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This study analyzes how characteristics in the careers of star researchers affect the

outcomes of research and development (R&D), based on a case study in a Japanese

semiconductor company. By analyzing the collaboration network of patent coinventors

in the company, we observe that long-term exposition and collaboration with other

high-achieving researchers play a significant role in determining a successful career, that

is, in terms of productivity and impact. Also, a deeper exploration of the characteristics

of a selected group of star researchers in a company’s R&D division helped to identify

that it takes 10–15 years to generate remarkable achievements in the form of filing

patents that are widely cited at a later stage. This period is followed by low productivity,

thereby revealing productivity peaks such as those observed in the artistic and scientific

careers but at different times. Industry researchers tend to follow a more fixed pattern.

Additionally, we analyzed the influence of having star researchers in coinventor teams.

Our results suggest that staying aligned in one research direction, long-term exposure

to a diverse group of researchers, and early mentorship helped the researchers in our

study to attain their achievements.
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INTRODUCTION

Understanding the path to major accomplishments in the careers of individuals whose job requires
a creative component has been the subject of inquiry for many scholars. Especially, when such
creative efforts can be translated into economic and social value, as is the case for companies and
their R&D divisions.

Researchers in an industry devote considerable creative effort when generating innovative
ideas, usually represented as patented inventions. This creative process is only a recombination of
previous resources and ideas. Individual expertise is critical in helping organizations to generate
new knowledge and recombine existing ideas to create innovative applications (Glynn, 1996).
Hence, to be at the forefront of innovation, companies are keen to understand how productivity
changes throughout a researcher’s career, that is, whether it follows a predictable pattern and what
are the underlying factors that trigger such patterns. Previous research has demonstrated that
patterns of outstanding achievements can be observed among artists and academics alike, where
productivity peaks can appear at any stage of their individual careers (Sinatra et al., 2016), and their
most important accomplishments are clustered together in time (Liu et al., 2018). However, this is
yet to be validated for careers in industry research.
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The present study fills this gap by addressing the following

questions: if researchers in an R&D division show a predictable

pattern of productivity in their careers, if highly productive

researchers help to nurture other productive researchers through

a knowledge spillover effect, and what are the perceived and

possible causes of the productivity boost when observed.
To answer these questions, we present a case study

in a Japanese semiconductor company. First, we analyze
the collaboration network of coinventors credited in the

company’s patents to identify the most productive and impactful
inventors. Subsequently, we analyze the interactions of those

“star researchers” with their coinventors to infer their key

characteristics and differentiators. Second, we narrow the scope
down to a specific R&D division within the company. Hence,

we aim to investigate characteristics and research careers that

affect the research outcomes via quantitative analysis of patent
statistics. Researchers in the present study were productive

from the 1980s to 1990s when the Japanese semiconductor

companies had captured the highest share of the global market
and were in the middle of a competitive environment with the
pressing expectation of always scalingMoore’s law (Moore, 1998).
Figure 1 shows the most prolific companies, worldwide, in terms
of filing semiconductor patents during the 1980s and 1990s. Even
though the figure summarizes international companies, the ten
largest were Japanese.

FIGURE 1 | Top international assignees for semiconductor patents during the 1980s and 1990s. Note that all the top ten assignees were Japanese companies.

PREVIOUS LITERATURE

Productivity, Creativity, and Innovation
Creativity is the source of organizational innovation (Amabile,
1982), and a limited asset for new product development.
Consequently, abundant literature is dedicated to understanding
the factors that influence creativity in individuals, and
the organizational aspects that nurture creativity within
organizations (Hackman and Oldham, 1975; Ford, 1996; Hunter
et al., 2007). For instance, rewards for performance (Amabile
et al., 1986; Baer et al., 2003), or a competitive environment
(Shalley and Oldham, 1997) are among the many factors that
contribute to environments that stimulate creativity. Thus, it
is clear that management plays a key role in promoting and
sustaining practices that allow researchers to achieve their full
potential (Oldham and Cummings, 1996).

An environment that stimulates the creativity of members
of the organization is the starting point for the consecution of
output that may bring value to the company. The performance
of innovators is observed by the number and quality of outputs
(e.g., patents). In the literature, output quality is assessed as
the impact creators bring to the community of peers, society,
or organization, commonly represented by highly-cited patents
or papers, breakthroughs, economic value, or awards. The
combination of productivity and impact together constitute the
achievements of the creators.
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In the context of new product development, prior literature
discusses that, overall, there are less impactful outputs on
the business in relation to R&D spending (Cooper and
Edgett, 2008). Therefore, frameworks have been developed
to smooth the process between individual creativity and
organizational innovation that maximize the value from research
to development and commercialization (Griffin et al., 2009).
Generally, the alleged frameworks highlight the team as the key
element of creativity.

The process of knowledge creation and recombination occurs
at the individual level (Glynn, 1996; Crossan et al., 1999).
However, when knowledge grows exponentially, it becomes a
burden for the individual researcher to gauge the breadth of
expertise necessary for the recombination to occur (Jones, 2008).
Hence, organizations leverage creative capacities by organizing
teams of experts in various fields (Rulke and Galaskiewicz,
2000; Tiwana and McLean, 2005). This exposes researchers to
multidisciplinary knowledge from where they can draw on new
ideas (Hargadon and Sutton, 1997), ultimately using the team as
a catalyst for creativity.

In terms of researchers’ accomplishments, it has been
demonstrated that having access to an impressive breadth of
knowledge leads to higher productivity (Burt, 2004; Fleming
et al., 2007). Meanwhile, researchers’ breadth and depth of
expertise have a higher impact on innovation (Boh et al., 2014).
This does not necessarily mean there is a tradeoff between
productivity and impact of creative activities, both are attainable
(Shalley, 1991). However, such mastery is observed only among a
few individuals within the organization (Boh et al., 2014).

Star Researchers and Hot Streaks in Their
Creative Careers
Individuals who attained remarkable achievements, which
impacted their organizations or scientific communities, are
identified as “star scientists” (Han and Niosi, 2016), “hero
scientists” (Griffin et al., 2009), “exemplary creators” (Gardner,
2011), and “hyper prolific authors” (Ioannidis et al., 2018),
each of them with nuanced definitions. Most literature on
“star scientists” focuses on the biotechnology domain (Han and
Niosi, 2016) to understand how these scientists participate in
the process of technology diffusion, beyond academia, through
University spin-offs (Zucker et al., 1998; Zucker and Darby,
2007). The study of temporal career patterns for characterizing
emergence and timing of outstanding achievements, specifically
for new product development, is still lacking.

Although some individuals are productive and create
impactful inventions, this is not constant during their research
life (Mumford, 1984). Earlier studies on patterns of creativity
in the career of individuals can be traced back to 1835 to the
work of Quetelet and the application of historiometry (Quetelet
et al., 2013). However, the relationship between creativity and age
was formally established by Lehman (1953) in his seminal work
on age and achievement. He investigated how researchers’ best
results tend to peak during their early thirties and decrease in
their forties. Similar results were observed in later studies (Pelz
and Andrews, 1966; Dalton and Thompson, 1971). Simontons

(1977, 1988, 2000) research on career trajectories and landmarks
clarified the causalities of such peaks of creativity, either in
the form of outstanding productivity or remarkable impact.
Although first demonstrated in the careers of artists, he observed
a pattern of remarkable achievements as a function of the
individual’s age. This curve takes the form of a bell and is arguably
a combination of the ideation rate, which decreases as we get
old, and elaboration rate, which improves with age. The former
is higher at the early stage of the creative career as it is easy to
establish linkages in a theme that is new when thoughts are still
unorganized. With experience, the frame of thinking becomes
fixed making it more difficult to accept new ideas. However,
cognitive elaboration rises, thus helping to distinguish good ideas
from bad ones.

Remarkable achievements have also been studied in athletes,
musicians, and chess players, where it is found that top
professionals in these areas reach a plateau after 10,000 h of
training (Ericsson et al., 1993). In a more comprehensive
study that focuses on the careers of top scientists, artists, and
filmmakers, evidence shows the existence of hot streaks (i.e.,
periods of great productivity), however, independent of time
appearing at any point of their careers (Liu et al., 2018).

Regarding new product development, as illustrated by the
studies of Boh et al. (2014), who present a case study of
3M, enterprise researchers are categorized into three groups:
specialists, generalists, and polymaths, based on the breadth or
depth of expertise. They discuss how each group contributes
toward generating economic value to the company in the
form of converting innovations into products. Nishimura et al.
(2000) studied the perceived factors that led researchers in a
pharmaceutical industry in Japan to generate more research
outputs for their organizations, dividing the subjects into two
generations and evaluating aspects other than age. They found
that the performance indicator for product development, which
measures patent activity, was rather stable in the two groups.
Beyond the above-mentioned criteria, there is no sign of other
literature studying creative performance in the careers of industry
researchers for new product development.

There are, however, other settings where the presence of
star scientists has been the subject of examination. Research
shows that some industries benefit more from a sole “super”
individual than a team; however, when such a “star researcher”
is not available, then it creates a context when a “fantastic” team
must be configured (Taylor and Greve, 2006). The value of star
researchers is that they are not only knowledge producers but also
collaborators enhancing the capabilities of those around them
through within-firm interactions (Grigoriou and Rothaermel,
2014), thereby, generating a spillover effect of their expertise
within the organization and beyond (Zucker et al., 2002).

The concept of spillover is commonly associated with
knowledge and economic transfer from one region to another,
or across industries. Knowledge flows can also be observed at
more localized levels, within an industry or within a company,
for instance when skills are transferred from experts to a novice
(Bjursell and Florin Sädbom, 2018). In the context of innovation,
collaborative patterns in patent activities have been faster in
information diffusion compared to weak ties (Wang et al.,
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FIGURE 2 | The methodological approach in this research. At the company level patents are extracted from a patent database (a.1); a network of inventors is created

where 2 inventors are connected if they co-invented a patent (a.2); start researchers and other highly achieved researchers are identified and their characteristics

studied with binomial logistic regression (a.3); clusters of inventors are obtained and analyzed. At the R&D level, a subset of star researchers that worked in the same

division was identified (b.1); direct collaborators and second level collaborators were identified (b.2, b.3); and their career characteristics were studied.

2017). Furthermore, companies with large in-house capabilities
benefit more by internal and self-promoted collaboration, than
by collaborations due to spillovers from the outside or motivated
by external factors (Grillitsch and Nilsson, 2015). In a parallel
setting, collaboration among researchers from different academic
institutions has been found to be valuable in enhancing research
quality in terms of the number of high-impact articles published
by the institutions involved in such collaborations. The benefits
of collaborations goes beyond the individuals and institutions,
also reaching benefits at the country level (Aldieri et al., 2018).
Overall, there is a paucity in the literature of studies tackling
knowledge spillover from highly achieved researchers to other
researchers within a single company.

The present study explores the career of star researchers
in the context of their creative achievements, represented as
patents and awards in new product development; and how
these researchers benefit themselves and others by observed
collaborative patterns. The remainder of the paper contains
the definitions, methodological approach, and results. Finally,
implications of the productivity peak, the role of star researchers
as part of the creative network of inventors in the company, and
the late stages of career are discussed.

DATA AND METHODS

The present study is divided into two parts. First, it is an
overall assessment of the collaboration network of individuals
in a company. Second, it presents a detailed analysis of
star researchers at the R&D level. Figure 2 summarizes the
methodological approach for both parts.

To study the collaboration network, we analyzed the
company’s patents related to semiconductors that were filed
in Japan. Data were collected from Derwent Innovation, a
patent data aggregator that collects data on granted patents
and applications for more than 40 issuing authorities, including
Japan. Derwent Innovation is a database commonly used
in patent analysis because of the added benefit of English
translations of titles and abstracts, besides the original language
of the patent. Moreover, inventor names are standardized, and
this helps in reducing the possibility of wrongly assigned patents
to inventors with the same names. To collect the data, we applied
the following query: “ALLD=(“SEMICONDUCTOR∗”) AND
CO=(“∗∗∗∗∗∗∗”) AND AD>=(19800101)1.” With this, we pulled
patents with keywords “semiconductor” or “semiconductors” in
any of the text fields, considering applications filed since the
1980s. We retained those granted and filed in Japan only. Data
were retrieved on March 27, 2020.

For each patent, we examined the inventor field, where the
standardized names of inventors for each patent is listed. We
implemented cleaning steps such as uppercasing the names
and removing symbols or extra whitespaces that could affect
the correct attributions of inventors. Once cleaned, we built a
network of coinventors. Each inventor is treated as a node, and
two inventors get connected if they co-invented a patent. The
more a pair of inventors work together and are successfully
granted a patent, the stronger their connection in the network.
To avoid incidental inventors, we retained inventors with five
or more patents, as those with modest contributions may refer
to technicians, interns, or other individuals who may have

1The company, star researchers, and executives have opted to remain anonymous.
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contributed to a patent occasionally but were not employed by
the company, or who worked for the company for a short period.

Subsequently, we proceeded to identify the star researchers.
We define star researchers as individuals satisfying the following
two conditions:

1. Productivity: Top 1% productive individuals by the number
of patents.

2. Impact: Individuals who contributed to two or more of the top
1% cited patents.

The selected threshold was challenging for any research to
achieve. Specifically, star researchers appear as inventors in at
least 72 patents and have at least 2 patents with 74 citations
or more. We focus on inventors with two or more highly
cited patents to avoid one-time collaborators who may have
participated in the invention of a highly cited patent. Inventors
were further classified as follows: “non-star researchers A1”
(NSR-A1), or those who accomplish either condition 1 or 2 and
“non-star researchers A2” (NSR-A2) comprise the remainder.

We then fitted two binomial logistic regression models to
identify variables that have maximum influence in labeling an
individual like a star researcher for this company. One model
compared the extreme case of star researchers against NSR-A2,
while the other compared the star researchers vs. both NSR-A1
and NSR-A2. Due to the long tail of NSR-A2 researchers with low
patent productivity, we focus this part of the study on those with
30 or more patents during their careers in the company.

We considered a star researcher as a dependent variable
(which is binary, a researcher is either a star researcher or not)
and compared it to six independent variables:

• Active years: number of years from the first to the last patent
• Median team size: average number of coinventors
• Max team size: The largest number of coinventors for a

single patent
• Number of star researchers’ coinventors: total number of star

researchers’ coinventors during his/her research life
• Number of NSR-A1’s co-inventors: total number of NSR-A1’s

coinventors during his/her research life
• Number of NSR-A2’s co-inventors: total number of NSR-A2’s

coinventors during his/her research life.

Besides the comparison of characteristics of star researchers and
the rest of researchers, in the network, we could also identify
groups of inventors who worked together frequently. These
clusters of inventors were derived from the network using the
Louvain algorithm (Blondel et al., 2008). The clustering analysis
helps to reveal career-long patents of collaboration among the
star researchers in the company.

Second, we studied the lifetime productivity of a subset of
star researchers in a specific R&D division in the company.
We focused on this subset because we were granted access to
the career particulars of researchers in this division, including
information on their whereabouts following retirement. We
could therefore keep track of any changes in their interest areas.
This is relevant because the company spun out its semiconductor
division as a new subsidiary; some researchers remained in the
original company but changed their expertise, while others were

TABLE 1 | Classification of study individuals.

Category Number of inventors

Star researchers 139

NSR-A1 535

NSR-A2 5,383

transferred to the new company and continued working on their
projects. Others moved to work as a professor in a University
expanding their professional networks. To narrow down the star
researchers in this R&D division, we considered those whose
achievements have been recognized as impactful in a social
context, that is, their achievements have been publicly recognized
by peers in specialized societies with a prestigious award, or
they are recognized as leaders by senior experts on the field.
They are researchers awarded with the Yamazaki–Teiichi prize2,
which is a major industrial award in Japan, they have either been
distinguished with the IEEE Fellow grade3 or referenced by two
anonymous senior executives.

Furthermore, we analyzed the knowledge spillover effect of
this subset of highly productive researchers to other researchers
by assessing their patent activities as coinventors. We consider
spillovers when coinventors become highly productive in a
posterior time if previously they had co-invented a patent
with a star researcher. To create the association between star
researchers and others, a list of coinventors was created for
each star researcher. Subsequently, for each star researcher, we
selected three non-star researchers by a random selection as
“non-star researchers B1” (NSR-B1). We replicated the process to
randomly select a second degree of coinventors (i.e., coinventors
of coinventors) as “non-star researchers B2” (NSR-B2). The
performance of these groups was compared over time to assess
the spillover effects. To supplement the above patent analysis, we
conducted five interviews, where two of the five interviewees are
star researchers, and the rest are department managers from the
same company. The results of the interviews are shown in the
Appendix (Supplementary Material).

RESULTS

Overall Assessment of the Collaboration
Network in a Company
Since 1980, the company has been granted 44,636
semiconductor-related patents filed in Japan and attributed
them to a total of 18,843 different inventors. About 38.1% of
them participated in the invention of just a single patent. To
avoid inventors with limited patent activity, we analyzed the
subset of 6,057 inventors having five or more patents during
that period. These inventors were further classified into three
categories, as shown in Table 1.

To understand the differences between star researchers and
the rest of researchers, we fitted a binomial logistic regression
model considering the career-long characteristics of both type

2http://www.mst.or.jp/Portals/0/prize/english/index_en.html
3https://www.ieee.org/membership/fellows/index.html
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of researchers, including the number of active years filing
for patents, median, and max team size when they worked
as coinventors, and the number of other star researchers,
NSR-A1, and NSR-A2 collaborators during their careers as
semiconductor-related inventors in the company. These served
as independent variables, mainly to infer if an individual is
labeled as a star researcher or not. Table 2 shows the results for
the models.

TABLE 2 | Dependent variables of a binomial logistic regression explaining star

researchers vs. NSR-A2 (above), and star researchers vs. all other researchers

(below).

Estimate Estimate Std. Error Z-value Pr(>|z|) Significance

(Intercept) −6.6189 0.9614 −6.8846 6.E-12 ***

Active years 0.0429 0.0314 1.3679 2.E-01 .

Median team size −0.4507 0.1869 −2.4116 2.E-02 *

Max team size 0.0743 0.0565 1.3147 2.E-01

The number of

NSR-A2’s coinventors

0.0717 0.0130 5.5228 3.E-08 ***

The number of

NSR-A1’s coinventors

0.1701 0.0377 4.5174 6.E-06 ***

The number of star

researchers’

coinventors

0.2332 0.0499 4.6776 3.E-06 ***

(Intercept) −4.7323 0.6942 −6.8166 9.E-12 ***

Active years 0.0191 0.0225 0.8496 4.E-01

Median team size −0.3907 0.1337 −2.9218 3.E-03 **

Max team size −0.0383 0.0304 −1.2593 2.E-01

The number of

NSR-A2’s coinventors

0.0574 0.0077 7.4879 7.E-14 ***

The number of

NSR-A1’s coinventors

0.0521 0.0207 2.5175 1.E-02 *

The number of star

researchers’

coinventors

0.2275 0.0281 8.0905 6.E-16 ***

Significance levels: ***P < 0.001; **P < 0.01; *P < 0.05; and P < 0.1.

The first comparison is between star researchers and NSR-A2,
in this model we did not compare star researchers to NSR-A1 as
our intention is to understand the characteristics of those with
highly remarkable achievements vs. those who do not have them.
In fact, NSR-A1 can be said to have remarkable achievements
and maybe on their way to becoming star researchers themselves.
We found that collaborations with other researchers during their
careers were the most influential explanatory variables in the
model. This suggested that the more they interacted with a
variety of inventors during their career, the more likely they
were to achieve the characteristics of star researchers as defined
in this study. The number of active years as inventors—from
their first to their last patent—played a less important role. The
median size of the team had a negative coefficient, suggesting that
smaller teams were more significant in defining a star researcher,
although the team size had less influence compared to long
term exposure to a plurality of other researchers. This was also
confirmed when observing the max team size the researchers
had participated in, which showed no significance in the model.
For a star researcher, participation in larger sized teams had
no influence.

The second model compared star researchers with the rest
of researchers (i.e., both NSR-A1 and NSR-A2) showing similar
results. Long-term exposure and collaboration with a plurality
of other researchers had a positive and significant influence,
although comparatively less significant for NSR-A1. This implied
that teams consisting of star researchers and a novice would be
beneficial to the inventors’ careers. The number of active years
was not significant in the model, while, again, the median team
size had a negative coefficient, this time with a significance at P
< 0.01. Under this model, it is more likely to be recognized as
a star researcher when the researcher had participated in teams
of a relative smaller size. Participation in bigger teams had no
influence on the career of star researchers.

The collaboration network of these individuals is shown
in Figure 3. We found 34 clusters or groups of inventors
who coinvent together. The network is cohesive, with all the

FIGURE 3 | Collaborative networks of inventors in semiconductor-related patents from 1980 to present. Clusters of frequently co-occurring coinventors are

represented in different colors. The size of the node is relative to the number of patents per inventor. From left to right: (A) star researchers; (B) star researchers and

NSR-A1; (C) all researchers in the study.
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individuals allocated to a single component. Figure 3A shows
the network filtered to indicate the location of star researchers.
Despite eliminating most of their collaborators in the network,
star researchers remain as a single component, meaning that they
do not exist in isolation and have collaborated at some point with
other star researchers, regardless of the others belong to the same
cluster. Table 3 summarizes the clusters.

Clusters are sorted from those having the largest number
of inventors followed by how they are distributed as star
researchers, NSR-A1, and NSR-A2. Next, we show the statistics
of the aggregated patents where these inventors have contributed,
including the number of patents, the average year of publication,
and average citations. Finally, we obtained the three most
common sub-classes of the International Patent Classification
(IPC) assigned to the inventor’s patents. It serves as a topical
signal of interest and expertise to inventors. For most of the
clusters, the main IPC subclass is H01L, which expectedly
corresponds to semiconductor devices.

In 23 of the clusters, at least one star researcher is present.
Clusters where no star researchers are present are smaller in size,
except for cluster 13, which groups 217 inventors focusing on
optical devices. We did not find strong correlations between the
number of star researchers and the remaining variables in the
table. However, the presence of a star researcher signals more
patent productivity and the inverse of an average number of
applications in a year. That is, as observed, star researchers tend
to be allocated among groups of inventors who were active and
productive in their older years.

Characteristics of Star Researchers in an
R&D Division
Career of Star Researchers

Table 4 lists a subset of 15 star researchers that worked in
the same R&D division and who achieved special recognition
by their community of peers. We complement the table with
the year of joining the company and the recognized field of
accomplishment, as indicated by the senior executives. Papers
of the star researchers reveal that all the researchers graduated
from major Universities in Japan, and they provided remarkable
research outputs and received promotions. Some have retired
but continue to be active as University professors, while a few
remain in the company. We surveyed their patenting activities,
including the number of patents where the star researchers are
either the main inventors or co-inventors and the number of
citations received.

Table 5 lists the statistics of patent submissions made by star
researchers. The table shows the total number of patents where
the researchers appear as inventors, followed by the number
of patents as primary inventors, and the number of patents as
primary inventors with ten or more citations. We computed the
active inventive period as the range of years from their first to
the last patent submission. Followed by the inventive period as
primary inventor considering the range of years between their
first and last patent as primary inventors. Then, we computed
average productivity per year on primary inventions and

TABLE 3 | Summary of clusters of inventors: a. Cluster number, b. Inventors, c.

Star researchers, d. NSR-A1, e. NSR-A2, f. Patents, g. Average Application Year,

h. Average Citations, i. Top IPC subclasses.

a. b. c. d. e. f. g. h. i.

1 579 14 87 478 5259 1992.7 8.6 H01L:3983; G11C:1448;

H03K:664

2 439 13 39 387 4372 1991.3 6.1 H01L:4134; H05K:326;

B29C:175

3 407 6 51 350 3057 1997.0 7.8 H01L:2401; H01J:852;

G03F:738

4 371 4 15 352 3221 2003.8 4.4 H01L:2450; C09J:848;

C08G:565

5 351 5 37 309 3749 1991.8 5.1 H01L:2647; H01S:1220;

G02B:218

6 334 8 23 303 3173 1989.9 6.4 H01L:2881; G11C:338;

G01N:115

7 296 9 14 273 2395 1993.2 5.6 H01L:1937; H02M:345;

H03K:131

8 281 1 3 277 2294 2003.6 3.5 H01L:2189; C23C:995;

B65G:79

9 258 16 37 205 3320 1992.8 7.4 H01L:3154; G03F:225;

C23C:182

10 254 3 21 230 2127 1996.4 6.8 H01L:1711; H05K:270;

G01L:120

11 233 8 34 191 2134 1993.4 9.1 H01L:1815; H05K:326;

G01R:189

12 221 5 4 212 1660 2000.9 3.9 H01L:1287; C08L:449;

C08G:412

13 217 0 15 202 1549 1995.4 6.6 H01L:1154; G02F:251;

C23C:96

14 204 4 13 187 2158 1989.2 4.7 H01L:1956; H03K:129;

G11C:70

15 193 2 29 162 1565 1997.7 5.7 H01L:1468; H05H:349;

C23F:267

16 192 5 4 183 1793 1996.3 3.7 H01L:1447; H05K:168;

H01B:110

17 191 1 2 188 1230 1998.5 6.1 H01L:585; G11B:204;

H05K:125

18 178 5 37 136 1649 1993.4 9.1 H01L:1413; G01N:463;

G03F:261

19 144 18 32 94 2225 1991.4 9.4 H01L:2086; G11C:165;

C23C:64

20 142 1 4 137 1114 1998.2 5.5 H01L:803; H05K:193;

C22C:90

21 141 1 8 132 1706 1998.7 2.9 H01L:1404; C30B:486;

C23C:160

22 93 0 1 92 597 1994.2 4.4 H01L:397; G01T:63; H01J:63

23 78 0 0 78 616 1994.1 4.9 H01L:442; B23K:70;

H04N:65

24 72 0 3 69 597 1999.8 7.8 H01L:498; H05K:46;

B01D:45

25 44 5 4 35 533 1991.1 6.4 H01L:434; C08G:195;

C08L:132

26 40 4 8 28 868 1992.3 4.5 H01L:784; H05K:97; C09J:40

27 37 1 4 32 331 1992.3 11.5 H01L:303; G11C:73;

H03K:17

28 17 0 0 17 92 2001.4 2.7 H01L:58; F21S:29; F21V:27

29 13 0 0 13 47 2003.3 1.9 F24F:42; B01D:22; F04D:5

30 13 0 5 8 269 1993.1 8.9 H01L:182; G11C:160;

H03K:61

31 8 0 0 8 10 2007.4 3.1 G06F:8; B25C:2

32 7 0 0 7 20 1998.4 12 F04D:11; B05C:7; G03F:3

33 7 0 0 7 22 2015.1 1.3 H01L:21; B22F:7; H02N:6

34 2 0 0 2 6 2003.0 2.3 H04B:4; H01P:2; H03K:2
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TABLE 4 | List of star researchers in the R&D department of a Japanese semiconductor company.

Researcher Year of joining

the firm

IEEE Fellowship Yamazaki–Teiichi

prize

Expert

acknowledgment

Field of major creative achievement

A 1963 x x Two intersection bit cell DRAM

B 1969 x High speed CMOS-SRAM

C 1969 x x Trench capacitor DRAM

D 1974 x x Stacked capacitor DRAM

E 1975 x x Lifetime of hot carrier

F 1978 x x Microprocessor

G 1979 x x Low leakage CMOS circuitry

H 1980 x DRAM stacked memory cell

I 1980 x x Low leakage CMOS circuitry

J 1980 x Microprocessor

K 1980 x Microprocessor

L 1984 x Single electron memory

M 1985 x x Low leakage CMOS circuitry

N 1985 x Low power SRAM and MPU

O 1986 x x x 3D transistor (Fin-FET)

TABLE 5 | Patent productivity of selected star researchers in the R&D department of a company: a. Researcher, b. Total number of patents, c. Number of patents filed as

a primary inventor, d. Number of highly cited patents* filed as a primary inventor, e. Period of filing patents (first patent, last patent, period of filing patent/years), f. Period of

filing patents as a primary inventor (first patent, last patent, period of filing patent/years), g. Average primary patent per year: (c/f), h. Average highly cited patents* per

year: (d/f), i. Proportion of highly cited patents*: (d/c).

a. b. c. d. e. f. g.: c./f. h.: d./f. i.: d./c.

A 462 104 6 1973 2013 41 1973 2011 39 2.67 0.15 5.8%

B 187 19 1 1972 1991 20 1972 1985 14 1.36 0.07 5.3%

C 178 68 6 1973 2008 36 1973 1997 25 2.72 0.24 8.8%

D 129 74 6 1975 2017 43 1975 2016 42 1.76 0.14 8.1%

E 153 12 1 1976 1996 21 1976 1987 12 1.00 0.08 8.3%

F 118 26 0 1981 2006 26 1981 1993 13 2.00 0.00 0.0%

G 235 70 10 1981 2012 32 1983 2004 22 3.18 0.45 14.3%

H 224 49 4 1982 2010 29 1982 2008 27 1.81 0.15 8.2%

I 199 42 7 1982 2004 23 1982 1998 17 2.47 0.41 16.7%

J 65 34 2 1981 2008 28 1981 2008 28 1.21 0.07 5.9%

K 123 34 1 1981 2003 23 1981 1996 16 2.13 0.06 2.9%

L 144 21 2 1985 2017 33 1985 1993 9 2.33 0.22 9.5%

M 205 88 8 1986 2013 28 1987 2013 27 3.26 0.30 9.1%

N 204 35 5 1985 2015 31 1986 2015 30 1.17 0.17 14.3%

O 172 60 5 1987 2015 29 1987 2015 29 2.07 0.17 8.3%

*Highly cited indicates receiving ten or more citations.

highly-cited patents. The overall average for this set of star
researchers is 2.08 patents per year.

Table 5 also shows patents filed only in Japan. These
highly productive researchers excelled during the period from
the 1980s to the 1990s, which is considered the golden
age of the Japanese semiconductor industry, where Japanese
companies were highly competitive and enjoyed a large share
of the market. Researcher-A was one of the most influential
researchers in the laboratory, with several primary inventions
and co-inventions to credit. Researcher-F did not file any

highly-cited patents but was selected based on reputation.
Researchers-G, -I, -N filed a highly cited one for every six or
seven patents.

Figure 4 shows the number of highly-cited patents,
remarkable achievements, and the period of research
engagement. The research engagement period was calculated
from the year researchers received their master’s degree. We
considered that year as the starting point of their research
activity, aiming to standardize the different paths observed
in their careers, as some of them joined the company after
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FIGURE 4 | Achievements of star researchers.

they earned a bachelor’s degree, while others after completing
their doctorate program. Hence, this period reflects the
number of years of dealing with research activities from their
master’s degree to the year of patent submission or remarkable
achievement. As shown in Figure 4, highly-cited patents
and remarkable achievements were produced 10–15 years
after their research career had started. This is proceeded and
followed by periods of low activity, revealing a productivity
peak in their career. However, even during periods of low
productivity, some researchers attained some achievements. To
further investigate the variations, we qualitatively investigated
those cases. Researchers who graduated from well-known
semiconductor laboratories at the graduate University and
continue the same research topics after being hired by the
company scored remarkable achievements at the early stage
of the peak of productivity. This reveals that specialty in
the field of semiconductors is a key element for early or
continued achievements.

After a period of high productivity, it can be hypothesized
that because of their excellence these researchers were promoted
to managerial positions, which could act in detriment of
the observed patent submissions. To verify this, we checked
their patents as primary inventors. 14 out of 15 researchers
submitted patents as primary inventors for more than 10
years, 11 researchers did so for more than 16 years, and
9 researchers for more than 20 years. However, for those
creating patents after 20 years, their late patents were
not highly cited. Additionally, it is worth noticing that
even though industry scientists were labeled as “researchers”
by the company’s conventions, some were not necessarily
exempted from performing a heavy load of management
activities instead.

Spillover Effects

We analyzed the existence of spillover effects from star
researchers to other researchers in the same division. Table 6
shows the results. The engagement period was 23.3 years for star
researchers, 16.5 years for NSR-B1, and 17.9 years for NSR-B2,
on average. In terms of the average number of patents as primary
inventors for star researchers, NSR-B1, and NSR-B2 was 2.08,
1.18, and 1.16, respectively. Moreover, the highly-cited patents
per year showed a large difference for star researchers, NSR-
B1, and NSR-B2 as 0.18, 0.07, and 0.06, respectively. The ratio
of highly-cited patents for all patents was 8.4, 5.8, and 4.6%,
respectively. Star researchers clearly outperformed the other set
of inventors. If spillover effects exist in this department, we
could have expected that NSR-B1 would have higher scores than
NSR-B2. However, we could not find a large difference, except for
the ratio of highly-cited patents between these two: 5.8% for NSR-
B1 and 4.6% for NSR- B2.

DISCUSSION

Our results indicate the importance of collaboration between
inventors across the company. The collaborative network of
inventors who co-invented patents since the 1980s in the
company shows that star researchers are linked among them
and, more importantly, collaborating with multiple other
star researchers is a definitory factor in the career of such
inventors. This has managerial implications, that is, nurturing
high performing industry researchers is necessary to support
collaboration with other previously identified stars.

Through focused analysis of the selected star researchers in
an R&D division, we could verify the existence of a peak in
productivity. For researchers in this case study, it took from
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TABLE 6 | Comparison between star researchers and non-star researchers in the R&D department of a company: a. Researcher, b. Statistics, c. Total number of patents,

d. Number of patents filed as a primary inventor, e. Number of highly cited patents* filed as a primary inventor, f. Period of filing patents (first patent, last patent, period of

filing patent/years), g. Period of filing patents as a primary inventor (first patent, last patent, period of filing patent/years), h. Primary patents per year: (d/g), i. Highly cited*

primary patents per year: (e/g), j. Proportion of highly cited patents: (e/d).

a. b. c. d. e. f. g. h.: d./g. i.: e./g. j.: e./d.

Star researchers Average 186.5 49.1 4.3 1980.0 2008.5 29.5 1980.3 2002.6 23.3 2.08 0.18 8.4%

Maximum 462 104 10 1987 2017 43 1987 2016 42 3.26 0.45 16.7%

Minimum 65 12 0 1972 1991 20 1972 1985 9 1.00 0.00 0.0%

Standard deviation 85.8 26.3 2.9 4.8 7.3 6.5 5.0 10.2 9.5 0.68 0.12 0.04

NSR-B1 Average 72.4 19.9 1.2 1982.0 2003.1 22.0 1982.9 1998.5 16.5 1.18 0.07 5.8%

Maximum 194 72 6 1993 2016 37 1994 2015 36 2.17 0.38 33.3%

Minimum 12 2 0 1973 1988 10 1973 1983 3 0.40 0.00 0.0%

Standard deviation 52.6 15.6 1.5 6.0 7.6 7.8 6.1 8.2 8.9 0.49 0.10 0.08

NSR-B2 Average 73.6 21.0 0.9 1985.0 2005.2 21.2 1985.4 2002.3 17.9 1.16 0.06 4.6%

Maximum 167 72 8 1995 2016 36 1995 2016 36 2.48 0.38 20.0%

Minimum 11 4 0 1975 1989 4 1976 1987 4 0.52 0.00 0.0%

Standard deviation 40.9 13.8 1.5 5.0 7.6 7.2 4.8 7.8 7.8 0.45 0.08 0.06

*Highly cited indicates receiving 10 or more citations.

10 to 15 years to achieve outstanding outcomes, after which
their productivity reduced. We also found that star researchers
had achieved outstanding performance by continuing the same
research for a long time. Our results signal a difference between
industry and academic researchers. A recent study by Sinatra
et al. (2016) suggests that scientists can generate remarkable
achievements at any point in their careers. However, researchers
in this case study seem to be different. We can argue that these
differences are attributable to the way the creative process in
both settings, academia, and industry, is subject to differences
in freedom of inquiry, motivation, and internal politics. While
scientists in Universities and research institutes have some
form of autonomy, researchers in industries are expected to
contribute to specific topics, constrained by stringent deadlines
and budgets. Excellent industry researchers could also have
other motivations such as creating their own teams, or trough
promotions to climb the even-larger organizational pyramids of
Japanese corporations. Finally, industry researchers also need
to cope with internal bureaucratic processes imposed by the
company and become knowledgeable about the legal and ethical
implications not only for their research output but also for the
company itself, especially knowledge that takes time to master.

It is worth noticing that contrary to classical studies that
propound a proportional link between age and innovation
(Lehman, 1953; Simonton’s, 1984), the present study deals less
with the age of the researcher, but focuses on the time of research
engagement, that is, the time researchers have spent in their
academic career regardless of their actual age. Although we do
not deny the association between the two concepts could be
implied. We also point to the fact, as demonstrated in the results,
that continued exposure to the same research topics helped to
attain remarkable achievements.

By analyzing coinventors, we also observed how star
researchers collaborated with others in the organization. When
focusing on the subset of star researchers in an R&D division, we

did not observe significant spillover effects from stars to non-star
researchers. However, we cannot deny interactions among the
star researchers and their influence (Grigoriou and Rothaermel,
2014). The expertise should not only be consistent across time
but topically shared between inventors. For instance, the R&D
division under study could allocate outcome topics into three
larger umbrella topics or layers: research on processors, memory,
or devices. It seems that focusing on a single technology layer is
important, but knowledge also flows among them.

Figure 5 shows the relationship among star researchers in
the R&D division. The data are based on patent submissions
of stars and co-inventors. The rear end of the arrow represents
the primary inventor, whereas the arrowhead represents the co-
inventors of these patents. In Figure 5, we can observe the link
between star researchers. Based on the classification of patents
as primary inventors, we plotted each researcher at different
technological layers of the processor, memory, and device. We
observe that co-invention happens more frequently across the
same layers. For example, researchers -C and -D, who belonged
to the same laboratory at the University, are in the same
layer, namely memory, and co-invented the patent. A highly-
cited patent submitted by researcher-L early in his career was
co-invented with researcher-B. Similarly, a highly-cited patent
submitted by researcher-O early in his career was co-invented
with researcher-E.

Researchers in the R&D division had engaged in developing
semiconductors in the 1980s and 1990s when the device
size followed Moore’s law (Moore, 1998). During that time,
researchers were expected to understand the issues to be resolved
in each generation of the device, deliberate about how to
overcome them by referring to the previous generations, ideate,
and demonstrate the feasibility of the ideas by making samples.
At each stage, competitors were declaring new ideas or releasing
products in the market. If researchers offer indispensable ideas
for each shrink-related issue, the company could maintain its
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FIGURE 5 | Co-inventor network of star researchers. Each star researcher is placed in the technology layer more closely related to their achievements.

competitiveness through patents and related products. Designing
the device structure is critical for device fabrication, performance,
and circuit. For example, dynamic random-access memory
(DRAM) is a generation-type development, and the density of the
memory capacity increases gradually by leveraging the shrinkage
of the device size. For this type of innovation, it may be an
appropriate strategy to focus on R&D in the same layer.

In Figure 5, we can also find linkages among different layers.
For instance, researcher-A has multiple interactions with other
stars, indicating that he helped other stars. The collaborations
included several types of contributions as mentor, manager,
or adviser for the patents, although this cannot be observed
from the linkage itself. According to the co-invention patent
analysis, researchers who had achieved outstanding outcomes
at an early stage in their careers were almost always affected
by other star researchers. This provides further evidence on the
contribution of a diversified technology source of prior art in
generating innovative outputs (Battke et al., 2016). Although this
has been observed previously with patent citations, in this study
we observe it through collaboration ties.

Even during incremental innovations in the semiconductor
industry during 1980s and 1990s, communication among
different technological layers was indispensable. Process
researchers needed to discover ways to fabricate smaller devices
through discussions with equipment manufacturers. Device
researchers collaborated with process researchers to check the
feasibility of the implementation of the device structure and
passive components. Circuit designers worked on low voltage
operations with a smaller die size to produce competitive
products. Critical issues like the hot-carrier, short channel effect,
and even quantum effects could arise for device operations
when miniaturizing the device. Our results also suggest the

importance of interactions among stars, while there is no
apparent spillover effect between stars and non-star researchers.
This is in line with research suggesting that large in-house
capabilities compensate for the lack of spillover from the outside
(Grillitsch and Nilsson, 2015), while small and medium size
firms benefit from external spillovers based on geographical
proximity (Aldieri and Vinci, 2017). In this case, the company
is self-sufficient in providing a collaboration network of
skilled researchers.

Finally, we tackle performance during the later stage of
career development. After a research engagement of more than
15 years, star researchers’ productivity decreased. Among the
possible causes, we discussed that excellent researchers moved
to managerial positions at a later stage of their career. The fact
is that, in this study, there are a smaller number of highly-
cited patents submitted by researchers at the later stage of their
career. However, the issue is about measuring the creative efforts
of managers. We cannot declare that there is a decline in the
individual’s intrinsic creativity, but we still lack the means to
properly measure the creative outputs of managers. Moreover,
patent activity may only be a part of the story.

Another reason for the decline is due to changes in themarket.
If a company’s efforts to position its proprietary technology fails,
then it shouldmove to a new technology. Therefore, if researchers
lose in their race for development, not only would they lose
their ideas, but expertise also becomes less valuable, and many
employees would lose their jobs. In the present case study, the
company was engaged in developing CMOS technologies, which
were competing against technologies such as NMOS or III-V
compound semiconductors, while the other technologies would
have captured the market, the interpretation in this study may
have been very different.
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CONCLUSION

In this study, we analyzed the characteristics of star researchers in
a Japanese semiconductor company. We analyzed a collaborative
network of 6,057 inventors who coinvented multiple of
the 44,636 semiconductor-related patents granted in Japan.
A group of selected 136 inventors was identified for their
remarkable results in terms of patent productivity and impact.
A comparison of their collaboration patterns during their
career with other inventors with modest contributions helped
to uncover the key features of those star researchers. High
exposition and collaboration with other stars researchers
are the most relevant characteristics that define their
remarkable careers.

Additionally, we focused on a selected subset of 15
star researchers based on the recognition of the expert
community through awards obtained and belonging to the
same R&D division in the company. Analysis of the star
researchers’ patenting activity shows that outstanding outcomes
were obtained after continued engagement on the same
or similar topic for 10–15 years. This moment of high
production of patents is preceded and followed by periods
of comparatively modest productivity. In other words, a hot
streak of productivity exists in the context of new product
development. Also, we analyzed the knowledge spillover effect
of star researchers on co-inventors. Due to a narrow view
from the perspective of a single R&D division, the spillover
effects could not be directly observed. However, a complete
picture of the collaboration ties across the company shows the
positive influence of life-long exposition and collaboration with
star researchers.

The factors necessary for developing star researchers
remain uncertain. Interviews conducted with highly productive
researchers or their supervisors tend to point to mentoring by
talented professors during their early career stage, the company’s
market competitiveness, an atmosphere or a sense of crisis and
spirit to be the best, and a stimulating research environment.

The phenomenon of hot streaks has also been found in the
careers of artists and academics (Liu et al., 2018). The present
article shows that it also exists in industries. However, the key
difference between productive professionals in other areas is the
fact that industry hot streaks, at least for inventors in this case
study, tend to appear during a fixed time, after about 10 years
of work and not randomly. Moreover, this peak of achievement
depends on accumulating expertise in the same area. Hence,
changing career or research direction in the same company
may be detrimental to a researcher’s achievements. Companies

must develop strategies to provide their researchers with a stable
environment in the long term.

As evident from this study, developing young researchers and
passing on the knowledge and experience of interactions among
star researchers is the key to a sustainable research process and
industrial outcomes. Thus, in addition to talent, an environment
that stimulates interaction among the members, regardless of the
stages of their career development, is necessary.

The present study aimed to explain the relationship between
high-impact productivity and the duration of a researcher’s
engagement, and several factors that are perceived to be relevant
when becoming a star researcher. However, the results presented
are limited in scope and aim to outline avenues for future
research. For instance, this paper is a specific case study for a
prolific Japanese semiconductor company and, more specifically,
for researchers in one of its R&D divisions. Other companies
in different industries and regions may have their own path-
dependent strategies; thus, several other parameters must be
studied to reach generalizable results. Our data rely on inventors’
collaborative patterns.While patent productivity is staple data for
related studies, the impact of patents may extend beyond patent
citations. Filing patents in other countries, patent litigation, or
patent-licensing are other indicators of impact worth exploring.
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