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Abstract

By modifying and calibrating an active vertex model to experiments, we have simulated

numerically a confluent cellular monolayer spreading on an empty space and the collision of

two monolayers of different cells in an antagonistic migration assay. Cells are subject to iner-

tial forces and to active forces that try to align their velocities with those of neighboring ones.

In agreement with experiments in the literature, the spreading test exhibits formation of fin-

gers in the moving interfaces, there appear swirls in the velocity field, and the polar order

parameter and the correlation and swirl lengths increase with time. Numerical simulations

show that cells inside the tissue have smaller area than those at the interface, which has

been observed in recent experiments. In the antagonistic migration assay, a population of

fluidlike Ras cells invades a population of wild type solidlike cells having shape parameters

above and below the geometric critical value, respectively. Cell mixing or segregation

depends on the junction tensions between different cells. We reproduce the experimentally

observed antagonistic migration assays by assuming that a fraction of cells favor mixing, the

others segregation, and that these cells are randomly distributed in space. To characterize

and compare the structure of interfaces between cell types or of interfaces of spreading cel-

lular monolayers in an automatic manner, we apply topological data analysis to experimental

data and to results of our numerical simulations. We use time series of data generated by

numerical simulations to automatically group, track and classify the advancing interfaces of

cellular aggregates by means of bottleneck or Wasserstein distances of persistent homolo-

gies. These techniques of topological data analysis are scalable and could be used in stud-

ies involving large amounts of data. Besides applications to wound healing and metastatic

cancer, these studies are relevant for tissue engineering, biological effects of materials, tis-

sue and organ regeneration.

Author summary

Confluent motion of cells in tissues plays a crucial role in wound healing, tissue repair,

development, morphogenesis and in numerous pathological processes such as tumor
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invasion and metastatic cancer. For such complex processes, controlled experiments help

clarifying the roles of chemical, mechanical and biological cues. Among them, spreading

of cellular tissues on an empty space and antagonistic migration assays between cancerous

and normal cells are quite revealing. The interfaces between confluent cellular aggregates

uncover properties thereof when a combination of modeling, numerical simulation and

data analysis is used. Here we have modified an active vertex model with a dynamics that

includes inertia, friction and active forces that tend to align cells based on interaction with

its immediate neighborhood. Selecting appropriately junction tensions among cells and

using the SAMoS software, we have succeed in simulating assays of cellular tissue spread-

ing on an empty space and the invasion of healthy tissue by cancerous one. We have

introduced topological data analysis to characterize, track and compare in an automatic

manner the interfaces of the tissue both in numerical simulations and from experimental

data of normal and Ras modified precancerous Human Embryonic Kidney cells. We find

good agreement when normal cells are solidlike and modified cells are liquidlike accord-

ing to their shape parameters. In addition, cell variability means that a fraction of ran-

domly distributed cells favor mixing, the others segregation. Topological data analysis

techniques are scalable and could be used in studies involving large amounts of data.

Besides applications to wound healing and metastatic cancer, these studies are relevant

in ascertaining how the biophysical features of materials may affect tissue and organ

regeneration.

Introduction

Confluent motion of epithelial cell monolayers [1–28] is crucial in many biological processes,

such as morphogenesis [3, 26], biological pattern formation [9, 23], biological aggregation and

swarming [17, 21], tissue repair [6, 18, 19], development [4], and tumor invasion and metasta-

sis [1–3, 28]. It serves as a relatively simple paradigm for collective motion of cells that retain

their cell-cell junctions as they move on a two dimensional (2D) substrate. Confluent cellular

motion can be tracked and visualized in experiments. Velocity and stress fields can be obtained

by particle imaging velocimetry (PIV), time resolved cellular motion is observed using time-

lapse imaging and fluorescence microscopy, traction microscopy allows to measure the forces

that cells exert on the substrate as they move [5, 6, 15]. Collective cell migration also poses

challenging questions in soft and active matter physics, as it may exhibit fluid, solid or glass

behavior with interesting flocking and jamming/unjamming transitions [12, 20, 29–35]. Inter-

esting dynamics occurs as an epithelial cell aggregate advances through an empty space, as in

wound healing, or it collides and encroaches a different tissue, as in cancer invasion. Advanc-

ing cellular fronts may display wave phenomena [15, 36], grow fingers [16, 37, 38], or break-

down and interpenetration against an oppositely moving front [22, 27]. Different aspects

of these phenomena have been studied by models ranging from macroscopic continuum

mechanics to detailed subcellular agent models [25, 29, 37, 39, 40].

Here we combine particle dynamics [16] with the active vertex model (AVM) [39] to pro-

vide a cellular dynamics perspective on monolayers colliding in antagonistic migration assays

(AMA) [22, 27] or on monolayers spreading over an empty space [11, 16, 37, 38]. The resulting

model describes the collective migration dynamics of a large number of cells and implements

exchanges of neighboring cells automatically (T1 transitions) [39]. In contrast to the usual

overdamped dynamics in the AVM, the dynamics of the cell centers is underdamped. The

underdamped AVM incorporates internal dissipation of cells through a friction parameter, a
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Vicsek-like velocity alignment of neighboring cells [30, 41, 42], noise and and active forces

that may include cell polarity. We calibrate its parameters so that the simulations agree with

experiments. Parameters for collective migration to an empty space are calibrated for Madin-

Darby canine kidney (MDCK) cells [10, 16]. In AMA between MDCK cells, Ras modified

cells collapse and are pushed backward by normal cells, which detect the former by an ephrin

related mechanism [22]. The repulsive interactions between the two cell types drives cell segre-

gation, produce sharp borders [24], and may generate deformation waves at the interface

between the two cell types that propagate across the monolayers [36]. In agreement with exper-

iments in the literature, simulations of spreading test with our model exhibit formation of

fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order

parameter and the correlation and swirl lengths increase with time, all of which has been

observed in experiments [10, 11, 16, 37, 38, 43]. Our model is quite flexible, which gives it

some advantages when describing behavior across different scales. Compared with particle

models with underdamped dynamics, our model does not require introducing leader cells [16]

to account for fingering instabilities. Compared to continuum models [38], stochasticity

enables our model to reproduce the observed spatial autocorrelation of the velocity [11]. Simu-

lations of our model show that cells in a finger of a moving interface may exhibit fast irregular

oscillations in their velocity (periods of about one hour). This has been reported in early exper-

iments [43]. Our underdamped dynamics also predicts that cells inside an aggregate spreading

onto an empty space have smaller area than those at the tissue interface. This prediction has

been corroborated by experiments [44]. Simulating the AVM with overdamped dynamics, we

observe the opposite: cells at the interface and fingers have smaller are than cells inside the tis-

sue [39].

In AMA with Human Embryonic Kidney (HEC) cell assemblies, precancerous Ras modi-

fied cells displace normal cells [27]. These latter experiments have been interpreted using

continuum mechanics in a simple biophysical model through phenomenological couplings

[38], without recourse to biochemical signaling mechanisms and without clear relations to

cellular processes. In this paper, we consider wild type (wt) HEC cells to be solidlike whereas

invading Ras cells are fluidlike and push the former backward. Experiments show that wt

HEC cells keep their shape and area quite unchanged whereas Ras HEC cells may change

shape and undergo larger deformations. This enforces our characterization of wt and Ras

HEC cells as solidlike and fluidlike, respectively. As time elapses, there are cell exchanges

and islands of one cell type form inside the tissue of the other cells, which characterizes a

flocking liquid state [32, 34, 40]. In AMA with MDCK cells, the roles are inverted: Ras cells

are solidlike and wt cells are fluidlike. The precise form of the separating interface among

monolayers of different cell type depends on cell parameters governing segregation vs aggre-

gation of these cells. We characterize it by topological data analysis (TDA). A measure of

cellular diversity in the junction tensions produces islands of one type of cells inside the

monolayer of the other cells, which is reflected in TDA of simulations and experiments.

Cell cohesion given by the underdamped AVM, the cell alignment rule and the active noise

force produce fingers in interfaces during assays of cell invasions of empty spaces rendering

unnecessary to assume a different phenotype for lead cells [16]. Recapitulating, our model

explains a wide variety of experiments on confluent motion of cellular aggregates onto free

space (wound healing) and invasion of one aggregate by another (antagonistic assays, can-

cer). It does this by choosing judiciously physical parameters such as cellular junction ten-

sion, adhesion and those in active forces. Fine tuning of parameters may require a deeper

study of experimental data. One promising area where our results are very relevant is the

study of the biophysical features of materials as they affect tissue and organ regeneration

(materiobiology, tissue engineering) [45].
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Recent experiments have connected metastasis in colorectal cancer to wound healing and

tumor invasion of tissue using appropriate molecular markers [28]. Thus, our description of

spreading of cellular tissue and antagonistic migration assays using our modified active vertex

model might be relevant for metastatic cancer. In particular, we have shown the role of cellular

junction tensions in cell invasion, agglomeration and segregation. Promising mechanisms

include Notch signaling pathways [46] and models of the epithelial-mesenchymal transition

and cancer stem cell formation [47, 48]. Incorporating these cellular mechanisms to our vertex

model may pave the way to future progress in this area, much as incorporating the Notch sig-

naling pathway to cellular Potts models helps understanding many aspects of angiogenesis

[49]. Understanding precise biochemical mechanisms influencing cell-cell contact and conflu-

ent cellular tissue may help develop therapies for metastatic cancers [48].

When studying spreading and collisions between cellular aggregates, the interfaces become

rough and can shed and absorb groups of cells. It is important to be able to track automatically

these changes for long time numerical simulations and experiments generate large data sets

that is hard to visualize and follow. For the first time in studies of confluent motion of cellular

aggregates, we use topological data analysis of time series generated by numerical simulations

to automatically group, track and classify the advancing interfaces of cellular aggregates. Topo-

logical changes in the interfaces are reflected in barcodes and persistence diagrams of clusters

and holes that change with scales (filtration parameters) [50, 51] and themselves evolve in

time. We track and study these changes by means of bottleneck or Wasserstein distances [51,

52]. Measuring these changes with time in data available from experiments and comparing

with data from numerical simulations allows characterizing milestones in confluent motion of

aggregates and the important time scales involved. In this work, we use techniques of topologi-

cal data analysis with some data taken from experiments and a modest amount of data from

numerical simulations so as to explain techniques and results in a clear manner. However, our

techniques are scalable and could be used in studies involving large amounts of data, as, for

example, those generated to characterize zebrafish patterns by combining machine learning

and topological data analysis [53].

The paper is organized as follows. The Section Mathematical Model describes the models we

simulate. The numerical values of the parameters are calibrated so as to reproduce experimental

observations of collective cell migration in two different cases: an aggregate spreading to an

empty space and the collision of two different cellular monolayers in antagonistic migration

assays. The Results and discussion section contains the numerical simulations, the characteriza-

tion of the structure of advancing and interpenetrating cell fronts by means of topological data

analysis, and our conclusions. The Methods section provides additional background on topo-

logical data analysis for the readers’ ease of use, and it details our study of evolving interfaces of

a spreading aggregate by taking slices of cells near the front.

Mathematical model

We modify an active vertex model (AVM) [39] and simulate it by adapting the SAMoS soft-

ware [54]. The AVM combines the Vertex Model (VM) for confluent epithelial tissues [29, 55]

with active matter dynamics [39]. Sometimes what we call AVM following Ref. [39] is called

an active self-propelled Voronoi model [40]. Let us describe first the VM, then the AVM and

our modification of its dynamics.

Vertex model

The VM assumes that all cells in the epithelium are roughly the same height and thus that the

entire system can be well approximated as a two-dimensional sheet. The conformation of the
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tissue in the VM is computed as a configuration that simultaneously optimizes area and perim-

eter of all cells. Two neighboring cells share a single edge, which is a straight line. Three junc-

tion lines typically meet at a vertex, although vertices with a higher number of contacts are also

possible. The model tissue is therefore a mesh consisting of polygons (i.e., cells), edges (i.e., cell

junctions), and vertices (i.e., meeting points of three or more cells). Each configuration of the

mesh has the following associated energy

EVM ¼
XN

i¼1

Ki

2
ðAi � A0

i Þ
2
þ
Gi

2
P2

i

� �

þ
X

hm;ni

Lmn lmn: ð1Þ

Here N is the total number of cells, Ai is the area of the cell i, A0
i is its reference area, and Ki is

the area modulus, i.e., a constant with units of energy per area squared measuring how hard it

is to change the area of the cell. Pi is the cell perimeter and Γi (with units of energy per length

squared) is the perimeter modulus that determines how hard it is to change perimeter Pi. lμν is

the length of the junction between vertices μ and ν, and Λμν is the tension of that junction

(with units of energy per length). The sum in the last term is over all pairs of vertices that share

a junction. Note that the model allows for different cells to have different area and perimeter

moduli as well as reference areas, allowing for modelling of tissues containing different cell

types. The cell area and perimeter can be written in terms of vertex coordinates. Thus, vertex

positions together with their connectivities uniquely determine the energy of the epithelial

sheet. The main assumption of the VM is that the tissue will always be in a configuration

which minimizes the total energy in Eq (1). To implement the VM, we determine the positions

of vertices that minimize EVM for a given set of parameters Ki, Γi, and Λμν. Cell rearrangements

are modelled by introducing moves that change appropriately the connectivity among cells.

While the moduli Ki and Γi are positive, Λμν< 0. When the cell i shares junctions only with

others of the same type, ∑hμ, νiΛμν lμν = Λμν∑hμ, νi lμν = Λμν Pi, and this term can be put together

with the perimeter term, thereby yielding
Gi
2
ðPi � P0

i Þ
2

plus an unimportant constant, provided

P0
i ¼ � Lmn=Gi > 0. Thus the junction tension Λμν determines the target perimeter of a type of

cell. Let us assume that there are two cell types, 1 and 2, with moduli Kj, Γj, j = 1, 2, Λ11, Λ22,

Λ12, and target areas and perimeters A0
j , P

0
j , j = 1, 2, respectively. We can complete squares and

drop additive constants, thereby obtaining

EVM ¼
X2

j¼1

XNj

ij¼1

Kj

2
ðAij
� A0

j Þ
2
þ
Gj

2
ðPij � P0

j Þ
2

� �

þ ð2L12 � L11 � L22Þ
X

hm;ni

lmn; ð2Þ

in which N1 + N2 = N.

Clearly, Λ12 < (Λ11 + Λ22)/2 implies that energy is minimized when the number of junc-

tions between both types of cells increases. Cells of different types therefore tend to mix. Con-

versely, when Λ12 > (Λ11 + Λ22)/2 cells of different type segregate, as suppressing junctions

between cells of different type minimizes energy. There is also a competition between the two

first terms in Eq (2) to minimize energy. Assume Λ12 = (Λ11 + Λ22)/2 and therefore the last

term in Eq (2) vanishes. The shape index p0
j ¼ P0

j =
ffiffiffiffiffi
A0
j

q
¼ jLjjj=ðGj

ffiffiffiffiffi
A0
j

q
Þ controls the ratio of

the type j cell perimeter to its area. For the VM, the value p0� = 3.812 (which corresponds to

pentagons) separates solidlike and fluidlike behavior of the tissue [31]. For p0 < p0�, cortical

tension is prevalent over cell-cell adhesion, cells do not exchange neighbors and the monolayer

is solidlike. For p0 > p0�, cell-cell adhesion dominates, neighbor exchanges occur, and the cel-

lular tissue behaves like a fluid [31].
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Active vertex model

To introduce dynamics in the VM, we have to go from polygon vertices rμ to polygon centers

that represent cells, ri, consider these centers as particles and introduce dynamics for them

[39]. In this, the AVM is similar to the self-propelled Voronoi model [31]. The core assump-

tion of the AVM is that the tissue configurations that optimize the energy in Eq (1) correspond

to the Voronoi tessellations of the plane with polygons as cells and cell centers acting as Voro-

noi seeds. Given a Voronoi tessellation, we consider its dual Delaunay triangulation, compris-

ing Voronoi seeds and the edges joining them (triangles), which have the property that no

seed is inside the circumcircle of any triangle; see Fig 1. From a Voronoi tesselation it is

straightforward to obtain the dual Delaunay triangulation and vice versa. However, working

with Delaunay triangulations has an advantage: they retain their nature when triangle vertices

move by flipping edges conveniently [39], whereas Voronoi tessellations do not. The latter

Fig 1. Voronoi tessellation and Delaunay triangulation. (a) Here rμ are vertices of polygons in the Voronoi tessselation and ri are

centers of polygons that are vertices of Delaunay triangles. Here the zoom of a monolayer shows (b) the Voronoi tesselation and

the Delaunay triangulation.

https://doi.org/10.1371/journal.pcbi.1008407.g001
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have to be reset after motion of polygon vertices. In the AVM, the area Ai in Eq (1) of the cell i
is the area of the associated Voronoi polygon, Oi, given by the following discrete version of

Green’s formula:

Ai ¼
1

2

X

m2Oi

ðrm � rmþ1Þ � Ni; ð3Þ

where rμ is the position of vertex μ, and Ni is a unit vector perpendicular to the surface of the

polygon. For the 2D tissue Ni is directed along the z axis and therefore does not depend on the

position of the vertices. The sum in Eq (3) is over all vertices of the Voronoi cell and we close

the loop with μ + 1 = 1 when μ equals the total number of vertices in the cell, NOi
. The cell

perimeter is

Pi ¼
1

2

X

m2Oi

jrm � rmþ1j: ð4Þ

The relation between the vertices rμ of the Voronoi polygons (i.e., cells) and the vertices ri of

the Delaunay triangles (seeds of the Voronoi polygons, i.e., cell centers) is

rm ¼
l1ri þ l2rj þ l3rk
l1 þ l2 þ l3

: ð5Þ

Here ri, rj and rk are position vectors of the corners of the triangle and λi, i = 1, 2, 3, are the

barycentric coordinates; cf. Fig 1, and Ref. [39] for details. The forces Fi ¼ � rri
½EVM þ

Vsoftðjri � rjjÞ� are [39]

Fi ¼ �
XN

k¼1

Kk

2
Ak � A0

k

� �X

n2Ok

½rnþ1;n� 1 � Nk�
T @rn
@ri

� �

�
XN

k¼1

GkPk
X

n2Ok

ðr̂n;n� 1 � r̂nþ1;nÞ
T @rn
@ri

� �

�
XN

k¼1

X

n2Ok

½Ln� 1;nr̂n;n� 1 � Ln;nþ1r̂nþ1;n�
T @rn
@ri

� �

þk
X

hj;ii

ð2a � jri � rjjÞ
ri � rj
jri � rjj

Yð2a � jri � rjjÞ:

ð6Þ

Here
@rn
@ri

h i
is the 3 × 3 Jacobian matrix connecting coordinates of cell centres with coordinates

of the dual Voronoi tessellation, and the non-commutative row-matrix product [�]T [�] is a

3 × 1 column vector. Θ(x) = 1 if x> 0, else Θ(x) = 0, is the Heaviside unit step function. We

have included a range repulsive force of short range a that avoids self intersections of the trian-

gulation for very obtuse triangles [39].

In the AVM, the usual dynamics for the cell centers is a gradient flow of the energy in Eq

(1), that is overdamped dynamics with forces Fi given by Eq (6), plus active forces fa ni, and

stochastic forces νi [39]

g _r i ¼ fani þ Fi þ ni; gr
_y i ¼ ti � Ni þ n

r
i ðtÞ; ð7Þ

where _r i ¼ dri=dt, τi is the torque acting on the polarity ni = (cos θi, sin θi), Ni is the local nor-

mal to the cell surface (the unit length vector in the z-direction), γr is the orientational friction,

and nri ðtÞ is a zero mean Gaussian white noise responsible for orientational randomness, such
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that hnri ðtÞn
r
j ðt
0Þi ¼ 2Drdijdðt � t0Þ. Terms aligning cell velocity or shape to polarity or terms

aligning the polarity of different cells can be included in the energy of Eq (1) [39]. A particu-

larly simple dynamics follows from fa = v0 (constant active force), νi = τi = 0 [31]. The AVM

describes naturally cell motion and accounts for patterns of the confluent tissue observed on

multiple scales, from cell sizes to much larger distances. Furthermore, cell contacts are gener-

ated dynamically from the positions of cell centers.

Dynamics including velocity alignment and inertia

In this work, we shall modify the AVM dynamics. Instead of Eq (7), we shall use the particle

dynamics of Ref. [16] but with different forces between particles. As discussed in Ref. [56], tra-

jectories of motile cells can be explained by assuming that their acceleration is a certain func-

tional of velocity. Despite the mass of the cell being so small that inertia is negligible compared

with typical forces exerted on the cell, the formula for acceleration resembles Newton’s second

law [56]. In this formula, a linear damping term represents dissipative processes coming from

friction with substrate, with other cells, or rupture of adhesion bonds. Active memory terms,

which are linear in the velocity, may propel single cells and account for the observed non-

monotonic velocity autocorrelation [56]. When considering cellular tissue, Sepúlveda et al
model cells as actively motile particles and replace the memory terms by Vicsek-like alignment

“forces” [41], and interparticle and random “forces” [16]. Thus, the acceleration in these mod-

els is a consequence of the collective motion of cells and the interaction with the environment

and it does not follow from Newton’s second law with a mass given by that of a single cell.

However, we will continue denoting by forces (per unit mass) the terms comprising the accel-

eration [16]. In contrast to Eq (7), the cells in Ref. [16] are not self-propelled, so that they can

stop their motion and start moving again if there are missing cells in their neighborhood and

the active force is zero:

_r i ¼ vi; _v i ¼ � avi þ
X

hj;ii

b

ni
ðvj � viÞ þ f ij

� �

þ φi þ s0ηiðtÞ; t _η i ¼ � ηi þ ξiðtÞ: ð8Þ

Here, the sum is over the nearest neighbors of the vertex i of the Delaunay triangulation, ni is

the number of these neighbors, the friction coefficient α comes from internal cell friction or

adhesion to the substrate or other cells. The term containing the coefficient β tries to syn-

chronize the velocity of the nearest neighbor cells that of the ith cell and it is similar to the

Vicsek model [30, 41, 42, 57]. fij is the force per unit mass exerted by cell j on cell i. In our

simulations we use ∑hj, ii fij = Fi/mi, where Fi is given by Eq (6), and not by an interparticle

potential as in Ref. [16]. mi is a reference mass, for example mi ¼ gg
2
r=Dr: The active forces

are φi + σ0 ηi(t). In Ref. [16], φi = 0 and ηi(t) is a zero mean Ornstein-Uhlenbeck noise, repre-

senting a stochastic force with nonzero correlation time τ. ξi(t) is a zero-mean delta-corre-

lated Gaussian white noise. For spreading tests, we have used the numerical values of the

parameters indicated in Table 1. For antagonistic migration assays, we have used the numeri-

cal values collected in Table 2. As we shall see in the description of the numerical simula-

tions, the dynamics given by Eq (8) with our choice of forces allows us to reproduce many

features observed in experiments.

Table 1. Parameters corresponding to the experiments with MDCK cells in Ref. [16].

α β τ σ0 K Γ Λ λ l0 z

h−1 h−1 h mm
h3=2 - - - - - -

0.534 41.36 0.56 95 1 0.1 -1 0.1 0 0.5

https://doi.org/10.1371/journal.pcbi.1008407.t001
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Boundaries

The cells at the boundary between a cellular monolayer and an empty space, or between tis-

sues, are special. They may form actin cables, thereby having a line tension and a bending stiff-

ness [39]:

Elt ¼
1

2

X

hi;ji

lijðlij � l0Þ
2
; ð9Þ

Ebend ¼
1

2

X

i

ziðyi � pÞ
2
; cosyi ¼

rji � rki
jrjij jrkij

: ð10Þ

Here the modulus λij is the line tension of the edge connecting vertices i and j, lij = |rij| (rij = ri

− rj) is the edge length (of preferred magnitude l0), zi is the bending stiffness of angle θi at the

boundary particle i, and rj and rk are the positions of boundary particles to the left and to the

right of particle i. The line tension energy of Eq (9) tries to keep boundary edges at a length l0
whereas the bending energy of Eq (10) tries to keep the boundary line flat. The sums in these

formulas are over boundary particles only and we assume that each boundary cell has exactly

two boundary neighbors [39].

Initial condition

A random configuration of the particles comprising a confluent cell monolayer is usually

different from those configurations observed in experiments. Thus, we have to carry out an

initialization stage until the particle configuration is compatible with their observed velocity

distributions. For spread tests, we proceed as follows. We set a square box of size 1 mm2

area, N� 4000 particles (comparable to the number of cells in the experiments), the packing

ratio and the particle mean velocity. Then, we numerically solve Eqs (1) and (8) with forces

φi = 0 and ∑hj, ii fij = Fi/mi, Fi given by Eq (6), until the velocity probability density functions

(PDFs) of the experiments are fitted. The parameters adjusted to the experimental data at

early time (30 min after stencil removal) are listed in Table 1. We stop the initialization

stage when the distribution of mean distances between particles is close to the initial distri-

bution as observed in experiments and displayed in Fig 2. From this simulation, we obtain

the particle positions ri and solve the underdamped AVM with forces given by Eq (6) and

initial random directions for the particle velocities. As we can see in Fig 3, the velocity field

obtained from the simulations, Fig 3(b), is very similar to that measured by PIV analysis

[16], Fig 3(a).

For AMA, we choose a random configuration having the same number of wt and Ras cells

separated by a vertical straight line and we set a known velocity distribution from experiments

[27]. This represents the situation of the two monolayers when they first make contact. See

details in the next section.

Table 2. Two sets of parameters corresponding to the experiments with HEK cells in Ref. [27].

α β τ σ0 Kj Γj Fig #

h−1 h−1 h mm
h3=2 - - -

0.0602 13.85 1.66 55.88 1 1 8

0.42 0.602 1.66 13.97 1 1 9, 10

https://doi.org/10.1371/journal.pcbi.1008407.t002
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Results and discussion

We have simulated two different tissue configurations: (a) a cellular monolayer spreads over

an empty space, and (b) two monolayers comprising wild type and modified cells collide. In

each case, the simulations are compared to relevant experimental observations.

Numerical simulations for the spreading configuration

Inspired by wound healing phenomena and experiments on tissue scratching, we are inter-

ested in the movement of an epithelium which encroaches on a virgin substrate. The

Fig 2. Probability distribution function (PDF) for particle velocities: (a) vx, (b) vy, (c) v = |v|; and (d) mean distance d between neighboring particles; after the

initialization procedure (red triangles) as compared to the experimentally observed PDF (black line) [16]. Parameter values are those in Table 1.

https://doi.org/10.1371/journal.pcbi.1008407.g002
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experimental protocol consists of microfabricated stencils whose removal increases the motil-

ity of the epithelium. In our simulations, we consider a narrow strip configuration as that in

Fig 4(a), which is similar to those in Ref. [43]. We adapt the SAMoS code [54] to simulate the

AVM with dynamics given by Eqs (8) and (6), in which φi = 0. Parameter values are those in

Table 1. Cells migrate on the surface maintaining their junctions with their neighbors, which

is enforced by the term proportional to β in Eq (8). During healing, noisy forcing in Eq (8)

makes some cells to move faster that the others while keeping their contacts. This is the origin

of the fingers or instabilities of the interface with the cell free space, which are illustrated by Fig

4(b), see S1 Video for the complete time evolution. In addition, cells on the interface, or close

to it, may grow beyond the target area A0 in Eq (1). As they do so, each cell has a probability to

divide into two daughter cells, which equals rd(A − A0)dt. Here dt is the time step and rd is the

division rate. We have normalized the target area to A0 = π, dt = 0.05, rd = 0.01, and we check

whether the cell divides with ten times the above probability every 10 time steps that we

observe A> A0. With these parameters, there is some cell division near the interface of the

confluent layer and the empty space.

After two hours of stencil removal, the PIV recorded from the experiments reveals the com-

plex movements that can appear inside the bulk of the tissue, cf. Fig 2A of Ref. [10]. Cells do

not move independently and their velocities are correlated. The presence of these cellular

Fig 3. Velocity field obtained from (a) experiments [16], (b) simulations after the initialization procedure. Parameter values are those in Table 1.

https://doi.org/10.1371/journal.pcbi.1008407.g003
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Fig 4. Initial configuration and configuration after 20 h of stencil removal showing the formation of fingers according to the

numerical simulation of the model. (a) Full view, (b) zoom. Initial box size is 1.6 mm2, P0 = 10, A0 = π, and shape index p0 = 5.65.

Parameter values are those in Table 1. See S1 Video.

https://doi.org/10.1371/journal.pcbi.1008407.g004
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flows shows the existence of motion inside the monolayer [11]. Similar to experiments, our

simulations in Fig 5 show that incipient fingers appear in areas of high speed; see also S2

Video. In our simulations, we find these areas without having to postulate the existence of spe-

cial leader cells. Having calculated numerically the velocity field, we can quantify the orienta-

tional motion inside the epithelium. Take for example, the configuration after 35 h of stencil

removal shown in Fig 6. In addition to the velocity field and the speed (modulus of the

Fig 5. Cell velocity field after 2 h of stencil removal in an invasion configuration calculated from simulations of the model with the parameters of Fig 4 and

Table 1. (a) Phase contrast visualizing cells, (b) profile of cell speed (modulus of velocity), (c) velocity field. These panels should be compared with those obtained from

experimental MDCK data in Fig 2A of Ref. [10].

https://doi.org/10.1371/journal.pcbi.1008407.g005

Fig 6. (a) Numerically simulated cell velocity field, (b) local polar order parameter cosϑi, and (c) speed (|v|) map after

35 h of stencil removal in an invasion configuration for a 400 μm wide strip. Parameter values as in Fig 5. See S2 Video.

https://doi.org/10.1371/journal.pcbi.1008407.g006

PLOS COMPUTATIONAL BIOLOGY Tracking collective cell motion by topological data analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008407 December 23, 2020 13 / 43

https://doi.org/10.1371/journal.pcbi.1008407.g005
https://doi.org/10.1371/journal.pcbi.1008407.g006
https://doi.org/10.1371/journal.pcbi.1008407


velocity vector) map, we have depicted a density map of the polar order parameter Spol,

Spol ¼
1

N

XN

i¼1

cosWi; cosWi ¼
vxðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vxðiÞ
2
þ vyðiÞ

2
q : ð11Þ

Here ϑi is the angle that the velocity vector of the ith cell forms with the outer normal to the

strip (the x axis in Fig 4). Fig 6(b) depicts the density plot of the cellular polar order parameter,

cosϑi, after 35 h of stencil removal (similar to experimental data reported in Fig 92 of

Ref. [43]). Fig 7 shows that an ensemble average of the polar order parameter (over 5 realiza-

tions, smooth line) increases with time and follows the same trend as the measurements

reported in Ref. [10] (jagged line). At early times, Spol in Fig 7 does not exhibit a particular

trend. The angles are distributed homogeneously and are not located in specific areas. After a

while, the cells start orient themselves perpendicular to the strip, specially at the edges of the

tissue, as shown in Fig 6. This effect occurs in strips of width larger than 300 μm. On shorter

strips, their two sides are no longer independent and the appearance of a finger changes the

motion of the whole strip.

The fronts of advancing cells in Figs 5 and 6 clearly show the formation of fingers. The

AVM keeps cells together while the term proportional to β in Eq (8) induces a common aver-

age direction in their motion. This effect becomes stronger the larger β is, which promotes and

enforces finger formation. Thus, unlike the particle model of Ref. [16], we do not need a longer

range attractive potential interaction between cells. We do not need to distinguish leader cells

to trigger finger formation [16] because advancing cells at the forefront of the monolayer pull

those behind them. A comparison of our simulation results in Figs 5 and 6 to the experiments

reported in Refs. [10, 43] shows that the appearance and size of the cell velocity field are

Fig 7. Evolution of the polar order parameter Spol(t) corresponding to Fig 5. Here t = 0 corresponds to 1.5 h after stencil removal

[10]. An average over 5 simulations exhibits the same trend as measurements reported in Ref. [10] (jagged line).

https://doi.org/10.1371/journal.pcbi.1008407.g007
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reproduced qualitatively. Our simulations show that the area and velocity of cells both increase

as their distance to the boundary of the cellular tissue decreases. Fig 8 shows that cells near the

interface in a spreading configuration have larger areas than cells far from the interface. This is

particularly noticeable in the fingers: the cells in them are faster and have a larger area than the

cells elsewhere. The cells far from the tissue border are compressed and have smaller area than

boundary ones. This prediction of the underdamped AVM with dynamics as in Eq (8) has

been observed in experiments; see Fig 4 of Ref. [44]. In experiments, the area of finger cells

reaches larger values than in the simulations, which is related to the fact that we use a fixed tar-

get area for all cells and the cell area cannot depart arbitrarily far from target in the AVM. We

have also simulated the AVM with the overdamped dynamics of Eq (7) and with the same

boundary and initial conditions. In this case, after fingers are formed as in Fig 6 of Ref. [39],

the interior cells far from the interface have larger area than cells at the boundary and in the

fingers. This is also shown in Fig 8 of Ref. [39]. However, this behavior is contrary to experi-

mental observations [44].

Our numerical simulations of spreading configurations show that the cells inside a finger

move faster than those at other portions of the interface. We have observed that the average

velocity of finger cells may oscillate irregularly about some average value with a short period of

about one hour. Fig 9 shows the average velocity of 9 finger cells during a 7 hour time interval.

The velocity of a single cell in the finger oscillates somewhat more irregularly in a similar fash-

ion. For much longer time intervals, the average velocity may experience an overall upward

trend. The average velocity of boundary cells in flat regions also oscillates with time but it does

not show a definite behavior over long time intervals: it may even display a downward trend.

In experiments, the velocity of cells leading interfacial fingers has also been observed to oscil-

late rapidly and irregularly with periods of about one hour or less, which is similar to the find-

ings based on numerical simulations of our model; see Fig 101A of Ref. [43]. Some models

based on continuum mechanics predict longer periods of tens of hours [43].

Fig 8. Areas of cells during a simulation of a spreading configuration: (a) Area of cells near the interface, (b) area of cells far from the interface. Our simulations

exhibit the same trend as measurements reported in Ref. [44]. The bar length in both panels is 100 μm.

https://doi.org/10.1371/journal.pcbi.1008407.g008

PLOS COMPUTATIONAL BIOLOGY Tracking collective cell motion by topological data analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008407 December 23, 2020 15 / 43

https://doi.org/10.1371/journal.pcbi.1008407.g008
https://doi.org/10.1371/journal.pcbi.1008407


The velocity field in Fig 6(a) exhibits swirl patterns [11]. To characterize them, we have

depicted in Fig 10(a) the correlation function for the x-component of the velocity field:

Iðjrj; tÞ ¼
hv�xðr

0; tÞ v�xðr
0 þ r; tÞir0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hv�xðr0; tÞ
2
ir0 hv�xðr0 þ r; tÞ2i

q

r0

; v�xðr; tÞ ¼ vxðr; tÞ � hvxðr; tÞir: ð12Þ

Here the averages are spatial averages over r0 and also ensemble averages over simulations with

different initial conditions. Fig 10(b) depicts the correlation length defined by the first zero of

the correlation function and the swirl size defined by its first local minimum. Empty and blue

squares correspond to values given by different simulations. The best fits to straight lines are

also shown and compared to a similar line for Angelini et al’s experimental data [11]. Clearly

correlation length and swirl size increase with time, indicating that cells feel each other on

increasingly larger regions as time elapses. This has been observed in other experiments and

simulations [10, 27]. The correlation lengths given by our simulations agree quite well with

values reported in the literature for similar observation times [10, 11, 27].

Numerical simulations for the collision configuration

Recently, Moitrier et al have reported confrontation assays between antagonistically migrating

cell sheets [27]. In their experiment, the two confluent cellular monolayers (wild type and

modified Ras HEK cells) advance toward an intermediate empty space, collide and the Ras

monolayer displaces the wt one. The experiment shows that the velocities of the cells decay

exponentially fast the farther they are from the advancing fronts [27]. If x = L(t) is the position

of the monolayer front, the velocity of the cells at position x< L is Vwt exp[(x − L)/λwt] for the

Fig 9. Average velocity of the marked cells during finger expansion. The velocity of each cell oscillates in a similar but somewhat more

irregular manner (not shown).

https://doi.org/10.1371/journal.pcbi.1008407.g009
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wt and −VRas exp[−(x − L)/λRas] for the Ras cells at x> L. After the collision, these velocity

functions remain the same but now Vwt and VRas acquire a common and lower value

−Vinterface. Moitrier et al interpret their experiments by comparing with simple solutions of a

1D continuum model [27]. In our simulations, we use the SAMoS code to simulate the under-

damped AVM cellular model with dynamics given by Eqs (8) and (2). The invading Ras cells

(magenta) move to the left whereas the wt cells (green) are pushed backward because they

experience aversion to mixing with Ras cells. We model this situation by adding a negative

active force φRas
i ¼ aRas exp ½� ½x � Lð0Þ�=lRas

� to Ras cells in Eq (8) for x> L(0) (not included

in Ref. [16]), whereas wt and Ras cells do not experience an active force if x< L(0). We use

λRas = 410μm, aRas = 9μm/h2, L(0) = 0. The active force φRas keeps Ras cells moving to the left

and pushing wt ones. Therefore we no longer need the synchronization force proportional to β
to keep cells moving in the same direction. Fig 11 shows finger formation for the active force

φRas and for β = 13.85 h−1, which is smaller than the value in Table 1. Other parameters are as

indicated in Table 2.

Our underdamped AVM uses more features of wt and Ras cells obtained from the experi-

ments than kept by continuum models. The latter lose features at distances close to the cell

size. Continuum models fit friction, viscosity and strength of active forces for the two cell pop-

ulations to explain how Ras cells invade the wt monolayer [27].

Fig 10. (a) Spatial correlation function I(r, t) corresponding to Fig 6(a) for different times. (b) Correlation length given by the first zero of I(r) (empty squares) and

swirl size given by the first local minimum of I(r) (blue squares). Dashed line from swirl sizes in Ref. [11].

https://doi.org/10.1371/journal.pcbi.1008407.g010
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The AVM allows us to study tissues that behave differently. In our simulations, 5000 cells

are split into two populations with different properties specified by the junction tensions Λij,

j = 1, 2, which affect each pair of cell-cell contacts. The simulations producing Figs 11, 12 and

13 have open boundaries because we have focused on the interface between populations. We

have fixed K = Γ = 1 and −6.8 = Λ22 < Λ11 = −6.2, which produce shape parameters p0 of 3.50

(green cells) and 3.84 (magenta cells), below and above the transition value p0� = 3.812, respec-

tively. Thus, Ras magenta cells are fluidlike (supercritical shape index) and their strain energy

density is smaller than that of the solidlike wt cells. This is consistent with the observation that

wt cells have larger mean traction force amplitudes than Ras cells [27]. Our aim is to analyze

the effect of Λ12 on the AMA. Both monolayers occupy the right and left portions of a 4.4 mm

wide, 3.1 mm tall box. In Figs 11–13, we show a 1 mm × 2.5 mm region.

In our simulations, we start from having the cell populations separated by a straight vertical

interface at L(0) = 0. The active force φ pushes Ras cells with x> L(0) to the left, whereas φ = 0

for any cell to the left of x = L(0). The junction tension Λ12 in Fig 11 (Λ12 = −7.0) and in the

two left panels of Fig 12 (Λ12 = −7.5) favors population mixing. Ras (magenta) cells push wt

(green) cells backwards at a velocity close to the observed Vinterface, meanwhile creating a rug-

ged interface between cell populations. As time elapses, fingers and some isolated islands (lag-

ging wt in the Ras assembly and advancing Ras islands in the receding wt assembly) appear.

Fig 11. Simulation of the antagonistic migration assay: One population advances pushing back the other. Junction tensions are Λ11 = −6.2, Λ22 = −6.8, which yield

shape indices 3.50 (green cells) and 3.84 (magenta cells), respectively. Other parameters are listed in the first row of Table 2, andL12 ¼ � 7:0 < 1

2
ðL11 þ L22Þ

correspond to weak population mixing. Snapshots are taken at times 2 h, 6.5 h, 13 h, 20 h. See S3 Video.

https://doi.org/10.1371/journal.pcbi.1008407.g011
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These effects are more pronounced the smaller Λ12 is, as shown by comparison of Figs 11 and

12. It is possible to create some realistic mixing of the populations by changing the junction

tension Λ12 with time. The first two snapshots in Fig 12 have L12 ¼ � 7:5 < 1

2
ðL11 þ L22Þ,

which favors population mixing. Then the interface between cell populations becomes very

rugged and there appear islands of one cell type inside a layer of the other type. The third and

fourth snapshots in Fig 12 have been obtained with L12 ¼ � 6:0 > 1

2
ðL11 þ L22Þ that favors

population segregation. The interface becomes smoother and the islands shrink and tend to

disappear.

We have also focused on the effects of cellular alignment. There are two terms in Eq (8) that

try to synchronize cell velocities: the term proportional to β and the active force φ, which

pushes the Ras cells to the left. Although the values of β used to draw Figs 11–13 are smaller

than that in Table 1, different β still make a difference in the behavior during tissue collision,

specially in the Ras population. Fig 11 exhibits global polar migration because its β value is

larger than that in Figs 12 and 13, but types of cells are not mixed despite having a favorable

value Γ12 = −7.0. The smaller value of β in Figs 12 and 13 creates a weaker polar alignment

than that in Fig 11. The different patterns observed in these figures illustrate that cell alignment

Fig 12. Simulation of the antagonistic migration assay: Creation of a extremely rugged interface. First and second snapshots:L12 ¼ � 7:5 < 1

2
ðL11 þ L22Þ

(population mixing); third and fourth snapshots:L12 ¼ � 6:0 > 1

2
ðL11 þ L22Þ (population segregation). Other parameters are listed in the second row of Table 2

whereas times are as in Fig 11. See S4 Video.

https://doi.org/10.1371/journal.pcbi.1008407.g012
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affects importantly the shape and configuration of the interface. S3–S5 Videos compare the

time dynamics of these three sets of simulations.

While the rightmost panel of Fig 12 is similar to some of the experimental data [27], we can

obtain a similar formation of islands and fingers by assuming that Λ12 is randomly distributed

among cells. In particular, we assume that one fifth of magenta and green cells have Λ12 =

−7.5, which favors mixing of populations, while the remaining ones have Λ12 = −6.0 and favor

population segregation. The result is depicted in Fig 13, which exhibits behavior similar to

experimental observations [27], compare also to Fig 14. The topological data analyses of the

next section characterize the geometry of the interface between cell types in antagonistic

migration assays.

Formation of islands and topological data analysis

Experiments and numerical simulations of cell monolayers produce time series of images that

make it possible to identify the structure of interfaces and to compare their time evolution. It is

quite cumbersome to process manually these time series. Here we use Topological Data Analy-

sis (TDA) as a computational tool to process automatically time series of images. We next illus-

trate how to use TDA for this purpose and how to interpret the obtained results. We focus on

specific parts of selected snapshots of images from experiments and then on time series of

images from numerical simulations. While we have few images of interfaces from experiments,

Fig 13. Simulation of the antagonistic migration assay: One population advances pushing back the other, while the interfaces mix, creating scattered islands of

cells of different type. Parameters and times are as in Fig 12, except that one fifth of the overall population (randomly placed green and magenta cells) have Λ12 = −7.5

(population mixing) and the other four fifths have Λ12 = −6.0 (population segregation). The marked region has similar size to that reported in experiments [27] and

will be used in our TDA studies. See S5 Video.

https://doi.org/10.1371/journal.pcbi.1008407.g013
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we can generate arbitrarily many from numerical simulations. Having many images, the auto-

matic TDA tool enables us to describe in detail the topological changes of the interfaces and

to implement hierarchical clustering strategies, thereby classifying the evolving interface

structures.

Fig 14 shows the interfaces between two colliding confluent cellular monolayers in an AMA

[27]. In this experiment, magenta Ras cells make green wild type cells move back, cf. third and

fourth snapshots in the cover of Soft Matter, vol. 15 [27]. The interface between the two cell

populations is rather rough, it exhibits fingers, and there are islands or pockets of green cells

left behind by the advance of the magenta front. To quantify these phenomena in an automatic

way, we proceed as follows. Using Matlab, we transform the images in matrices of ones (green)

and zeros (magenta). Then we extract the positions of green/magenta interfaces, represented

by the point clouds shown in Fig 14, and process them using TDA. We pursue a similar strat-

egy for images extracted from numerical simulations of our underdamped AVM, which yields

a more complete picture of the evolution of interfaces.

Persistent homology. A finite set of data points may be considered a sampling from

the underlying topological space. Homology distinguishes topological spaces (e.g., annulus,

sphere, torus, or more complicated surface or manifold) by quantifying their connected com-

ponents, topological circles, trapped volumes, and so forth. Persistent homology characterizes

the topological features of clouds of point data or particles at different spatial resolutions [58].

Highly persistent features span a wide range of spatial scales. Persistent features are more likely

to represent true features of the data/pattern under study than to constitute artifacts of sam-

pling, noise, or parameter choice [50]. To find the persistent homology of a cloud of point

Fig 14. Structure of the interface between colliding layers corresponding to two snapshot sof the collision of two confluent cellular monolayers in Moitrier

et al’s experiment [27]. These profiles correspond to (a) the third and (b) the fourth panels (counting from the left) in the cover of Soft Matter corresponding to

Ref. [27].

https://doi.org/10.1371/journal.pcbi.1008407.g014
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data/set of particles, we must first view them as a simplicial complex C. Roughly speaking, a

simplicial complex is defined by a set of vertices (points or particles) and collections of k-sim-

plices. The latter are the convex hulls of subsets with k + 1 vertices, comprising also faces; see

the Methods section for precise definitions. Defining a distance function on the underlying

space (the euclidean distance, for instance), we can generate a filtration of the simplicial com-

plex, which is a nested sequence of increasingly bigger subsets. More precisely, a filtration of a

simplicial complex C is a family of subcomplexes fCðrÞ j r 2 Rg of C such that C(r)� C(r0)
whenever r� r0. The filtration value of a simplex S 2 C is the smallest r such that S 2 C(r). The

motivation for studying the homology of simplicial complexes is the observation that two

shapes can be distinguished by comparing their holes. For k 2 N, the Betti number bk counts

the number of k-dimensional holes. A k-dimensional Betti interval [rb, rd) represents a k-

dimensional hole that is created at the filtration value rb, exists for rb� r< rd and disappears

at value rd. We are interested in Betti intervals that persist for a large filtration range: They

describe how the homology of C(r) changes with r.
How do we construct a filtration? The Vietoris-Rips filtration VR(X, r) [50, 58], which we

will use here, is constructed as follows:

• The set of vertices X is the cloud of points under study.

• Given vertices x1 and x2, the edge [x1, x2] is included in VR(X, r) if the distance d(x1, x2)� r.

• If all the edges of a higher dimensional simplex are included in VR(X, r), the simplex belongs

to VR(X, r).

A default choice for the distance d to study homology of 2D particle configurations is

the Euclidean metric. Fig 15 displays two simplexes of a Vietoris-Rips filtration for the

point cloud in Fig 14(a). Notice the appearance and disappearance of holes and isolated

Fig 15. Visualization of the complexes VR(X, r) for the point cloud depicted in Fig 14(a) when (a) r = 6 and (b) r = 10. For large enough r all the

components merge in a single one. Holes appear and disappear as new connections are created, reflecting the overall point cloud arrangement.

https://doi.org/10.1371/journal.pcbi.1008407.g015
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components as the threshold distance r to connect points increases. This filtration is gov-

erned by three parameters:

• The maximum dimension dmax. This is the maximum dimension of the simplices to be con-

structed. The persistent homology (characterized by its Betti numbers) can be computed up

to dimension dmax − 1. In this case dmax = 2, we consider points (0-simplices), edges (1-sim-

plices), and triangles (2-simplices).

• The maximum filtration value rmax and the number of divisions N. These values define the

filtered simplicial complexes to be constructed, for r 2 0;
rmax
N� 1

;
2rmax
N� 1

; . . . ;
ðN� 2Þrmax

N� 1
; rmax

� �
:

Notice that for a set of P points, the full simplicial complex will have about 2P − 1 simplices

in it. Therefore, dmax and rmax are usually slowly increased to get information without reaching

computational limits. The computation is not too sensitive to the specific value of N. When

rmax is greater than the diameter of the point cloud, all possible edges form and join all the

points in one simplex.

For the readers’ ease of use, we include more detailed definitions and intuitive examples in

the Methods section. In the next two sections, we apply TDA to experimental and numerical

images.

TDA of experiments. Let us consider the snapshots depicted in Fig 14. Fig 15 processes

the earlier snapshot depicted in Fig 14(a), in which the green and magenta monolayers have

made contact and started interpenetrating each other. Ras cells (magenta) are pushing back wt

cells (green) towards the left. As they do so, there are islands of wt cells inside the Ras mono-

layer. How does TDA capture these features? After constructing the Vietoris-Rips filtration,

there are two commonly employed graphical representations that visualize the persistent

homology of a point cloud: barcodes and persistence diagrams [59].

Barcodes of a homology Hk depict Betti intervals [rb, rd) for k-holes (k> 0) or connected

components (k = 0) as the filtration parameter r varies. The homology class H0 comprises the

points forming the green/magenta interfaces. As the size filtration parameter r increases from

zero, there appear edges joining these points, thereby forming clusters as illustrated by Fig 15

for specific values of r and indicated by the barcodes in Fig 16(a) for the selected range of r.
The class H1 further distinguishes compact components of the interface that are detached from

the main part of the interface and form topological cycles, cf. the corresponding barcode in Fig

16(a). These components are islands of one cell type (phase) inside the bulk of the other phase.

Persistence diagrams represent the Betti intervals by points in a birth-death plane (see the

Methods section for precise definitions). The x axis represents the filtration value r at which

components/holes are created. The y axis represents the filtration value r at which they disap-

pear. Those points less close to the diagonal (green) tend to mark robust underlying geometrical

features. Fig 16(b) depicts the persistence diagram corresponding to Fig 14(a). Red circles mark

connected components of the interface between cell monolayers and the magnitude of the fil-

tration parameter r at which they disappear. As the filtration parameter increases, points com-

prising the main front merge rapidly in one component that absorbs neighboring clusters. They

correspond to blocks of bars in the H0 panel of Fig 16(a) that start at the lowest value of r. Blue

asterisks represent the appearance (horizontal axis) and disappearance (vertical axis) of holes

inside such clusters. The first column of asterisks represents the ten bars in the H1 panel of Fig

16(a) that start at the same value of r and form four groups of bars, which end at about the same

value of r. The remaining bars and asterisks are similarly related. They represent the new holes

that form as the clusters merge, which gives an idea of the relative arrangement thereof. Rela-

tively narrow barcodes produce points in the persistence diagram that are close packed.
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Fig 16(c) and 16(d) display the barcodes and persistence diagram corresponding to Fig

14(b). Compared to the earlier snapshot of Fig 14(a) and its TDA in Fig 16(a) and 16(b), there

are more islands of each phase in the bulk of the other: the invasion of Ras cells leaves pockets

of wt cells inside their midst. The main interface has become more meandering and exhibits

more fingers than in the earlier snapshot. As a consequence, the number of clusters or inter-

face components is larger than at the earlier time. Similarly, there are more topological cycles,

which reflects the larger number of islands of one cell type in the midst of the other cell type.

Barcodes and persistence diagram are more spread out. This is further quantified by the Betti

numbers bj that count the number of elements in Hj, for j = 0 (clusters) and for j = 1 (holes), as

depicted in Fig 17(a) and 17(b) for the snapshots shown in Fig 14. The trends are similar in the

simulations, as shown in Fig 17(c) and 17(d).

Fig 16. Barcodes (left) and persistence diagrams (right) for the homologies H0 (circles) and H1 (asterisks) of the

interfaces separating cell types in images from experiments and numerical simulations. We use Vietoris-Rips

filtrations with parameters N and rmax. (a)-(b) TDA from Fig 14(a) (experiments) with N = 45, rmax = 45; (c)-(d) TDA

from Fig 14(b) (experiments) with N = 45, rmax = 45; (e)-(f) TDA from the leftmost panel in Fig 13 (numerical

simulations) with N = 60, rmax = 30; (g)-(h) TDA from the rightmost panel in Fig 13 (numerical simulations) with

N = 30, rmax = 30. Points in the persistence diagrams mark the beginning (birth) and end (death) of a bar (homology

class) in the barcode. Triangles represent a component with infinite persistence. The green line is the diagonal.

https://doi.org/10.1371/journal.pcbi.1008407.g016
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How do we characterize quantitatively variations in the persistence diagrams of point

clouds? We have to introduce distances between diagrams to measure their differences. In the

next section, we explain the bottleneck and Wasserstein distances using time series of numeri-

cal simulations, out from which we have generated much more complete data sets than avail-

able from experiments [27].

TDA of numerical simulations. As indicated in the previous section, to observe island

formation, we have to tune the (negative) junction tensions when simulating antagonistic

migration assays. In particular, L12 <
1

2
ðL11 þ L22Þ facilitates mixing of wt and modified cell

populations whereas L12 >
1

2
ðL11 þ L22Þ produces population segregation. In Fig 12, Λ12

switches from population mixing to segregation after the two first snapshots. Then the pockets

of green cells left behind by the advance of the interface shrink and start disappearing, as

shown in the third and fourth snapshots of Fig 12. If mixing is weaker, as in Fig 11, the inter-

face forms pronounced fingers, there are less islands and we do not need to change the junc-

tion tensions with time. In Fig 13, Λ12 randomly takes on a mixing value for one fifth of Ras

and wt cells and on a segregation value for the others. The results of changing interface and

island formation are qualitatively similar to those observed in experiments.

Let us now interpret the evolution shown in the panels of Fig 13 using TDA (see also S5

Video, out from which we have extracted 12 snapshots). Figs 16(e)–16(h) and 17(c) and 17(d)

show the barcodes, persistence diagrams and Betti numbers for the marked sections of the left-

most and rightmost panels in Fig 13. As before, we represent the interfaces by point clouds. At

r = 0, each point of the interface is a component. For the more regular interface of the leftmost

panel in Fig 13, increasing r produces point components appearing as the short H0 bars in Fig

16(e). These bars end at similar filtration values and appear as a single red circle in the persis-

tence diagram of Fig 16(f). The main three islands correspond to the three intermediate

bars in the inset of Fig 16(e), which disappear at larger filtration values. The lowest circle in

Fig 17. (a)-(b) Betti numbers versus filtration parameter diagrams for Fig 14(a) (blue asterisks, from S1 Data) and 14(b) (magenta circles, later time in the AMA

experiment, from S2 Data) show that the number of clusters and holes in the interface between aggregates increases with time. (c)-(d) Same for the numerical

simulations considered in Fig 16(e)–16(h) corresponding to the leftmost (S3 Data) and rightmost (S4 Data) panels in Fig 13. As a result of island formation and

motion, which increases with time, Panels (a) and (c) show that the number of components decreases more slowly with r for the later time. The peaks in Panels (b) and

(d) are similar for r below 20. In both cases, the interfaces formed at the later time display larger numbers of holes with larger sizes as a result of island formation. The

additional peaks in Panel (b) near r = 40 correspond to islands that have already penetrated further inside the other cell population in the experiment.

https://doi.org/10.1371/journal.pcbi.1008407.g017
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Fig 16(f) represents the point components, the three intermediate ones represent the islands

in the barcode and their sizes. All clusters finally merge in the main front represented by the

arrow on top of the vertical axis in Fig 16(f). Analysis of H1 confirms that the intermediate cir-

cles/bars are round islands and not strings. Each component corresponds to a cycle repre-

sented by the three largest H1 bars in Fig 16(e) and the two first asterisks in Fig 16(f), one of

which represents the two bars of similar length. The two shortest bars represent holes formed

as components merge during the filtration process and correspond to the two asterisks closer

to the diagonal in Fig 16(f).

Fig 16(g) and 16(h) correspond to the more meandering interface of the rightmost panel in

Fig 13. There are more points in the cloud representing the interface, whose irregularity results

in different extinction values of r for the associate H0 bars. The main seven islands correspond

to the intermediate bars in the inset of Fig 16(g), and their extinction values in the persistence

diagram give an idea of the distance to the main front or to another island. The fact that they

are islands (enclosed by a boundary) is inferred from the H1 bars in Fig 16(g). They correspond

to the seven bars that appeared first, which are also represented by the first column five aster-

isks in Fig 16(h) having smaller r. Two of the asterisks correspond to two islands of similar size

length each, which have bars of similar size. The length of the bars in the barcode or the dis-

tance of the asterisks from the diagonal in the persistence diagram give an idea of the island

size. Additional H1 bars represent holes created during the filtration process as components

merge and give an idea of the relative arrangement of the islands or of the fingers in the main

front. They are represented by the additional asterisks in Fig 16(h). The Betti numbers in Fig

17(c) and 17(d) show a larger number of island and holes as time increases from the leftmost

snapshot in Fig 13 to the rightmost one. Compared to the TDA of experiments in Fig 16(a)–

16(d), there are no gaps between bars and asterisks appearing for large r in Fig 16(e)–16(h).

The reason is that the distance of islands to the main front is smaller for the simulation than

for the experiment.

We have applied TDA to a time series of 12 snapshots (extracted from S5 Video, which

visualizes the evolution of the numerically simulated interface in an AMA). Fig 16(e)–16(h)

correspond to snapshots 2 and 10. For each of them, we calculate barcodes as explained above.

To quantify the variations in the barcode patterns, we introduce distances between persistence

diagrams that are stable against random perturbations [51, 52]. Given two persistence dia-

grams X and Y, their bottleneck distance is defined as

W1ðX;YÞ ¼ inf
φ:X!Y

sup
x2X
kx � φðxÞk1: ð13Þ

Here φ ranges over all bijections between the persistence diagrams (taking the diagonal into

account, see the Methods section) and kxk1 = maxi{|xi|} is the usual L1-norm over the points

x of the persistence diagram X. The bottleneck distance is an example of the more general

Wasserstein distance between persistence diagrams:

Wq;pðX;YÞ ¼ inf
φ:X!Y

X

x2X

kx � φðxÞkqp

" #1=q

; WqðX;YÞ ¼Wq;1ðX;YÞ: ð14Þ

We have W1(X, Y) = W1,1(X, Y). Fig 18(a) represents the matrix of bottleneck distances

between the persistence diagrams of the 12 frames in S5 Video. These distances are stable in

the sense that a small perturbation in the input filtration leads to a small perturbation of its

persistence diagram in the bottleneck distances [51] (q-Wasserstein distances share that prop-

erty too). Efficient algorithms to compute these distances are discussed in [52]. Techniques

enabling us to input topological features into deep neural networks and learn task-optimal
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representations during training are proposed in [60]. We could use a neural network approach

if we wanted to relate them to a specific pattern, but that is not the case here.

Once we have a matrix of distances, we resort to unsupervised clustering methods to classify

the frames in similar blocks. This classification automatically extracts the similitudes and

changes between interfaces at different times of the AMA. Fig 18(b) displays a dendrogram

obtained by agglomerative hierarchical clustering using Ward’s method [61] and the bottle-

neck distance. A dendrogram consists of U-shaped lines that connect data points (which, in

this case, are the interfaces in each frame) in a hierarchical tree. The height of each U repre-

sents the distance between the interfaces that are connected by it. A dendrogram is not a single

set of clusters, but a multilevel hierarchy. For a given dendrogram, we identify the natural clus-

ter divisions relying on the inconsistency coefficient [62]. The latter compares the height of a

link in a cluster hierarchy with the average height of links below it: larger inconsistency coeffi-

cients mark natural divisions [62]. By defining a cutoff value for the inconsistency coefficient,

we automatically detect clusters. A 0.9 cutoff in the inconsistency coefficient detects 3 clusters,

corresponding to times {1, 2, 3}, {4, 5, 6, 7, 8, 9, 10}, and {11, 12} in S5 Video. Thus, we distin-

guish the initial period (interfaces close to the original connected one, times {1, 2, 3}), the

intermediate period (a phase in which a few islands form and advance, times {4, 5, 6, 7, 8, 9,

10}), and the final period (severe disruption with the abrupt formation of several islands, times

{11, 12}). In this way, we gain insight on the time evolution: how fast the interfaces experience

significative changes, and when abrupt changes do occur and mark the onset of a new cluster

of frames. The chosen cutoff 0.9 is a critical value: Increasing it, we find only one cluster. Low-

ering the cutoff, we detect 5 clusters of frames, corresponding to times {1, 2, 3}, {4, 6, 8}, {5, 7},

{9, 10}, {11, 12}. With respect to the 0.9 value, the intermediate cluster splits into other 3,

reflecting detachment, reattachment and slow progression of islands.

We can also obtain clusters by setting distance cutoffs, i.e., a height in the dendrogram of

Fig 18(b). The height of a link between clusters represents the distance between them, which is

called cophenetic distance. It is possible to calculate the correlation between the cophenetic

Fig 18. (a) Bottleneck distance matrix for the interfaces between cells populations appearing in the 12 snapshots forming S5 Video and (b) associated

dendrogram illustrating how the interfaces between cell populations can be grouped in clusters. Interfaces in frames 1-3, 4-10, 11-12 can be grouped together, and

the last two groups are closer to each other than to the initial frames. These groupings reflect similarities between frames as they succeed one another, and the

disruptions between frames reflect significant topological changes of the interfaces (e.g., detachment and reattachment of islands). S5–S16 Data have been used to draw

this figure.

https://doi.org/10.1371/journal.pcbi.1008407.g018
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distance and the distances in the matrix of Fig 18(a) (the cophenetic correlation [63]). For our

simulations, Ward’s hierarchical clustering provides the largest cophenetic correlation when

compared with other clustering approaches, such as single-linkage [53]. Thus, the Ward den-

drogram gives the most faithful representation of the distance matrix, which is why we use it.

Depending on the chosen cutoff height in Fig 18(b), we obtain one, two, three, four or five

clusters. The sets of three or five clusters are the same as before (this does not necessarily occur

in general). Alternatively, we can use the K-means algorithm to group the interfaces in clusters,

selecting an optimal number of clusters by silhouette or elbow type criteria [64, 65]. In our

case, K-means with 3 or 5 clusters produces the ones already obtained (this does not necessar-

ily occur in general). We have illustrated TDA with a relatively short time series, but it is clear

that it could be used for automatic detection of topological changes in much longer time series,

or to quantify how close the interfaces obtained from different simulations or experiments are.

In the Methods section, we have used TDA with 1-Wasserstein distance to interpret the evolu-

tion of tissue interfaces in the numerically simulated spreading assay of Fig 4.

Conclusions

We have modeled how epithelial cell aggregates advance through empty spaces (wound heal-

ing, tissue spreading) and collisions between aggregates (tumoral invasion) using an active ver-

tex model with dynamics for cell centers that includes collective tissue forces [39], and velocity

alignment and inertia [16]. The active vertex model implements exchanges of neighboring

cells automatically (T1 transitions) and uses the SAMoS software. Compared with particle

models with underdamped dynamics, our model accounts for fingering instabilities in spread-

ing tissue without having to introduce leader cells [16]. Compared to continuum models [38],

stochasticity enables our model to reproduce the observed fast irregular oscillation of cell

velocities in fingers [43] and the spatial autocorrelation of the velocity [11]. Our underdamped

AVM predicts that cells at the interface and the fingers have larger area than those well inside

the tissue, which has been corroborated by recent experiments [44]. We also observe in

numerical simulations of tissue spreading that the velocity of the fastest cells in a finger may

oscillate with a short period in a range between 30 minutes to about one hour. A similar short

period oscillation has been observed in experiments; cf Fig 101A in L. Petitjean’s PhD thesis

[43]. Thus, for spreading tissue, detailed comparison to experimental data provides a quantita-

tively accurate description of cell motion (speed, velocity correlation function and polar order

parameter). For antagonistic migration assays, we have reproduced collisions in which one cell

population pushes back another whereas both populations mix forming different types of

interfaces. The key element to model mixing is to keep different junction parameters for the

two colliding tissues: the invading cells are liquid like whereas the receding tissue comprises

solid like cells. In addition, a fraction of cells favor mixing, the others segregation, and that

these cells are randomly distributed in space. Thus characterized, numerical simulations pro-

duce outcomes similar to those observed in experiments [27]. Compared to particle models,

ours includes active vertex forces between cells that keep them together preventing gaps and

keeping track of cellular compression, enlargement and changes of area. To characterize auto-

matically the dynamics of islands and the rugged interface between aggregates, we have intro-

duced topological data analyses of experiments and time series from numerical simulations. In

collisions between aggregates, the interface between wt and Ras cell populations roughens and

islands appear. The persistence diagrams of Homology classes 0 (clusters) and 1 (cycles) spread

out and the number of these classes given by the corresponding Betti numbers increases.

Using time series of data generated by numerical simulations, we have explained how to

cluster interfaces using distance matrices based on the bottleneck distance between their
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persistence diagrams, which are stable to perturbations in the process. Despite the amount of

data from experiments being limited, disruptive events such as island and cluster formation

can be automatically captured by topological data analyses of numerical simulations and con-

trasted with experiments. Similarly, the Wasserstein distance between images enables us to

track and classify automatically the evolving shapes of interfaces between cell populations by

using time series from experimental or numerical studies. These techniques of topological data

analysis are scalable and could be used in studies involving large amounts of data whenever

available.

Our results allow to extract parameter values and to determine biologically relevant physical

mechanisms for characterizing confluent motion of cellular aggregates, as described above. In

particular: (i) cells at the interface are larger, inform the aggregate motion and are influenced

by it, without needing leader cells to form fingers at the interface; and (ii) in colliding cellular

aggregates, the solid or liquid like character of the cells (as determined by their junction

parameters) decides the way the invasion goes. These aspects of our model are important in

ascertaining how the biophysical features of materials influence tissue/organ regeneration

[45]. Our work provides researchers in the field with useful tools to gain biological insight, to

devise and to interpret data from experiments. To enhance the value of our results, e.g, for

studies of metastatic cancer, future works may add cellular mechanisms such as Notch signal-

ing dynamics [46], models of epithelial/mesenchymal transition and cancer stem cell forma-

tion [47, 48] to our vertex model. This venue has been successfully followed in studies of

angiogenesis [49].

Methods

Topological data analysis

For the reader’s ease of use, this section makes more precise some definitions and includes sim-

ple examples to provide an intuitive idea of the meaning of persistent homology features. It is

structured as follows. First, we give more precise definitions of persistent homology concepts.

Second, we present applications to simpler synthetic data, for an easier visual interpretation

of the results in the main text when interfaces are formed by many connected components.

Finally, we discuss how to extract information on front roughness from numerical or experi-

mental data, when interfaces define a single component.

Basic definitions of persistent homology and examples. As said before, a finite set of

data points may be considered a sampling from the underlying topological space. Data struc-

ture can be investigated by creating connections between proximate data points, varying the

scale over which these connections are made, and looking for features that persist across scales

[59]. Homology distinguishes topological spaces (e.g., annulus, sphere, torus, or more compli-

cated surface or manifold) by quantifying their connected components, topological circles,

trapped volumes, and so forth. Persistent homology describes how the homology of a nested

family of simplicial complexes changes with respect to a defining parameter. What is a simpli-

cial complex S? To define it, we need three elements [66]:

• A set of points X in a space of dimension D.

• Sets of k-simplices [ν0, ν1, . . ., νk] with vertices νi 2 S, i = 0, 1, . . ., k, for each k� 1. A k-sim-

plex is a k-dimensional polytope which is the convex hull of its k + 1 vertices:

½n0; n1; . . . ; nk� ¼ y0n0 þ y1n1 þ . . .þ yknk j
Xk

i¼0

yi ¼ 1; yi � 0; i ¼ 0; 1; . . . ; k:

( )
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The vertices must be affinely independent, i.e., the difference vectors ν1 − ν0, . . . νk − ν0 must

be linearly independent. The k-simplex is oriented so that an odd permutation of the points

in [ν0, . . ., νk] reverses its sign.

• A k-simplex has k + 1 faces, each constructed by deleting one of the vertices. The faces must

satisfy the following property: If [ν0, ν1, . . ., νk] belongs to the simplicial complex S, then all

its faces must also be in the simplicial complex S. This can be made more precise. The set of

all k-simplices in S is a vector space Ck. The boundary of a k-simplex is the union of all its

(k − 1)-subsimplices. For each k� 1, the boundary map @k: Ck! Ck−1 is the linear transfor-

mation defined by

@kð½n0; . . . ; nk�Þ ¼
Xk

j¼0

ð� 1Þ
j
½n0; . . . ; n̂ j; . . . ; nk�; ð15Þ

where ½n0; . . . ; n̂ j; . . . ; nk� is the (k − 1)-simplex obtained by removing the vertex n̂ j from

[ν0, . . ., νk].

The motivation for studying the homology of simplicial complexes is the observation that

two shapes can be distinguished by comparing their topological features. A disk is not a circle

because the disk is solid, while the circle has a hole. Similarly, a circle is not a sphere, because

the sphere encloses a two dimensional hole, whereas the circle encloses a one dimensional

hole. To distinguish topological features, we need several definitions. Boundary operators con-

nect the vector spaces Ck into a chain complex . . .! Ck+1! Ck! Ck−1! . . .! C0! 0. The

kernel and image of boundary operators determine k-cycles Zk = Ker{@k: Ck! Ck−1} and k-

boundaries Bk = Im{@k+1: Ck+1! Ck, respectively. Since a boundary has no boundary [66], Bk
is a subspace of Zk. Thus, Ck is the vector space of all k-chains in the simplicial complex Sr, Zk
is the subspace of Ck consisting of k-chains that are also k-cycles, and Bk is the subspace of Zk
consisting of k-cycles that are also k-boundaries. We say that two k-cycles are homologous

(equivalent) if they differ by a k-boundary. This equivalence relation splits Zk in equivalence

classes denoted by [z] if z 2 Zk. The kth homology of Sr is the quotient set Hk = Zk/Bk compris-

ing all equivalent k-cycles. The dimension of Hk, bk = dimZk − dimBk, is the kth Betti number.
In terms of the topological characteristics, bk is the number of independent holes of dimension

k. For instance, b0 is the number of connected components, b1 is the number of topological

circles, b2 is the number of trapped volumes, and so on. The topology of a simplicial complex

may be described by the sequence of Betti numbers, b = (b0, b1, . . .). For instance, a topologi-

cal circle has b = (1, 1, 0, . . .), a topological torus has b = (1, 2, 1, 0, . . .), and a topological

sphere has b = (1, 0, 1, 0, . . .,). Betti numbers are a topological invariant, meaning that topolog-

ically equivalent spaces have the same Betti number.

The Vietoris-Rips filtration (VRF) constructed in the main text provides an example. For

each value of a scale proximity parameter r> 0 and a given set of points X, we form a simpli-

cial complex VR(X, r) = Sr by finding all k-simplices such that all pairwise distances between

their points are smaller than r. The simplicial complex Sr comprises finitely many simplices

such that (i) every nonempty subset of a simplex in Sr is also in Sr, and (ii) two k-simplices in

Sr are either disjoint or intersect in a lower dimensional simplex. Clearly, if r1� r2, then

Sr1 � Sr2 . In Sr, 0-simplices are the data points, 1-simplices are edges, connections between

two data points, 2-simplices are triangles formed by joining 3 data points through their edges,

3-simplices are tetrahedra, and we obtain more complicated structures for higher dimensional

simplices. Fig 19 shows a simple example of Vietoris-Rips complex, its barcodes for H0 and H1,

and Betti numbers for different values of the proximity parameter r. Fig 19(d)–19(g) visualize

the filtration process: For a grid of values of the filtration distance parameter r we depict balls
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centered at points with radius r and count the components formed. Topological features that

persist on wide intervals of r characterize the simplicial complexes of the dataset. To visualize

persistent homology, we plot the barcodes and persistence diagrams. The barcode of a homol-

ogy Hk depicts each class by its corresponding Betti intervals (rb, rd). Initially we have one per

point, represented as a bar in the top panel of Fig 19(b). As components merge, the number of

bars diminishes. For Fig 19(f) we have two components, represented by the two top bars in

panel H0 of Fig 19(b). For Fig 19(g), we have one component represented by the top bar. The

arrow means that this component persists for larger r values. Similarly, the largest bar in panel

H1 of Fig 19(b) represents the dominant hole, observed in Fig 19(f)–19(g). This bar, and hole,

correspond to the circle in Fig 19(c) placed furthest from the diagonal. The two small bars cor-

respond to the circles in Fig 19(c) which are closest to the diagonal. As seen in Fig 19(f), they

Fig 19. Persistent homology for data on a circle. (a) Noisy versus true circle data. (b) Barcodes for the Betti numbers b0 (H0) and b1 (H1) for the noisy data. (c)

Persistence diagram for the noisy data with rmax = 4 and N = 100. (d)-(g) Vietoris-Rips simplicial complexes formed from the noisy data increasing the filtration

parameter r. (h) Barcodes for the Betti numbers b0 and b1 for clean data on the circle. (i) Persistence diagram for clean data on the circle, with rmax = 3 and N = 100.

https://doi.org/10.1371/journal.pcbi.1008407.g019
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form and disappear as components merge during the filtration process. In persistence dia-
grams, for the selected equally spaced grid of values of r, we represent each bar in the barcode

by a point (rb, rd) in the Cartesian plane. A point (x, y) of the persistence diagram with multi-

plicity m represents m features that all appear for the first time at scale x and disappear at scale

y. The height of a point over the diagonal, (y − x), gives the length of the corresponding bar in

the barcode and is called the persistence of the feature. In addition to the off-diagonal points,

the persistence diagram also contains each diagonal point, (x, x), counted with infinite multi-

plicity. These additional points are needed for stability (discussed below) and make the cardi-

nality of every persistence diagram infinite, even if the number of off-diagonal points is finite.

Points near the diagonal are inferred to be noise while points further from the diagonal are

considered topological signal [59]. Coloring differently different homologies (H0, H1, etc) we

can accumulate plenty of topological information in one 2D persistence diagram. For example,

• b0 gives the number of components for a filtration value r, thereby providing the number of

clusters in H0 for that r. We can use this information and the knowledge of the distance, to

find out which points belong to which cluster. All the points of a cluster are connected in a

simplex. Thus, we have a clustering strategy.

• Similarly, b1 gives the number of 1-dimensional holes in H1 for a given value of the proximity

parameter r. These holes may be inherent to the shape of a cluster or appear when basic clus-

ters connect to more distant ones. See Figs 20 (one island), 21 (two islands) and 22 (seven

islands). Thus, H1 contains information on both the structure of basic clusters and their rela-

tive arrangements. The accompanying barcodes may characterize interfaces or data sets.

Fig 20. Persistent homology for the border of two colliding populations. We should stress that these examples use schematic figures, with clear fronts, not results

from experiments or simulations (which have larger noise, and less clear features). Thus, the persistent homology of schematic figures is clearer and easier to interpret.

(a) Interface separating the two populations. (b) Barcodes for the Betti numbers b0 (H0) and b1 (H1), and (c) Persistence diagram with rmax = 0.4 and N = 100. (d)-(f)

Vietoris-Rips simplicial complexes formed increasing the filtration parameter r. S17 Data have been used to draw this figure.

https://doi.org/10.1371/journal.pcbi.1008407.g020
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Next, we consider the homology of point clouds defining an interface between two popula-

tions, see Figs 20–22.

Fig 20(d)–20(f) visualize the filtration process: For a grid of values of the filtration distance

parameter r, we depict balls centered at points with radius r and count the components (clus-

ters) formed. Initially we have as many clusters as points. As the filtration parameter r
increases, clusters merge and their number is reduced to two: the continuous front and the

detached island in Fig 20(d), which are represented by the two top bars in H0 of Fig 20(b) and

circles in Fig 20(c). Fig 20(e) exhibits only one cluster represented by the top bar in Fig 20(b),

Fig 21. Same as in Fig 20 except that there are one interface and two islands. Parameter values: rmax = 0.7 and N = 100. S18 Data have been used to draw this figure.

https://doi.org/10.1371/journal.pcbi.1008407.g021

Fig 22. Same as Fig 20 except that there are one interface and seven islands. Parameter values: rmax = 0.7 and N = 100. S19 Data have been used to draw this figure.

https://doi.org/10.1371/journal.pcbi.1008407.g022
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which persists for larger values of r and is represented by an arrow. Similarly, the largest bar in

H1 of Fig 20(b) represents the dominant hole defined by the island border in Fig 20(d). This

bar, and island, corresponds to the asterisk in Fig 20(c) placed furthest from the diagonal. The

small bar corresponds to the asterisk in Fig 20(c) which is closest to the diagonal. As seen in

Fig 20(e), the small bar forms and disappears as holes form when clusters merge during the fil-

tration process.

Figs 21 and 22 can be similarly interpreted. Fig 21(d)–21(f) visualize the filtration process.

Initially we have one cluster per point, represented as a bar in the top panel of Fig 21(b). As the

filtration parameter r increases, clusters merge and the number of bars diminishes. Fig 21(d)

exhibits three components, represented by the three top bars in H0 of Fig 21(b) and circles in

Fig 21(c). There are two clusters in Fig 21(e) represented by the two top bars in Fig 21(b). Simi-

larly, the two largest bars in H1 of Fig 21(b) represent the two dominant holes defined by the

island borders in Fig 21(d). These bars, and islands, correspond to the two asterisks in Fig

21(c) furthest from the diagonal. The small bar corresponds to the circle in Fig 21(c) which is

closest to the diagonal. As seen in Fig 21(e), it forms and disappears as holes form when clus-

ters merge during the filtration process.

Fig 22 exhibits an increased number of islands and it is described in the same manner.

The main eight components correspond to one interface and seven islands. They are repre-

sented by the top bars in H0 of Fig 22(b) and circles in Fig 22(c). Seven bars represent the

seven dominant islands, associated to the seven largest bars in H1 of Fig 22(b) and asterisks in

Fig 22(c). The remaining bars represent gaps in the simplicial structure formed during the

filtration process. The largest one represent a late hole appearing due to the fact that some

islands are far from the main interface front, and corresponds to the final asterisk distant

from the diagonal.

Tracking moving interfaces by tracking slices. When the interface is simply connected,

homology studies of the boundary points, or all the population points in the plane, hardly give

information on its roughness. Instead we may study the evolution of the H0 homology of slices

x = c as c varies, see Figs 23 and 24. We choose as rmax the degree of roughness we want to cap-

ture, the ‘scale’ at which we wish to ‘resolve’. Consider the two dimensional region occupied

by cells (magenta patch) in Fig 24(a). We build a square mesh of step smaller than rmax and

consider the points that are inside the occupied region. We define a matrix on the mesh M(i,
c), equal to one at points inside the patch, and zero outside. For each slice x = c, the points at

which M(i, c) = 1 define a point cloud, we evaluate the zero homology of that cloud using as

maximum filtration value rmax. The variation of the Betti number b0(rmax, c) with c measures

how irregular the front is: the larger b0 is, the rougher the interface. As shown in Fig 24 corre-

sponding to the spread assay of Fig 4(a), the rougher lower front has a larger maximal Betti

number b0 than the upper front; cf Fig 24(c) versus Fig 24(b). However, the bigger and more

persistent fingers of the upper front cause b0 to decay more slowly than the corresponding

Betti number of the lower front. The fingers of the latter are smaller in size, cf Fig 24(a). Fig 23

visualizes the idea on fragments of this configuration. This complementary slice by slice study

gives qualitative information on the shape. This strategy would allow to study the time evolu-

tion of 2D interfaces comparing the information obtained for each time, and comparing the

effect of different controlling parameters on each population, as done in the main text for mix-

ing interfaces.

Fig 25 quantifies differences between configurations by means of distances between compu-

tational images [67]. To compare images and shapes, we first have to define measures ρj(x),

x 2 O, over grids of images j (j = 0, 1, 2, . . .). Given two images, j = 0 and 1, with measures

ρ0(x) and ρ1(x), we define their Wasserstein-1 distance as a particular type of optimal transport
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Fig 23. Interfaces of different roughness and Betti numbers b0(rmax) for the slices x = c of the displayed point clouds, as c increases. We see how the variation in

b0 gives an idea of the interface roughness, at the scale rmax = 1 in this case. S20 and S21 Data have been used to draw this figure.

https://doi.org/10.1371/journal.pcbi.1008407.g023
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distance [67],

W1;pðr
0; r1Þ ¼ inf

p:O�O!½0;1Þ

Z

x;y2O
kx � ykp pðx; yÞ dxdy; 1 � p � 1;

subject to
Z

y2O
pðx; yÞ dy ¼ r0ðxÞ ðx 2 OÞ;

Z

x2O
pðx; yÞ dx ¼ r1ðyÞ ðy 2 OÞ; pðx; yÞ � 0 ðx; y 2 OÞ:

Here π(x, y) are probability measures over O ×O whose marginals are ρ0(x) and ρ1(y). For

images simply composed of points, which is the case of persistence diagrams, ρ0 and ρ1 are

point measures and this definition recovers Eq (14). Fig 25(e)–25(g) use W1,1 distances

between the four snapshots depicted in Fig 25(a)–25(d) to construct dendrograms for agglom-

erative hierarchical clustering following Ward’s method [61]. In Fig 25(e), we consider the

four snapshots of Fig 25(a)–25(d): the smoother first two snapshots are clustered together and

so are the last two rougher snapshots. Fig 25(f) does the same considering separately the left

and right interfaces in each of the snapshots of Fig 25(a) to 25(d). In Fig 25(g), we cluster the

b0(rmax) profiles obtained for the four right and left fronts. Dendrograms enable us to do this.

Enforcing cutoffs on the inconsistency coefficients we obtain a natural division in three

Fig 24. For the expanding strip in (a), we get the Betti numbers b0 for the upper front (b), and for the lower one (c). The lower front is rougher (larger b0) but its

fingers are shorter (b0 decays faster to one and zero), whereas the upper front has a dominant persistent finger. We have set rmax = 1 mm in the scale of the image Fig 4.

S22 and S23 Data have been used to draw this figure.

https://doi.org/10.1371/journal.pcbi.1008407.g024
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clusters {1, 2, 5, 6}, {3, 7} and {4, 8}. Fronts of similar roughness are clustered together. The

same clusters are obtained enforcing cutoffs on distances, that is, cutting the dendrogram at

a height that defines three clusters or by K-means with three clusters. Thus, the results are

robust. Cluster analysis for Fig 25(f) shows a higher variability depending on the method

employed. Enforcing cutoffs on the inconsistency coefficients we obtain a natural division in

four clusters {1, 2}, {3, 4}, {5, 6} and {7, 8}. If we seek for a smaller number of clusters through

distance cutoffs or K-means, the results vary. Other clustering methods, such as single linkage,

yield lower cophenetic correlation coefficients, which means that Ward’s clustering represents

these data slightly better.

Fig 25. (a)-(d) Consecutive snapshots of the evolution of the spreading configuration in Fig 4. (e)-(g) Dendrograms for hierarchical clustering constructed using

Wasserstein distances W1,1 between the four snapshots. We distinguish between overall snapshots (numbered 1 to 4) in Panel (e), and half snapshots representing

right (numbered 1 to 4) and left (numbered 5 to 8) moving interfaces in Panels (f) and (g). (e) The smoother overall snapshots 1 and 2 (corresponding to Panels (a) and

(b)) are clustered together and, likewise, the rougher overall snapshots 3 and 4 of Panels (c) and (d). (f) The Wasserstein distance clusters together successive pairs of

left and right fronts. (g) Dendrograms using the Betti number profiles b0(rmax) (analogous to those in Fig 24) calculated for the left and right interfaces of each

snapshot. Note that the interfaces of the first two snapshots are clustered together because they have similar roughness levels.

https://doi.org/10.1371/journal.pcbi.1008407.g025
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Supporting information

S1 Video. Spreading test corresponding to Fig 4 in the main text.

(AVI)

S2 Video. Evolution of the velocity field in the spreading test. Color indicates velocity mod-

ulus (speed).

(AVI)

S3 Video. Video corresponding to Fig 11 in the main text.

(AVI)

S4 Video. Video corresponding to Fig 12 in the main text.

(AVI)

S5 Video. Video corresponding to Fig 13 in the main text.

(AVI)

S1 Data. Data for TDA of the interfaces extracted from Fig 14(a) and used in Fig 17(a).

(DAT)

S2 Data. Data for TDA of the interfaces extracted from Fig 14(b) and used in Fig 17(b).

(DAT)

S3 Data. Data for TDA of the interfaces corresponding to the leftmost panel of Fig 13 and

used in Fig 17(c).

(DAT)

S4 Data. Data for TDA of the interfaces corresponding to the rightmost panel of Fig 13

and used in Fig 17(d).

(DAT)

S5 Data. Data for TDA of the bottleneck distance and dendrograms for clustering for

frame 1 of S5 Video shown in Fig 18.

(DAT)

S6 Data. Data for TDA of the bottleneck distance and dendrograms for clustering for

frame 2 of S5 Video shown in Fig 18.

(DAT)

S7 Data. Data for TDA of the bottleneck distance and dendrograms for clustering for

frame 3 of S5 Video shown in Fig 18.

(DAT)

S8 Data. Data for TDA of the bottleneck distance and dendrograms for clustering for

frame 4 of S5 Video shown in Fig 18.

(DAT)

S9 Data. Data for TDA of the bottleneck distance and dendrograms for clustering for

frame 5 of S5 Video shown in Fig 18.

(DAT)

S10 Data. Data for TDA of the bottleneck distance and dendrograms for clustering for

frame 6 of S5 Video shown in Fig 18.

(DAT)

PLOS COMPUTATIONAL BIOLOGY Tracking collective cell motion by topological data analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008407 December 23, 2020 38 / 43

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s014
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008407.s015
https://doi.org/10.1371/journal.pcbi.1008407


S11 Data. Data for TDA of the bottleneck distance and dendrograms for clustering for

frame 7 of S5 Video shown in Fig 18.

(DAT)

S12 Data. Data for TDA of the bottleneck distance and dendrograms for clustering for

frame 8 of S5 Video shown in Fig 18.

(DAT)

S13 Data. Data for TDA of the bottleneck distance and dendrograms for clustering for

frame 9 of S5 Video shown in Fig 18.

(DAT)

S14 Data. Data for TDA of the bottleneck distance and dendrograms for clustering for

frame 10 of S5 Video shown in Fig 18.

(DAT)

S15 Data. Data for TDA of the bottleneck distance and dendrograms for clustering for

frame 11 of S5 Video shown in Fig 18.

(DAT)

S16 Data. Data for TDA of the bottleneck distance and dendrograms for clustering for

frame 12 of S5 Video shown in Fig 18.

(DAT)

S17 Data. Data for TDA of the fronts with islands corresponding to Fig 20.

(DAT)

S18 Data. Data for TDA of the fronts with islands corresponding to Fig 21.

(DAT)

S19 Data. Data for TDA of the fronts with islands corresponding to Fig 22.

(DAT)

S20 Data. Data for TDA of the compact front studies corresponding to Fig 23(a).

(DAT)

S21 Data. Data for TDA of the compact front studies corresponding to Fig 23(c).

(DAT)

S22 Data. Data for TDA of the finger spread studies corresponding to Fig 24(a).

(DAT)

S23 Data. Data for TDA of the finger spread studies corresponding to Fig 24(b).

(DAT)
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VI—Pierre et Marie Curie. 2011.
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