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Abstract: Background: The Cox proportional hazards (CPH) model is the most commonly used
statistical method for nasopharyngeal carcinoma (NPC) prognostication. Recently, machine learning
(ML) models are increasingly adopted for this purpose. However, only a few studies have compared
the performances between CPH and ML models. This study aimed at comparing CPH with two
state-of-the-art ML algorithms, namely, conditional survival forest (CSF) and DeepSurv for disease
progression prediction in NPC. Methods: From January 2010 to March 2013, 412 eligible NPC patients
were reviewed. The entire dataset was split into training cohort and testing cohort in a ratio of
90%:10%. Ten features from patient-related, disease-related, and treatment-related data were used
to train the models for progression-free survival (PFS) prediction. The model performance was
compared using the concordance index (c-index), Brier score, and log-rank test based on the risk
stratification results. Results: DeepSurv (c-index = 0.68, Brier score = 0.13, log-rank test p = 0.02)
achieved the best performance compared to CSF (c-index = 0.63, Brier score = 0.14, log-rank test
p = 0.38) and CPH (c-index = 0.57, Brier score = 0.15, log-rank test p = 0.81). Conclusions: Both CSF
and DeepSurv outperformed CPH in our relatively small dataset. ML-based survival prediction may
guide physicians in choosing the most suitable treatment strategy for NPC patients.

Keywords: intensity-modulated radiotherapy; machine learning; nasopharyngeal carcinoma; sur-
vival prediction; traditional statistics

1. Background

Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer characterized by
a distinctly unbalanced geographical distribution. Although accounting for only about
0.7% of all malignancies diagnosed in 2018, more than 70% of approximately 129,000 global
new cases were found in East and Southeast Asia [1,2]. Since NPC is sensitive to ionizing
radiation, radiotherapy is the primary treatment technique for non-metastatic condition.
The widespread adoption of intensity-modulated radiotherapy (IMRT) and enhancement of
chemotherapy strategies in the past decades have significantly improved the locoregional
control of NPC, with decreased toxicities [3–5]. However, distant metastasis has emerged
as the main cause of treatment failure of NPC, which accounts for about 70% of all NPC-
specific mortality [6,7]. Furthermore, the existing TNM staging system, which often acts as
the basis of treatment decision and prognostic outcomes, might not adequately represents
tumor burden factors. There is a critical need of a multiparameter analysis to improve
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treatment decisions and predict patient outcomes, including clinical, pathological, and
even biomolecular-related parameters.

Machine learning (ML) is a subset of artificial intelligence that uses various algo-
rithms to automatically learn and adapt to new data without being explicitly programmed.
Compared to conventional statistics, ML creates system that learns from data without
using hypothesis-based assumptions. Additionally, ML has the ability to process high-
dimensional data, which is perhaps beyond the capacity that biostatisticians can handle.
Another advantage of ML over traditional statistics is that ML can learn non-linear inter-
action between variables. One main disadvantage of ML is the difficulty in interpreting
the results generated by the models. However, there is a chance that this problem can be
addressed in the future as more studies are working towards explainable ML [8].

Recently, ML has been applied for prognosis prediction in some types of cancer [9–15].
Notably, series of study applying ML for survival prediction of NPC have reported good
performance [16–20]. Du et al. [18] built a ML model to predict 3-year disease progression
based on 525 radiomics features extracted from magnetic resonance imaging (MRI) scan
images and five clinical features. The study was conducted on 277 patients with non-
metastatic NPC. The final model achieved an area under the receiver operatic characteristic
(AUROC) curve of 0.80. Similarly, Zhang et al. [20] developed various ML models to
predict local failure and distant failure in advanced NPC. A total of 970 radiomic features
were extracted from MRI scan images of 110 patients. The study showed that the combined
random forest model achieved the best performance with an AUROC curve of 0.8464 [20].

Most of the previous studies used accuracy, F-score, and AUROC as the evaluation
metrics. These metrics are quantified in terms of disease status at a specific time point,
where the time-to-event factor is not considered and, therefore, cannot adequately charac-
terize survival outcomes. Cancer survival cannot be sufficiently described only with such
binary outcomes and, thus, should incorporate a time-to-event element. The concordance
index (c-index) and Brier score are two evaluation metrics that are considered suitable for
prediction error for time-to-event data [21]. The C-index reflects model discrimination
capacity to sort individuals from low to high value based on their risk, of which the values
are between 0.5 (random prediction) and 1 (perfect prediction) [21]. The Brier score is a
metric of both discrimination and calibration, of which the values range between 0 and 1,
with a lower value representing better model accuracy [21].

Furthermore, there was no study that compares the performance of traditional statis-
tics such as the well-known Cox proportional hazards (CPH) model with ML techniques in
terms of the ability to predict survival for NPC patients. Recently, a study by Chen et al. [22]
proposed a XGBoost model for risk stratification. However, the study did not make any
comparison between their proposed model with traditional statistics-based models. Hence,
there exists a vital need to investigate which model can achieve better performance for
survival prediction at the individual level. In this study, we built two recently developed
machine learning models, namely, conditional survival forest (CSF) and DeepSurv, based
on the largest dataset of its kind while considering time-to-event outcome. The two models
were compared with CPH using c-index, Brier score, and log-rank test.

2. Results
2.1. Patient Characteristics

Clinical characteristics of the 412 NPC patients are summarized in Table 1. The median
age was 48 years old, ranging from 17 to 82 years old. There were 293 males (71.1%) and
119 females (28.9%). Based on the 7th edition of the American Joint Committee on Cancer
staging manual, there were 8 (2.0%), 80 (19.4%), 199 (48.3%), and 125 (30.3%) patients with
stage I, II, III, and IV, respectively. Among the study cohort, 56 patients (13.6%) received
radiotherapy only, while the rest received combined chemoradiotherapy. Furthermore,
Figure 1 revealed that there were little correlations between the chosen features.
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Table 1. Characteristics of all patients in the dataset (N = 412).

Characteristic n %

Age (years)
Median 48
Range 17–82
Sex
Male 293 71.1
Female 119 28.9
WHO histological subtypes
Type 2 (non-keratinizing squamous cell carcinoma) 36 8.7
Type 3 (undifferentiated or poorly differentiated
carcinoma) 376 91.3

Tumor classification a

T1 76 18.4
T2 135 32.8
T3 125 30.4
T4 76 18.4
Nodal classification a

N0 43 10.4
N1 147 35.7
N2 163 39.6
N3 59 14.3
TNM stage a

I 8 1.9
II 80 19.4
III 125 30.4
IV 199 48.3
Radiation dose
≤66 gray 163 39.6
>66 gray 249 60.4
Radiotherapy duration (days)
Median 44
Range 33–61
Neoadjuvant chemotherapy
Yes 120 29.1
No 292 70.9
Concurrent chemoradiotherapy
Yes 296 71.9
No 116 28.1
Adjuvant chemotherapy
Yes 25 6.1
No 387 93.9

TNM, tumor–node–metastasis; WHO, World Health Organization. a Tumor–node–metastasis staging system
based on the American Joint Committee on Cancer (7th edition).
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versus 73.8%, p = 0.85, Figure 2). 
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2.2. Survival Analysis

In general, the median follow-up period was 68 months, which ranged from 5 to
86 months. Throughout this period, 104 patients (25.2%) had disease progression,
61 patients (14.8%) were dead, and 18 patients (4.4%) were lost to follow-up. The 5-year PFS
was 77.2%. During the modelling process, the dataset was entirely divided into training
and testing cohorts, of 370 (89.8%) and 42 (10.2%) patients, respectively. No significant
difference in PFS was observed between the training and testing cohorts (5-year PFS: 75.1%
versus 73.8%, p = 0.85, Figure 2).
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Figure 2. Kaplan–Meier survival curves of progression-free survival for the training cohort and testing cohort.

2.3. Univariate and Multivariate Analyses Based on CPH Model

Table 2 shows results from univariate and multivariate analyses based on CPH model. In
Cox univariate analysis, advanced tumor and nodal classification were significantly associated
with poor PFS. The hazard ratio (HR) of these variables on decreased PFS were 1.37 (95%
confidence interval, 95% CI: 1.11–1.68, p < 0.005) and 1.53 (95% CI: 1.19–1.96, p <0.005),
respectively. Moreover, radiation dose (p = 0.06) and neoadjuvant chemotherapy (p = 0.05)
had trends toward significant correlation with PFS. In Cox multivariate analysis, tumor
classification (HR: 1.59, 95% CI: 1.19–2.14, p <0.005), nodal classification (HR: 1.74, 95% CI:
1.34–2.26, p <0.005), and adjuvant chemotherapy (HR: 0.28, 95% CI: 0.08–0.94, p = 0.04) were
found to be independently associated with PFS.
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Table 2. Cox proportional hazards regression for progression-free survival.

Variable
Univariate Analysis Multivariate Analysis

HR (95% CI) p Value HR (95% CI) p Value

Age 1.00 (0.99–1.02) 0.76 1.01 (1.00–1.03) 0.16
Sex 0.79 (0.49–1.27) 0.33 0.93 (0.59–1.47) 0.75

WHO histological subtypes 0.69 (0.37–1.30) 0.25 0.83 (0.45–1.54) 0.56
Tumor classification 1.37 (1.11–1.68) <0.005 1.59 (1.19–2.14) <0.005
Nodal classification 1.53 (1.19–1.96) <0.005 1.74 (1.34–2.26) <0.005

Radiation dose 1.00 (1.00–1.00) 0.06 1.00 (1.00–1.00) 0.81
Radiotherapy duration 1.00 (0.95–1.06) 0.92 0.96 (0.90–1.02) 0.16

Neoadjuvant chemotherapy 1.69 (1.01–2.83) 0.05 1.04 (0.60–1.79) 0.89
Concurrent

chemoradiotherapy 1.48 (0.90–2.43) 0.12 1.00 (0.60–1.69) 0.99

Adjuvant chemotherapy 0.52 (0.16–1.65) 0.27 0.28 (0.08–0.94) 0.04
The regression was computed in the following ways: age as continuous variable; sex, male as reference; WHO
histological subtypes, type 2 as reference; tumor classification, T1 as reference; nodal classification, N1 as reference;
radiation dose as continuous variable; radiotherapy duration as continuous variable; neoadjuvant chemotherapy,
no as reference; concurrent chemoradiotherapy, no as reference; adjuvant chemotherapy, no as reference. WHO,
World Health Organization.

2.4. Performance Comparison

The three models, namely, CPH, CSF, and DeepSurv, were trained on the training
cohort and compared using the testing cohort. The optimized hyperparameters for CSF
model were num_trees = 30, max_features = 1, and min_node_size = 2, while the optimized
hyperparameters for DeepSurv were optimizer = ’adam’, lr = 0.0001, and dropout = 0.5,
l2_reg = 0.0001. The prediction performance of different models was first compared in
the testing cohort using c-index and Brier score. Figure 3A,B show the c-index and Brier
score of the three models for PFS at different time points from 0 to 72 months. In terms of
c-index, the CSF model achieved the highest performance in the first 30 months, while the
DeepSurv model outperformed the CSF in the later timepoints. The integrated c-index of
the CPH, CSF, and DeepSurv models was 0.57, 0.63, and 0.68, respectively. In terms of Brier
score, the DeepSurv model overall delivered the highest performance at different time
points. Furthermore, the integrated Brier score for CPH, CSF, and DeepSurv approaches
was 0.15, 0.14, and 0.13, respectively.
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Figure 4 shows the 72-month PFS probability of the first 15 individual patients in the
testing cohort, based on the predictions made by the CPH (Figure 4A), CSF (Figure 4B)
and DeepSurv (Figure 4C). Furthermore, the testing cohort was further stratified into a
high-risk group and low-risk group based on the median risk predictions output by the
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three models. Figure 5 shows the Kaplan–Meier estimates of PFS for the testing cohort
after the risk stratification. As can be seen, only the risk stratification based on the risk
prediction made by the DeepSurv model achieved a significant difference in PFS between
high-risk and low-risk groups (5-year PFS: 90.5% versus 61.9%, p = 0.02).
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3. Discussion

Risk stratification and prognosis prediction play critical roles in clinical decision
making, especially in the era of personalized medicine. Risk stratification helps to group
patients into different categories based on their prognosis. Therefore, physicians can
determine the most suitable treatment strategy based on the risk stratification result.
There have been several studies that attempt to use conventional statistics and ML for
these purposes. Among conventional statistics, the CPH model is the most extensively
used statistical method in survival analysis. The main objective of this study was to
compare the performance of CPH model with two state-of-the-art ML models, namely,
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CSF and DeepSurv. In general, our results showed that both CSF and DeepSurv models
outperformed the CPH model in terms of c-index and Brier score. Furthermore, our study
showed that the risk stratification based on the DeepSurv model was able to separate
patients with different prognoses.

Currently, modelling of disease progression is often framed as a survival analysis
task. The CPH model is the typical model of choice, since it involves time censoring and
additional data as covariates. It is a semi-parametric regression method that describes
the correlations between survival distribution and covariates [23]. Overall, CPH model
estimates a function of time (log-risk function) as a linear combination of static covariates
and baseline covariates. The main advantage of CPH, as a conventional statistical method,
over ML models is its easy implementation and interpretation. However, CPH often relies
on strong assumptions, such as proportional hazards assumption that each covariate has a
constant multiplicative result in the hazard function [24,25]. These assumptions are not
usually observed and are often overlooked in daily practice [24].

One ML approach that is often used to avoid the assumptions of CPH model is
RSF, which is the adaptation of decision tree model. It is a fully non-parametric model,
which works by constructing an ensemble estimate from base learners called trees for
the cumulative hazard function [23]. After the model is built, classification is performed
through assessing the instance with respect to base learners, and a decision is made by
majority voting. One disadvantage of RSF is that there is a bias towards the inclusion of
features with many split points [26]. CSF is the improved version of RSF that overcomes
the disadvantage by means of conditional inference [26,27].

In recent years, several studies have been conducted to combine survival analysis
with deep learning (neural networks) [28–30]. DeepSurv is a sophisticated deep learning
approach proposed by Katzman et al. [28]. It is a deep feed-forward neural network with
a configurable number of hidden layers, which estimates the effect of each individual’s
covariates on their hazard rate with respect to parametrized weights of the network θ [28]. It
has superior performance over CPH model, especially when dealing with non-linear data [28].
Furthermore, it can also handle the proportional hazards assumption of the CPH model.

There are some advantages of CSF and DeepSurv models over CPH model. First, both
models are more flexible and free from prior assumptions [24]. Secondly, both models
consider all available information on a specific area and are suitable for datasets with many
features but only a few observations [31]. Another important advantage of both models
is that they have the potential to analyze various types of data, such as medical images,
laboratory test findings, and demographic data, which can be integrated into one platform
for more ideal risk predictions [32].

One important advantage of this study is that we built prognostic prediction models
using a time-to-event dataset. Right-censored data are quite common in cancer survival
analysis, which means that follow-up ends before subjects experience a specific event, such
as disease progression. As mentioned above, there are several studies that applied ML
techniques for cancer prognosis prediction [16–20]. However, many ML approaches have
an assumption that all patient outcomes are known (disease progression or no disease
progression). Therefore, when applying ML methods for cancer survival analysis, one com-
mon strategy to overcome right-censored data is to split patient outcomes into categorical
variables based on disease status at one specific time point. This approach does not consider
the time-to-event factor and, therefore, may lead to bias [33]. In this study, we applied
CSF and DeepSurv, two state-of-the-art approaches that allow survival prediction at the
individual level and diminish the structural bias related to missing follow-up information.

The other advantage of this study is that the performances of the three models were
investigated graphically with extensive metrics taking into consideration discrimination
and calibration at different time points. Discrimination is a descriptor of the capacity of a
predictive model to differentiate data at individual level, while calibration represents the
agreement between the true outcomes and the predictions made by a predictive model at the
population level. In this study, we used c-index as the discrimination metric and Brier score
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as the metric of calibration; both are suitable for time-to-event data analysis. Furthermore, we
also compared the performances of the three models using the log-rank test by stratifying
the testing set into high- and low-risk groups. Many similar studies in the past only adopted
conventional metrics, such as accuracy and AUROC [16–20], which are not suitable for
censored data. Moreover, to the best of our knowledge, this study is the first one to compare
CPH, CSF, and DeepSurv using three different evaluation metrics in NPC.

Several limitations of this study should also be acknowledged. First, due to the retro-
spective nature of our study, the three models were built and evaluated based on a database
from a single institution with limited observations, which hinders the generalizability of
this study. However, a five-fold cross-validation approach was adopted to minimize bias
and mimic external validation. Additionally, the present study acts as a guide to con-
duct a prospective multi-institutional trial hereafter. Secondly, this study only examined
10 features, while there might be various confounders that were not investigated. Thus,
more comprehensive models that include more parameters, such as medical imaging,
laboratory findings, and histopathological information, need to be evaluated in the future.

4. Materials and Methods
4.1. Study Cohort and Data

Institutional review board approval was obtained from Fudan University Shanghai
Cancer Center prior to conducting this study. Written or verbal informed consent was not
obtained from the participants due to the non-interventional retrospective nature of this study.
Nevertheless, patient data were analyzed anonymously to maintain patient confidentiality.

Medical records of 412 newly diagnosed NPC patients treated with IMRT-based
therapy at Fudan University Shanghai Cancer Center between January 2010 and March
2013 were retrospectively collected. The inclusion criteria were: (1) aged ≥ 16 years old;
(2) Karnofsky performance status scale ≥ 80; (3) no evidence of distant metastasis and
secondary primary cancer; (4) no prior malignancies or history of anticancer treatment.
The exclusion criteria included: (1) history of neck dissection prior to chemoradiotherapy;
(2) history of irradiation to head and neck; (3) incomplete chemoradiotherapy.

Relevant variables were collected, which can be classified into three different groups:
patient-related, disease-related, and treatment-related variables. Patient-related data in-
clude age and gender; disease-related variables include World Health Organization (WHO)
histological subtypes and tumor and nodal classification based on the 7th edition of the
American Joint Committee on Cancer staging system; treatment-related features include ra-
diation dose, radiotherapy duration, neoadjuvant chemotherapy, concurrent chemotherapy,
and adjuvant chemotherapy status.

4.2. Treatment Protocol

Based on the standardized treatment protocol at our institution, radiotherapy was only
recommended for patients with stage I, while combined radiotherapy was recommended
for patients with stage II and above. Specifically, concurrent chemoradiotherapy was recom-
mended for patients with stage II, while either concurrent chemoradiotherapy or neoadjuvant
+ adjuvant chemotherapy were recommended for patients with stage III and above.

All patients received radical IMRT. The radiation dose was 66–70.4 Gy to the planning
target volume (PTV) of the gross tumor volume of nasopharynx (GTVnx), 66–70 Gy to the
PTV of the gross tumor volume of positive neck lymph nodes (GTVnd), 60 Gy to the PTV of
high-risk sites defined as clinical target volume 1 (CTV1), and 54 Gy to the PTV of low-risk
sites defined as CTV2. The PTVs were delineated by adding 5 mm and 3–5 mm to the GTVs
and CTVs, respectively. The radiation dose prescribed was given in 30–35 fractions.

The regimens given for neoadjuvant and adjuvant chemotherapy were mostly: (1) TPF
regimen includes docetaxel, cisplatin, and 5-fluorouracil; (2) TP regimen includes docetaxel
and cisplatin; (3) GP regimen includes gemcitabine and cisplatin. TPF and TP regimens
were the first-line chemotherapy regimens, while GP regimen was chosen in case patients



J. Pers. Med. 2021, 11, 787 10 of 13

had the following conditions: peptic ulcer, upper gastrointestinal tract bleeding, cardiac
diseases, diabetes, or food/drug allergy.

4.3. Follow-Up and Statistical Analysis

After completing the prescribed treatments, patients were followed-up every 3 months
in the first 2 years and every 6 to 12 months thereafter. The outcome of this study was
progression-free survival (PFS), of which definition is the duration between the time of
initial chemotherapy or radiotherapy, whichever was earlier, and the date of locoregional
recurrence, distant metastasis, or death from any cause.

All statistical analyses and drawings were performed using Python 3.7.4 (Scotts Valley,
CA, USA). Correlation between variables was analyzed using the Pearson correlation
coefficient. Actuarial rates for PFS and corresponding survival curves were generated
using the Kaplan–Meier method and compared using the log-rank test. Univariate and
multivariate analyses were performed using the Cox proportional hazards model. A
two-sided p value less than 0.05 was considered statistically significant.

4.4. Modelling Process

Figure 6 summarizes the entire modelling process, from dataset splitting, hyperpa-
rameters optimization, model training, and model validation. Prior to developing CPH,
CSF, and DeepSurv models, the dataset was divided into 2 separate cohorts. Nearly 90%
of the whole study cohort was designated as the training cohort. We applied 5-fold cross-
validation on the training cohort for model training and hyperparameter tuning. The
remaining 10% of the entire study population was assigned as the testing set, which was
utilized only once for final performance evaluation. During the splitting process, the
dataset was stratified by disease progression status and, then, ranked by survival time to
ensure both cohorts had roughly equal proportion of patients with disease progression and
similar length of survival.
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CSF was developed by Wright et al. [27] in 2017 for analyzing time-to-event data. It
works by assembling the tree method and outputs the results by voting. CSF is considered
as the improved version of random survival forest (RSF), since it corrects the bias in RSF
model that results from favoring covariates with many possible split points [26]. There
are three important hyperparameters in CSF, which are the number of trees (num_trees),
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number of variables to consider when deciding for best split (max_features), and minimum
number of data points needed to be at leaf node (min_node_size). On the other hand,
DeepSurv is a deep learning model developed by Katzman et al. [28] in 2016. It is a
multi-layer feed forward neural network. The output is a negative partial log-likelihood
parameterized by the weights of the network. In this study, we applied dropout and L2
regularization to prevent overfitting in our DeepSurv model and selected ReLU as the
activation function. There are several important hyperparameters in DeepSurv, which are
the optimizer (optimizer), learning rate (lr), dropout rate (dropout), and L2 regularization
constant (l2_reg). All the hyperparameters mentioned above were optimized using the
5-fold cross-validation.

All the three models were developed using PySurvival python package [34]. Fur-
thermore, model predictive performance was measured on the testing cohort using the
c-index and Brier score. We also assessed the model performance using the log-rank test
by stratifying the testing set into high- and low-risk groups depending on the risk value
output by each model, where the median risk value was set as the threshold.

5. Conclusions

This study demonstrated the superior performances of machine-learning-based sur-
vival prediction models, namely, CSF and DeepSurv, compared to CPH as a conventional
statistical method in terms of the c-index and Brier score. Moreover, our results showed
that risk stratification based on the DeepSurv model was able to separate patients into
high-risk and low-risk groups. The application of ML models for risk stratification may
benefit patients through more personalized treatment strategies. Lastly, we recommend the
use of comprehensive criteria, including discrimination, calibration, and interpretability, to
assess ML approaches for NPC prognostication purpose.
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