. [22]. Briefly, 4 mL of Tris-HCl buffer (pH 7, 0.05mol/L) and
1.6mL of 1% casein solution were placed into two test tubes, numbered I and II, respectively.
Then, 2.4 mL of 10% TCA was added in I (as control, to inhibit the action of enzymes),
and the two test tubes were put into a water bath (35 ◦C) for 5 min. After that, a 0.8
mL sample was added into I and II and incubated at 35 ◦C for 15 min. Next, 10% TCA
(2.4 mL) was added in II. Finally, the resulting solution was centrifuged at 10,000 r/min
for 15 min to obtain the supernatant, of which the absorbance was measured by UV-6100
spectrophotometer (Shanghai Meipuda Instrument Co., Ltd. Shanghai, China) at 275 nm.
One unit (U/mL) of enzyme activity was defined as the amount of enzyme capable of
hydrolyzing casein to produce a 0.001-unit change in absorbance per minute [23].

a (U/mL) =
∆OD

15min × 0.001 × 0.8 mL
(3)

Different pH for extraction of SH crude extract (CE) was determined in our preliminary
research (Figure S1). the optimal pH to obtain CE was 7.5. The homogenized SH and Tris-
HCl buffer was added into a beaker (1:4 (g:mL)) and stored at 4 ◦C with a magnetic stirrer
(5 min). The solution was centrifuged at 8000 r/min for 10 min to obtain a supernatant for
future experiments.

2.12. Separation of Enzyme

The CE was precipitated with saturated ammonium sulfate solution (30%) at 4 ◦C
for 1 h. The supernatant was obtained from the mixture by centrifuged at 10,000 r/min
(4 ◦C, 15 min). Afterward, the supernatant was precipitated with saturated ammonium
sulfate solution (60%) at 4 ◦C for 1 h. The precipitate was obtained by centrifuged at
10,000 r/min (4 ◦C, 15 min). The precipitate was redissolved with three times volume
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of Tris-HCl buffer, which was crude endogenous proteases (CEP). The CEP was further
separated by DEAE-Sepharose FF column chromatography. The column temperature was
25 ◦C, and injection volume was 5 mL. The detection wavelength was 280 nm. Collection:
10 min/tube. Speed: 1 mL/min. Gradient of elution by NaCl with different concentration
(first, 80 mL, 0.25 mol/L; then, 80 mL, 0.50 mol/L; final, 80 mL, 1 mol/L).

Enzyme ratio activity (U/mg protein) =
Enzyme activity of sample
Protein content of sample

(4)

Recovery rate of enzyme activity (%) =
Total enzyme activity of sample

Total enzyme activity of CE
× 100 (5)

Purification factor =
Enzyme ratio activity of sample

Enzyme ratio activity of CE
(6)

2.13. SDS–PAGE

The SDS–PAGE was based on the method described by Beloborodov et al. [24]. A total
of 20 µL sample and 80 µL 5 × SDS–PAGE loading buffer were mixed in a tube and then
put into boiling water bath for 10 min. The separation gel was 12% polyacrylamide gel.

2.14. Statistical Analysis

The experimental data were analyzed by SPSS 19.0 (SPSS Corporation, Chicago, IL,
USA) with a one-way analysis of variance (ANOVA) and the Duncan procedure between
means. Ranking data of the sensory evaluation were analyzed using the Friedman test.

3. Results
3.1. Food Safety and Proximate Composition of SH

Table 1 shows that that the concentrations of Pb, Cd, and Hg were below the max-
imum level of seafood, which was set by the European Commission legislation (ECR)
No 1881/2006 and amendments [25]. The concentration of As was not detected. These
data indicated that the SH complied with the standard of food safety. Table 2 shows
that the moisture content, ash, and protein were 77.47% ± 0.05%, 4.47% ± 0.01%, and
10.32% ± 0.09%, respectively, in SH, which suggested that SH is one of the rich sources
for proteins. Additionally, the inedible range of TVB-N for raw shrimps is >30 mg/100 g
in the standard of China [26]. As Figure 1 shows, the accepted range of TVB-N for SH is
autolysis within 10 h (26.37 mg/100 g). Thus, we studied the change regularity of flavor in
SH within 10 h.

Table 1. The concentrations of Pb, As, Cd, and Hg in SH (dry basis, mg/kg).

Toxic Elements Limit of ECR Concentrations in SH

Pb ≤0.5 0.03
As Not established Not detected
Cd ≤0.5 0.26
Hg ≤0.5 0.01

Table 2. The concentrations of proximate composition in SH (wet basis, %).

Moisture Content Crude Ash Protein

77.47 ± 0.05 4.47 ± 0.01 10.32 ± 0.09
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The composition of AAs is a key role in SH when it is used as a raw material for
condiments. As shown in Table 3, the SH almost meets the FAO/WHO (1973) requirements
that essential amino acids (EAAs) and the value of the ratio in EAAs to nonessential amino
acids (NEAAs) are 40% and 0.6 in foods, respectively [27,28]. The EAAs and EAAs/NEAAs
were 37% and 0.57 in SH, respectively. Furthermore, there is an abundance of total sweet
and umami amino acids (SUAAs, 57%) in SH. Therefore, SH is one of the good materials to
produce condiments.

Table 3. Composition of amino acids in shrimp head (wet basis, mg/g).

Amino Acid Content

Glycine 7.62 ± 0.08
Alanine 5.86 ± 0.02
Histidine 2.32 ± 0.19
Tyrosine 4.68 ± 0.55
Serine 3.95 ± 0.05
Cysteine 0.40 ± 0.05
Aspartic acid 8.23 ± 0.08
Glutamic acid 15.46 ± 0.17
Arginine 8.98 ± 0.11
Proline 6.75 ± 0.05
Leucine 6.98 ± 0.08
Isoleucine 3.77 ± 0.03
Valine 4.35 ± 0.04
Threonine 3.77 ± 0.04
Methionine 5.18 ± 0. 34
Phenylalanine 5.28 ± 0.51
Lysine 7.20 ± 0.26
Total amino acids (TAAs) 100.83 ± 1.68
Essential amino acids (EAAs) 36.55 ± 0.54
Nonessential amino acids
(NEAAs) 64.27 ± 1.15

Sweet and umami amino acids
(SUAAs) 56.84 ± 0.43

SUAAs/TAAs 57%
EAAs/TAAs 37%
EAAs: NEAAs 0.57

Umami amino acids including aspartic acid, glutamic acid; sweet amino acids including threonine, serine,
methionine, glycine, proline, alanine.
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3.2. Change Regularity of Taste in SH during Autolysis

One of the important parts of the taste of shrimp and shrimp products is umami
taste [19,29]; hence, we mainly focused on the umami change of taste in SH during au-
tolysis. The SH was evaluated and recognized by panelists during autolysis. The results
showed that the flavor of SH had the best umami taste at 6 h and 8 h during autolysis
(Table 4), but some panelists taste a fishy smell in SH with autolysis at 8 h during sensory
evaluation. Generally, FAAs and nucleotide-flavor compounds are key umami molecules
in foods, which had the ability to improve the flavor of the sample [30–32]. There are
umami, sourness, sweetness, saltiness, and bitterness taste in AAs, which contribute to
increasing the flavor in food [33]. The major flavor enhancer nucleotides, such as inosine
monophosphate (IMP), adenosine monophosphate (AMP), and guanosine monophosphate
(GMP), can present umami taste at low levels [34]. Inosine (HxR) and hypoxanthine (Hx)
can present bitterness [15]. AMP, IMP, GMP, HxR, and Hx are from the degradation of
ATP during autolysis in aquatic products, which plays an important role in the changes of
flavor [34,35]. Therefore, we determined the change of these compounds during autolysis.
The bitter amino acids (FBAAs), Hx, and HxR were significantly increased in the early
stages of autolysis (Figure 2), which may result in off-flavor. The interaction between Hx
and certain AAs can also result in a bitter taste [36]. However, the flavor was influenced
by the synergistic work of different flavor components. The decreased trend of AMP and
IMP was observed during autolysis, even completely degraded at 8 h, while the sweet
amino acids (FSAAs) were increased (Figure 2). The umami taste can be improved by the
synergistic effect of IMP and FSAAs (e.g., alanine, serine, and glycine) [30,37]. Compared
with a single compound, The synergistic effect of some AAs and GMP, adenosine diphos-
phate (ADP), and AMP express greater umami taste [32]. At 6 h, the FBAAs and HxR were
not further increased, but the FSAAs were increased. There are also AMP, GMP, and IMP.
After 8 h, a significant increase of FBAAs and HxR and the disappearance of AMP and
IMP were observed, which may be one of the reasons for the decrease of umami taste in
SH (Figure 2). Thus, SH had good umami taste in autolysis at 6 h, which may explain the
umami taste results of sensory evaluation.

3.3. E-Tongue and E-Nose Response Signal of SH during Autolysis

In order to evaluate the changes of taste characterizations during autolysis, SH with
autolysis was analyzed by the E-tongue and E-nose. The principal component analysis
(PCA) of E- tongue and the linear discriminant analysis (LDA) of E-nose are shown in
Figures 3A and 4A, respectively. The total contribution rate of PCA and LDA was 99.36%
(PC1, 94.78%; PC2, 4.58%) and 95.43% (LD1, 70.49%; LD2, 24.94%), respectively, which
indicated that PCA and LDA can be used to reflect the changes of flavor with a large amount
of information in SH during autolysis [38,39]. The data suggested that the differentiation
of the groups was good. Thus, the difference of flavor in SH during autolysis can be
distinguished and sensed by artificial senses (E-tongue and E-nose). On the other hand, the
sample of 4 h and 6 h were close to each other and located further from point 8 h (Figure 3A),
which suggested that taste compounds may be similar in samples of 4 h and 6 h, while
they were different in the sample of 8 h. According to the results of enzymatic activity
(Figure 5B), the enzymatic activity reached lowest at 4 h and then gradually increased. A
higher level of enzymatic activity was maintained after 6 h. Thus, the more taste compound
may be produced due to the enhancement of the autolysis rate after 6 h, which lead to the
significant difference in taste in SH. These results implied there was a significant difference
in flavor in SH during autolysis. The result of E-tongue and E-nose have consistency with
the sensory evaluation results.



Foods 2021, 10, 1020 8 of 16

Table 4. Ranking test results of shrimp heads in autolysis on umami taste.

Autolysis Time (h) 0 2 4 6 8 10

Sum of ranks 39 c 40 c 36 b,c 15 a 15 a 23 a,b

The data marked by different letters are significantly different (p < 0.05).
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FAAs, total free amino acids. Umami amino acids including aspartic acid and glutamic acid. Sweet
amino acids including threonine, serine, proline, glycine, methionine, alanine. Bitter amino acids
including isoleucine, valine, leucine, tyrosine, methionine, phenylalanine, lysine, histidine, arginine.
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The response values of E-tongue are shown in Figure 3B. Sensor response output of
0 h was calculated as ‘”0” in this study. If the change in concentration of taste substance
exceeds 1.0 scale, the human tongue can recognize the difference of sample [19,40]. With the
increase in time of autolysis, the richness and sourness of SH increased, and the bitterness
and umami taste decreased. No marked differences in saltness, astringency, aftertaste A,
and aftertaste B were observed. Interestingly, there was inconsistency between the decrease
of umami and bitterness and the increase of FBAAs and FUAAs in SH during autolysis
(Figure 2). These data implied that the taste is a comprehensive sense by the synergistic
work of different flavor components. The mechanism among amino acids, E-tongue, and
taste should be studied in future work, which may usefully guide the development of
food products. Additionally, according to the results of pH (Figure 5A), the production of
acids may cause the enhance of sourness. Humans accept sour taste when mild but reject
when strong [41]. The sourness increased mildly within 6 h, while increased sharply after
6 h, which may help to explain the result of sensory evaluation. Richness defines flavor
intensity. The enhance of richness in SH suggested that the changes of taste are obvious
and can be distinguished during autolysis. The reduction in bitterness may be due to the
enhance in free sweet amino acids, which can mask bitter tastes. In summary, the changes
of umami in SH may be caused by the combined work of sourness, richness, bitterness.
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As the radar chart in Figure 4B shows, the odor characteristics were significantly
different in SH during autolysis. The response values of sensors W1S (sensitive to methane),
W2S (sensitive to ethanol), W1W (sensitive to sulfides), and W6S (mainly selective for
hydrogen) differed significantly among all samples, whereas the response values of W1C,
W3S, W5S, W2W, W3C, and W5C were similar. The response values of W1S, W2S, and
W6S were enhanced during the extension of autolysis, which indicated methyl, aldehydes,
ketones, and hydrides were increased in SH. The response value of W1W was decreased
with the extension of autolysis, which indicated sulfur compounds were decreased in SH.
Thus, autolysis time had a significant influence on methyl, aldehydes, ketones, hydrides,
and sulfur, which may play an important role in the umami of SH.
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3.4. Change Regularity of pH and Enzymatic Activity in SH during Autolysis

pH is closely related to the umami flavors. Feng et al. [42] found the umami of six
umami additives were significant affected by pH from 5 to 8. The best working pH for
most umami substances was 6–7 [42,43]. Meanwhile, endogenous protease plays a key
role in the degradation of protein and nucleotide-flavor compounds [44]. The changes in
pH and enzymatic activity of SH during autolysis were studied (Figure 5). At the early
stage of autolysis, the anaerobic glycolysis and the digestion of ATP were increased. pH
decreased from 6.71 to 6.51 [45]. Afterward, microbial metabolites (such as TVB-N and
trimethylamine-nitrogen) were accumulated rapidly with the activation of endogenous
protease (Figures 1 and 5B), which are the main reason for pH increment to 6.97 [46,47] and
becoming stabilized thereafter. Feng et al. [42] found that the umami of umami flavoring
was increased with the increase of pH within 6.5–7.0, which could help to explain the
change of taste in SH (Table 4). In addition, the trend of change in enzyme activity was
similar to pH (Figure 5). The native protein of SH could be degraded rapidly by endogenous
protease in digestive organs during autolysis [44]. Therefore, the total free amino acids
were increased in SH (Figure 2). However, there may be more off-flavor compounds with
the further activation of endogenous protease, including FBAAs, Hx, and HxR (Figure 2),
which lead to the unpleased flavor in SH (Table 4). The results indicated that the autolysis
time needs to be controlled at a suitable time to obtain a good flavor.
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3.5. Characteristics of Endogenous Protease of SH

The autolysis of SH depends on different physicochemical conditions, including
the temperature of incubation and pH. The influence of different temperatures and pH
on enzyme activity of CEP was evaluated (Figure 6). The maximum activity under the
assayed conditions took place at 50 ◦C and pH 7.5, respectively, which may be the optimal
conditions to utilize autolysis. this result was similar to the results of Cao et al. [3] (50 ◦C
and pH 7.85). The CEP was further separated and purified by DEAE–Sepharose fast
flow column chromatography, providing three fractions (I, II, and III; Figure 7A). The
outline and the results of the separation and purification of the endogenous protease
are summarized in Table 5. The results indicate that I and II were the main endogenous
protease of SH, especially II. SDS–PAGE analysis showed endogenous protease contained
two major enzymes (~50 kDa and ~75 kDa, Figure 7B) which were most likely responsible
for the changes of flavor during autolysis.
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protease from shrimp head. CE, SH crude extract; CEP, crude endogenous protease.

Table 5. A summary of the purification of endogenous protease on the extract from shrimp heads.

Purification Enzymatic Ratio
Activity (U/mg Protein)

Recovery of Enzymatic
Activity (%) Purification Fold

Crude extract 2.93 100 1
Crude endogenous protease 4.16 89.13 1.42

I 3.22 15.12 1.10
II 6.54 60.88 2.23
III Not detected - -

4. Conclusions

In summary, SH could be one of the sources for condiments with a good composition of
AAs, and it complies with the requirement of food safety. Moreover, there was a significant
difference in flavor in SH during autolysis, which may be caused by the synergistic work
of FAAs and nucleotide-related compounds. SH with autolysis had the best umami taste
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at 6 h. Meanwhile, the optimal conditions to utilize autolysis may be at 50 ◦C and pH 7.5.
Two endogenous proteases (~50 kDa and ~75 kDa) play a key role in autolysis. Thus, it
is a good economic use of SH to prepare umami hydrolysates from SH by the reasonable
control of autolysis, which can be as a raw material in food supplements. The SH recycle
with autolysis is an efficient way to solve the problems of SH waste, which complete the
low-cost and high-value utilization in by-products of the shrimp industry. The autolysis
also can be used for the development of food products and the recycling of chitin, lipid, and
astaxanthin in SH. Furthermore, the results of sensory evaluation, E-tongue, and E-nose are
consistent, which implied that a combination of these analytical techniques can be applied
to study the formation of flavor to obtain more comprehensive and accurate results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10051020/s1, Figure S1: Changes of enzyme ratio activity of the crude extract were
extracted from shrimp head in different pH buffer, Table S1: The information of chemical sensors in
E-tongue, Table S2: The information of chemical sensors in E-nose.
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