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Abstract: Pr3+-doped Y2O3 nanocrystals (NCs) have been obtained via five wet-chemistry synthesis
methods which were optimized in order to achieve superior optical properties. To this end, a systematic
study on the influence of different reaction parameters was performed for each procedure. Specifically,
precursor concentration, reaction temperature, calcination temperature, and time, among others, were
analyzed. The synthesized Y2O3: Pr3+ NCs were characterized by differential scanning calorimetry
(DSC), thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), transmission electron
microscopy (TEM), and reflectance and Raman spectroscopy. In addition, the optical properties
of such NCs were investigated by excitation, emission, and luminescence decay measurements.
Concretely, emission from the 1D2 level was detected in all samples, while emission from 3PJ was
absent. Finally, the effect of the synthesis methods and the reaction conditions on the luminescence
decay has been discussed, and a comparative study of the different methods using the fluorescence
lifetime of so-obtained Y2O3: Pr3+ NCs as a figure of merit has been carried out.
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1. Introduction

Crystalline nanomaterials have gained increasing popularity in recent years due to their noteworthy
applications in important research fields like biomedicine and catalysis, and their straightforward
preparation in comparison to the production of single crystals. Specifically, rare-earth doped
nanocrystals (RE NCs) have drawn remarkable attention in the past few decades due to their singular
properties such as high photostability, narrow emission lines, long fluorescence lifetimes, and easy
functionalization [1,2]. As a result, a wide variety of applications has arisen in different fields, including
medicine [3] and biology [4], solar energy [5], data storage [6], and optoelectronics [7]. Amid all the
aforementioned fields, optics could be considered the most popular one due to the noteworthy number
of applications, like fiber lasers and amplifiers [8], cathode ray tubes [9], plasma display panels [10],
field emission displays [11], or fluorescence lamps [12] to name a few. Among all the available host
materials used to prepare RE NCs, yttrium sesquioxide (Y2O3), also known as yttria, has proven to
be a very suitable compound owing to its high thermal and chemical stability as well as its good
optical and mechanical properties. Besides, its broad transparency range and low phonon energy favor
low non-radiative relaxation rates for RE doping systems [13]. Specifically, Y2O3: Pr3+ NCs exhibit
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efficient red luminescence from the 1D2 level, while the resulting emission from 3P0 is completely
absent [14,15] which is a common characteristic of all sesquioxides with cubic structure [15,16] and
results in a potential application as a red phosphor [17].

A large number of studies have been described on luminescent RE-doped yttrium oxides, mainly
based on Eu3+ [18–22], Er3+ [23–25], Yb3+ [26–28], and Tb3+ [29–31]. However, the number of
publications on Pr3+ is scarce despite its potential application in telecommunications, since the 1.3 µm
emission can be used as an amplifier in the second telecom window. In this context, the generation of
Y2O3: Pr3+ NCs has been accomplished by physical methods such as laser heated pedestal growth
(LHPG) technique [32], flame-fusion or Verneuil method [33], or the use of a xenon arc image furnace
with argon atmosphere to grow Pr3+-doped yttria crystals [34]. Alternatively, chemical synthetic
routes like thermal decomposition [15], solvent evaporation [35], co-precipitation [14], or sol–gel
method [17] have also been employed. Interestingly, these studies show remarkable differences in the
luminescent properties of analyzed Y2O3: Pr3+ NCs. Structural factors such as nanocrystal size, dopant
concentration, crystalline single phase, or absence of defects and impurities on the top of the NCs
surface affect their optical properties, particularly the emission intensity and its associated lifetime.
The NC size can be tuned and the presence of surface contamination can be reduced by modifying the
synthesis procedure [36,37]. Thus, the influence of the synthesis method on luminescence exhibited by
the Y2O3: Pr3+ NCs deserves a systematic analysis and can be extrapolated to many other host lattices.

In view of the lack of studies on the influence of the synthesis procedure on the luminescence
properties of RE-doped NCs, in this work we analyze in detail Y2O3: 0.1%Pr3+ NCs prepared through
five different wet-chemistry methods. The luminescence properties of the so-obtained NCs are
compared to provide an insight into the factors that lead to different spectroscopic behaviors. It has
been previously reported that 0.1% Pr3+ concentration provides the best optical properties, namely the
longest luminescence decay rates, pointing out the absence of RE clustering, and therefore concentration
quenching of luminescence [22]. Although following the described procedures is possible to reduce the
final NC size, we are interested in NCs large enough to ‘survive’ to certain thermal treatments when
they are embedded in different host matrixes. At the same time, these NCs must be small enough to
reduce light scattering processes. In this context, our aim is to prepare NCs with sizes in the range of
20–60 nm.

The synthesized Y2O3: Pr3+ NCs have been characterized by several experimental techniques,
such as differential scanning calorimetry, thermogravimetric analysis, powder X-ray diffraction, and
transmission electron microscopy. Additionally, a spectroscopic characterization has been carried
out through reflectance and Raman spectroscopy. Finally, the excitation and emission spectra and
fluorescence lifetime of all NCs have been measured and investigated.

2. Experimental

2.1. General Procedures

Ethanol (>99.8%, Sigma-Aldrich, St. Louis, United States) was purchased as HPLC grade and
deionized water was used. Urea (99.5%, Merck, Kenilworth, United States), KNO3 (>98%, Panreac,
Barcelona, Spain), NaNO3 (>99%, Panreac, Barcelona, Spain), citric acid (>99%, Alfa Aesar, Ward Hill,
United States), ethylenediaminetetraacetic acid (EDTA, >99.995%, Sigma-Aldrich), polyethylene glycol
(Merck), and ethylene glycol (Scharlab, Barcelona, Spain) were purchased from commercial sources.
The same precursors were used for all synthesis procedures. Both yttrium and praseodymium nitrates
were purchased from Strem Chemicals (Newburyport, United States) as the hexahydrate form with
99.9% purity. For the sake of simplicity, they will be referred as Y(NO3)3 and Pr(NO3)3, respectively.
All chemicals were used without any further purification. All manipulations were performed in
air atmosphere.
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2.2. Instrumentation

2.2.1. Powder X-Ray Diffraction (PXRD)

The crystal structure of all synthesized samples was checked by PXRD, whereas the analysis of
the peak widths provided estimates of the average particle size. PXRD measurements were performed
in a Bruker D8 Advanced diffractometer equipped with a Cu tube (wavelength: <Kα1,2> = 1.5418 Å)
and a fast LYNXEYE 1D-detector. The synthesized NCs were typically measured in the 10◦–120◦ range
(2θ) for both phase identification and structural refinements. PXRD patterns were analyzed by the
Rietveld method using the TOPAS software package [38]. In addition, double-Voigt approach [39]
was used for estimating average crystallite size and effective strain of all the samples. Instrumental
contribution was taken into account by the fundamental parameters approach (FPA) [40].

2.2.2. Transmission Electron Microscopy (TEM)

Morphology and size distribution were analyzed through TEM images obtained with a JEOL
JEM 1011 equipped with a high-resolution CCD camera (Gatan, Pleasanton, United States). NCs were
dispersed in ethanol and a small drop was deposited on the copper grid.

2.2.3. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)

TGA and DSC measurements were performed on a Setaram Setsys evolution TGA-DTA/DSC
model coupled with a mass spectrometer Pfeiffer OmniStar. The measurements were performed
heating the samples from room temperature (RT) up to 900 ◦C at a heating rate of 10 ◦C/min in
argon atmosphere.

2.2.4. Confocal Micro-Raman Spectroscopy

Unpolarized confocal micro-Raman measurements were performed by means of a triple
monochromator (Horiba-Jobin-Yvon, Model T64000), in subtractive-mode backscattering configuration,
equipped with a liquid-N2-cooled CCD detector. The 488 nm line of an Ar+

−Kr+ laser was focused
on the sample with a 20× objective, and the laser power was kept below 4 mW in order to avoid
laser-heating effects. The laser spot was 2 µm in diameter, and the spectral resolution was better than
0.6 cm−1 for all spectra.

2.2.5. Reflectance Spectroscopy

The RT absorption spectra of synthesized samples were obtained in the 200–1800 nm spectral range
with a Cary 6000i equipped with an integrating sphere (DRA 1800), coated with polytetrafluoroethylene
(PTFE), which exhibits NIR superior performance compared to traditional coatings, maintaining UV–vis
capabilities. Absorption measurements of the NCs were made relative to a baseline using PTFE as a
standard reference material.

2.2.6. Luminescence Spectroscopy

Emission and excitation spectra as well as lifetime measurements were obtained for all samples with
a FLSP920 spectrofluorometer from Edinburgh Instrument equipped with double monochromators in
emission and excitation, different excitation sources, a 450 W Xe lamp, and a pulsed lamp of 60 W. The light
was detected with an electrically cooled photomultiplier tube R928P (Hamamatsu, Shizuoka, Japan).

2.3. Synthesis of Y2O3: Pr3+ Nanocrystals

Pr3+-doped Y2O3 NCs were prepared by five different methods: combustion [41], molten-salt [42],
sol–gel Pechini [43], homogeneous precipitation [44], and solvothermal [45]. Different parameters were
optimized to achieve the best performance in terms of optical quality, which is related to Pr3+ distribution
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and luminescent quencher concentration. The following procedures describe the synthesis conditions
for 0.1 mol% Pr3+ concentration. The Pr3+ content for all samples refers to nominal concentrations.

2.3.1. Combustion Method

Y(NO3)3 (2.61 mmol), Pr(NO3)3 (0.0026 mmol) and urea (6.82 mmol) were dissolved in deionized
water (3 mL) in a beaker, which was covered with a watch glass. The solution was heated up at 500 ◦C
for 10 min. Then, the so-obtained Y2O3: Pr3+ NCs were calcined at 900 ◦C for 4 h using a ramp of
5 ◦C/min.

2.3.2. Molten Salt Method

Y(NO3)3 (7.84 mmol), Pr(NO3)3 (0.0078 mmol), NaNO3, and KNO3 (235.2 mmol each, 30 eq.
regarding total amount of RE) were ground in an agate mortar for 15 min. The well-mixed powder was
then heated up at 500 ◦C in a ceramic crucible for 3 h with a ramp of 5 ◦C/min. After cooling down to RT,
the so-obtained solid was washed with deionized water followed by centrifugation (5–10 times) until
no crystallization of salts was observed in the supernatant (5–10 × 100 mL). Afterwards, the purified
Y2O3: Pr3+ NCs were dried overnight (o.n.) at 100 ◦C.

2.3.3. Sol–Gel Pechini Method

Y(NO3)3 (20 mmol) and Pr(NO3)3 (0.02 mmol) were dissolved in deionized water (200 mL) under
stirring. Then, citric acid or EDTA (2 eq. regarding amount of lanthanides) was added over this
solution. The resulting mixture was heated up at 90 ◦C for 15 min. Afterwards, polyethylene glycol
(2.01 mmol) was added to the solution, which was stirred at 90 ◦C for 15 min. The obtained sol was
kept at 90 ◦C for 24 h without stirring, leading to the formation of a gel. Finally, the gel was fired at the
chosen temperature (800 or 900 ◦C) for the required time (16 or 24 h).

2.3.4. Homogeneous Precipitation Method

Y(NO3)3 (1.43 mmol) and Pr(NO3)3 (0.0014 mmol) were dissolved in deionized water (3 mL).
This solution was added to a well-stirred solution of a large excess of urea in deionized water. Next, the
mixture was heated up at 85 ◦C for the chosen time. Afterwards, the reaction mixture was cooled down
to RT and the solid was washed with deionized water and centrifuged several times (3 × 100 mL).
The solid was then suspended in EtOH (50 mL) to avoid the aggregation of preformed NCs and dried
o.n. at 60 ◦C. Finally, the solid was calcined at 800 ◦C for 3 h with a ramp of 5 ◦C/min.

2.3.5. Solvothermal Method

Y(NO3)3 (5.04 mmol) and Pr(NO3)3 (0.005 mmol) were dissolved in a mixture of ethanol or
ethylene glycol and deionized water (19:1). The solution was heated up while stirring in order to
dissolve the lanthanide salts. Then, the solution was introduced into a Teflon-lined stainless-steel
autoclave, sealed and heated up at the chosen temperature (180 or 220 ◦C) for 24 h. Then, the reaction
mixture was naturally cooled down to RT and the so-obtained solid was washed and centrifuged with
EtOH:H2O (1:1) (1 × 100 mL) and deionized water (3 × 100 mL). Finally, the solid was dried o.n. at
70 ◦C and calcined at the chosen temperature (800, 900, and 1000 ◦C) for the required time (4 or 8 h)
with a ramp of 5 ◦C/min.

3. Results and Discussion

The aim of this work is to evaluate the effect of the NC size and purity on the Pr3+ optical
properties by analyzing in detail NCs prepared through five different Y2O3: Pr3+ synthesis procedures.
Firstly, the crystalline structure and particle size is studied by PXRD and Raman spectroscopy, and
the presence of Pr3+ is confirmed by reflectance spectroscopy. The influence of the synthesis method
itself as well as diverse parameters, such as precursors ratio or calcination temperature, on the crystal
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size, size distribution, and particle aggregation has been investigated by TEM. Secondly, a thorough
analysis of the Y2O3: Pr3+ NCs optical properties has been performed by means of emission and
excitation spectra. Clearly, luminescence from Pr3+ ions in both C2 and S6 crystallographic sites is
observed for all samples. Finally, the Pr3+ emission lifetime as a function of the NCs synthesis method
is used as a figure of merit, as well as the dependence of the emission lifetime on Pr3+ concentration.
The luminescence decay time is an appropriate parameter to calibrate the homogeneous distribution of
Pr3+ and the presence of impurity traps acting as luminescence quenchers. Since all NCs have been
synthesized with the same precursors, the only effect is due to the synthesis method and conditions.

3.1. Synthesis and Structural Characterization of Y2O3: Pr3+ Nanocrystals

All the so-obtained Y2O3: Pr3+ NCs were initially studied by PXRD, and reflectance and Raman
spectroscopy. The PXRD pattern analyses indicate that the five synthesis methods provide the same
crystalline structure (Figure 1 and Figure S1, ESI). Indeed, all the Y2O3: Pr3+ NCs samples show a pure
cubic phase (space group Ia3) in which two different crystallographic sites, C2 (75%) and S6 (25%), can be
occupied by Pr3+ ions [46]. In both sites, Pr3+ is present in a six-fold coordination surrounded by oxygen
ions [15]. As the structure is body-centered, the unit cell contains twice the primitive cell. The Y3+ ions
occupy two types of Wyckoff positions, 8b and 24d, whereas all O ions occupy the 48e position.
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Figure 1. Rietveld refinement results on the Y2O3: Pr3+ NCs obtained by solvothermal method at
220 ◦C followed by calcination at 1000 ◦C for 4 h. Only a single cubic phase (S.G. Ia3) was used for
the refinement, providing a good fitting (RB = 3.6). No impurity phases could be detected within the
experimental uncertainty. Vertical lines correspond to Bragg reflections.

From the crystal space group, 120 vibrational modes are possible. The irreducible representations
for the optic and acoustic vibrational modes are [47]

Γop= 4 Ag + 4 Eg +14 Tg + 5 A2u + 5 Eu + 16 Tu (1)

Γac = Tu (2)

Among these 120 modes, there are 51 grouped into 17 infrared active modes of Tu symmetry
and 54 into 22 Raman active modes (4Ag + 4Eg + 14Tg). Consequently, up to 22 lines would be
expected in the Raman spectra. However, a smaller number of lines was experimentally observed,
probably due to the superposition of different types of transitions. All the samples exhibit similar
Raman spectra (Figure 2 and Figure S2, ESI). The Raman peaks observed in the 0–600 cm−1 range were
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assigned according to refs. [47,48], being the most intense one located at around 376.4 cm−1. This band
corresponds to a Tg vibration type. On the other hand, the peaks observed in the region of the external
lattice vibrations—i.e., below 200 cm−1—are associated to pure Y3+ vibrations [47].
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Figure 2. Raman spectrum of Y2O3: Pr3+ NCs obtained by solvothermal method at 220 ◦C followed by
calcination at 1000 ◦C for 4 h. Only the most intense peaks were assigned.

Table 1 shows the Raman frequencies, peak width (FWHM) and their symmetry assignment.
The data were obtained by fitting to Lorentzian functions. No relationship between FWHM and
nanocrystal size or synthesis method was found within the experimental resolution (0.6 cm−1).
According to dispersion curves [49], a displacement of the most prominent band (Figure S3, ESI),
placed at ca. 376.4 cm−1, towards lower frequencies is expected upon decreasing the nanocrystal size.
However, this peak does not present any displacement independently of the synthesis method or
nanocrystal size, and thus there is no confinement effect due to the size.

Table 1. Raman peaks position, width (FWHM) and their symmetry assignment of Y2O3: Pr3+ NCs
synthesized by the different methods. ω and FWHM in cm−1. In bold the most intense Raman peak.

Symmetry Combustion Molten Salt Pechini Precipitation Solvothermal

ω FWHM ω FWHM ω FWHM ω FWHM ω FWHM

Tg 128.3 3.4 130 18.7 128.4 2.9 128.3 3.4 128.6 2.8

Ag 160.4 3.9 160.4 4.2 160.4 4.2 160 4.3 160.7 3.3

Eg 192.6 4.4 193.5 2.3 – – – – 192.4 4.6

Tg 234.1 1.7 – – – – – – 234 3.1

Tg – – 288.4 29.8 287.7 19 285.3 16.5 – –

Tg 316.2 5.9 315.5 2.8 316.2 5.1 315.8 4.4 316.5 3.8

Tg +Eg 326.0 8.2 329 6 328.7 8.8 328.4 10.3 329.4 6.3

Tg 376.4 6.8 376.3 6.1 376.4 5.9 376 6.5 376.5 5.3

Ag 430 9.7 429.6 5.8 429.9 7.9 429.8 7.6 431.4 9.1

Tg 468 9.71 468 9 467.54 11.2 467.3 10.6 468.2 9

Tg 591 17.9 592.1 13.7 590.97 20 – – 591.6 12.3

In addition, the reflectance spectrum of all samples is dominated by a broad band centered below
400 nm (Figure 3 and Figure S4, ESI), which is associated with interconfigurational 4f 2

→ 4f 15d1



Nanomaterials 2020, 10, 1574 7 of 20

transitions of Pr3+ ions hosted in the C-Y2O3 lattice. Low-intensity and sharp peaks are assigned to f-f
intraconfigurational transitions. The transition from the ground state to the 1G4 excited state is weakly
observed at ca. 1000 nm. The absorption peaks detected from 1300 to 1800 nm correspond to transitions
from the 3H4 ground state to the 3FJ multiplets [15]. There is a jump in absorbance intensity at 800 nm
due to the change of detector and diffraction grating that is not corrected by the baseline correction.
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as chelating agent and followed by thermal treatment at 900 ◦C for 16 h.

Thus, PXRD as well as Raman and reflectance spectroscopy confirm that Y2O3 NCs doped with
Pr3+ obtained via the five synthesis methods of choice present the same crystalline structure and
vibrational peaks. It is worth mentioning that these synthesis methods produce NCs with sizes in
the 20–60 nm range. This size range can minimize the surface effects due to Pr3+ ions located at the
NCs surface. In the following sub-sections, an exhaustive analysis of particle size, size distribution,
and aggregation of NCs is performed by means of TEM images analysis. This is very relevant to
understand the optical properties of the as-prepared nanoparticles.

3.1.1. Combustion Method

The Y2O3: Pr3+ NCs prepared by combustion method were calcined at 900 ◦C to improve the
crystallinity. TEM images (Figure 4) revealed the presence of highly agglomerated NCs with a grain
size in the 10–40 nm range. This NC size is in good agreement with the one estimated by PXRD
(35.7(5) nm), thus indicating single domain NCs. Additionally, TGA (Figure S5a, ESI) showed a small
weight loss of ca. 1.5% from RT to 400 ◦C related to the presence of reagent traces.

3.1.2. Molten Salt Method

Y2O3: Pr3+ NCs obtained via molten salt method look polyhedral and well dispersed, with an
average size of 67(19) nm (Figure 5 and Figure S6, ESI). PXRD analysis (Figure S1b, ESI) showed a
good crystallinity grade and an average grain size of 77.7(4) nm, which was compatible with TEM
observations. TG + DSC measurements (Figure S5b, ESI) displayed several weight losses from RT to
800 ◦C that decreased with the increase in the number of washing cycles, and thus could be a sign of
the presence of remaining NaNO3 and KNO3 salts.
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3.1.3. Sol–Gel Pechini Method

Different parameters were modified to optimize the synthesis of Y2O3: Pr3+ NCs by sol–gel Pechini
method, specifically the type of hydroxyl carboxylic acid or chelating agent, as well as temperature
and calcination time (Table 2). Firstly, citric acid was selected as chelating agent (Entry 1). The formed
gel was calcined at 800 ◦C for 16 h, leading to the formation of NCs surrounded by a presumably
organic layer (Figure S7, ESI). No changes were observed by TEM when the calcination time was
increased up to 24 h (Entry 2 and Figure S8, ESI). However, such a layer was removed by increasing the
calcination temperature up to 900 ◦C (Entry 3), as confirmed by TEM and TG + DSC analyses (Figure 6
and Figures S9 and S5c, ESI). Under these conditions, the synthesized NCs are polyhedral crystallites
(Figure S1c, ESI) and show two populations of different size, 26(6) and 62(16) nm. Indeed, the average
grain size determined by PXRD was 51(9) nm. Finally, EDTA was used instead of citric acid (Entry 4).
The obtained NCs are more homogenous in size, 40(12) nm, but exhibit agglomeration (Figure S10, ESI).
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Table 2. Optimization parameters for the synthesis of Y2O3: Pr3+ NCs by sol–gel Pechini method.

Entry Chelating Agent Calcination Time (h) Calcination T (◦C) Observations

1 Citric acid 16 800 Surrounding organic layer.
2 Citric acid 24 800 Surrounding organic layer.
3 Citric acid 16 900 Well dispersed. 26(6) and 62(16) nm.
4 EDTA 16 900 Aggregated NCs of 40(12) nm.
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3.1.4. Homogeneous Precipitation Method

In general, the homogeneous precipitation method led to the generation of small crystalline NCs
with grain size in the 20–30 nm range forming spherical nanoparticles with an excellent dispersion.
Firstly, spheres of 260(26) nm (and a few of 106(14) nm) containing NCs with 20.2(2) nm in size
(Figure S11, ESI) were observed using the following reaction conditions: 360 mL of solvent, 0.485 mol
of urea and 2 h as reaction time (Table 3, entry 1). Subsequent synthesis reactions were carried out by
modifying the water volume, which was increased up to 720 mL and reduced to 200 mL (Entries 2
and 3). In both cases, the nanospheres presented appropriate dispersion and well-defined spherical
morphology, while the NC size distribution hardly changed and was 21.8(3) and 25.2(4) nm, respectively.
In addition, the sphere size showed no appreciable differences, with an average size of 233(41) nm
when H2O volume was doubled and 229(20) nm when it was reduced to 200 mL (Figures S12 and S13,
ESI). Consequently, it seems that the water volume does not affect the size of NCs and nanospheres nor
the dispersion. Similarly, the reaction time had no influence on these properties, since no changes were
observed for reaction times of 45, 60, 90, 120, and 180 min.
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Table 3. Optimization parameters for the synthesis of Y2O3: Pr3+ NCs by homogeneous
precipitation method.

Entry Time (h) V H2O (mL) Urea Amount (mol) Observations

1 120 360 0.485 Well-dispersed spheres of 260(26) nm;
NC size (PXRD): 20.2(2) nm.

2 120 720 0.485 Well-dispersed spheres of 233(41) nm;
NC size (PXRD): 21.8(3) nm.

3 120 200 0.485 Well-dispersed spheres of 229(20) nm;
NC size (PXRD): 25.2(4) nm.

4 120 360 0.166 Very well-dispersed spheres of 338(35)
nm; NC size (PXRD): 26.9(3) nm.

5 120 360 1.415 Agglomerated spheres of 75(34) nm;
NC size (PXRD): 22.2(2) nm.

6 120 360 0.832 Well-dispersed spheres of 219(24) nm;
NC size (PXRD): 21.2(2) nm.

7 120 200 0.832 Very well-dispersed spheres of 155(20)
nm; NC size (PXRD): 30(5) nm.

Interestingly, a change in the urea content produced remarkable differences, not only in size
but also in nanoparticle dispersion. A clear tendency was confirmed by PXRD analysis and TEM
images, in which an increase in the amount of urea led to a reduction of nanoparticle size. Indeed, NCs
synthesized using 0.166 mol of urea (Entry 4) showed a grain size of 26.9(3) nm and average sphere
size of 338(35) nm (Figure S14, ESI). In contrast, an average NC size of 22.2(2) nm and an average
spherical nanoparticle size of 75(34) nm were observed with 1.415 mol of urea (Entry 5 and Figure S15,
ESI). In addition, these spherical nanoparticles exhibit a broad size distribution. An intermediate urea
concentration (0.832 mol) provided NCs of 21.1(2) nm and spheres with 219(24) nm in size (Entry 6
and Figure S16, ESI). On the other hand, the dispersion displayed an inverse trend; that is, samples
prepared with low urea concentrations presented an excellent dispersion of nanospheres (Figure S14,
ESI), while high urea amounts led to slightly agglomerated nanoparticles (Figure S15, ESI). In this
sense, we were interested in finding the conditions that promote not only an appropriate size and good
dispersion of the formed spheres but also a narrow particle size distribution, which will lead to a better
understanding of the NCs optical performance. In this context, Y2O3: Pr3+ NCs with a grain size of
22.4(3) nm, an average sphere size of 155(20) nm and excellent dispersion (Figure 7 and Figures S17
and S18, ESI) were obtained by the use of 200 mL of deionized H2O and 0.832 mol of urea (Entry 7).
Moreover, no organic or precursor traces were found by TG + DSC analysis (Figure S5d, ESI).
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3.1.5. Solvothermal Method

Finally, we synthesized Y2O3: Pr3+ NCs through the solvothermal method. The synthesis process
required heating the reaction mixture at 180 ◦C in a Teflon-lined stainless-steel autoclave. Then, the
resulting sample was calcined at 800 ◦C for 4 h (Table 4, entry 1). These conditions led to the formation of
polyhedral NCs that exhibit some aggregation and 31(7) nm in size (Figure S19, ESI), while the grain size
determined by PXRD was 21.1(1) nm. Additionally, an organic layer was observed. This was confirmed
by a TGA in which several weight losses were identified below 500 ◦C. Consequently, the calcination
temperature was increased up to 900 ◦C in order to suppress this layer (Entry 2). The resulting NCs
showed a polyhedral morphology and an increase in size up to 42(11) nm (Figure S20, ESI), which
was consistent with PXRD analysis (31.1(3) nm). Besides, the organic layer was successfully removed.
The effect of additional parameters was also studied. The concentration of RE precursors was doubled
(Entry 3), which resulted in a considerable increase in the NC aggregation, although the polyhedral
morphology was not altered (Figure S21, ESI). PXRD analysis showed a grain size of 43.1(3) nm, which
was in good agreement with that observed by TEM (40(10) nm), indicating NCs with single domain
structure. The effect of the employed alcohol was also examined, and thus EG was replaced by EtOH
(Entry 4). TEM images showed NCs with an average size of 28(10) nm and remarkable aggregation.
Furthermore, the presence of the above-mentioned organic layer was also detected (Figure S22, ESI).
On the other hand, the calcination time was increased up to 8 h (Entry 5), which led to a strong
aggregation (Figure S23, ESI). To sum up, high concentrations of precursors, the use of other alcohols
and longer calcination times produce an increase in NC aggregation.

Table 4. Optimization parameters for the synthesis of Y2O3: Pr3+ NCs by solvothermal method.

Entry RE (mmol) Alcohol Reaction T (◦C) Calcination T
(◦C)/Time (h) Observations

1 7.8478 EG 180 800/4 Some aggregation; 31(7) nm (TEM),
21.1(1) nm (PXRD); organic layer

2 7.8478 EG 180 900/4 Slightly aggregated NCs; 42(11) nm
(TEM), 31.1(3) nm (PXRD).

3 15.6957 EG 180 900/4 Strong aggregation; 40(10) nm (TEM),
43.1(3) nm (PXRD).

4 7.8478 EtOH 180 900/4 Strong aggregation; 28(10) nm (TEM).
5 7.8478 EG 180 900/8 Strong aggregation

6 7.8478 EG 220 900/4 Slightly aggregated NCs; 47(12) nm
(TEM).

7 7.8478 EG 220 1000/4 Slightly aggregated NCs; 68(15) nm
(TEM), 52.8(5) nm (PXRD).

Finally, the influence of the temperature was also analyzed. An increase in both reaction and
calcination temperatures generally leads to bigger NCs. Specifically, an increase in the autoclave
temperature from 180 ◦C to 220 ◦C (Entry 6) provided NCs of 47(12) nm in size, while no organic layer
was observed (Figure S24, ESI). Next, maintaining the reaction temperature at 220 ◦C, the calcination
temperature was increased up to 1000 ◦C (Entry 7). These conditions promoted a great increase in
the average NC size up to 68(15) nm (Figure 8 and Figure S25, ESI), while that determined by PXRD
was 52.8(5) nm. Additionally, TEM images (Figure 8 and Figure S25, ESI) and TG + DSC analysis
(Figure S5e, ESI) confirmed that no organic contamination was present.

3.2. Optical Properties of Synthesized Y2O3: Pr3+ Nanocrystals

To analyze the optical properties of the NCs prepared following the five aforementioned synthesis
procedures, emission and excitation spectra were recorded for selected samples. RT emission spectra
were studied upon direct excitation of Pr3+ in the UV (at 292 and 330 nm) or 490 nm into the 3PJ

multiplet (for both sites) (Figure 9 and Figures S26 and S27, ESI). The two UV excitation wavelengths
allowed us to record two different emission spectra, which we associated to Pr3+ placed at C2 and
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S6 sites, respectively. The intensity of the Pr3+ emission spectrum at the C2 site is about an order of
magnitude more intense than the one corresponding to the S6, in agreement with the 3:1 ratio of the
two sites and the absence of inversion center for the C2 site. All samples were analyzed under the same
conditions in terms of experimental setup and geometry. The NCs prepared by five different synthesis
procedures present similar emission spectra, with only slight differences regarding luminescence
intensity. All emission spectra exhibit peaks between 600 and 670 nm which are characteristic of
emission from 1D2 to 3H4 level, while peaks located in the range of 700–750 nm are assigned to the
transition 1D2→

3H5 (Figure 10).Nanomaterials 2020, 10, 1574 12 of 20 
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The differences observed in emission intensities for the NCs can be related to features such as
Pr3+ distribution, size, surface effects, and crystallinity. As an example, it is worth mentioning that
the luminescence intensity shown by NCs prepared through Pechini method is about an order of
magnitude more intense than that displayed by Y2O3: Pr3+ NCs obtained via molten salt synthesis
(Figure S26 and S27, ESI). Nevertheless, the luminescence intensity is a difficult magnitude to compare
among samples and therefore the luminescence lifetime (τ) was chosen as a more accurate parameter
to perform a proper comparison of the optical properties, since it does not depend on the geometry,
configuration of the experimental setup, and grain size.

The excitation spectra were also studied monitoring the emission from the 1D2 multiplet to the
3H4 ground state (λem = 717 and 603 nm for C2 and S6, respectively). All synthesized Pr3+-doped Y2O3

NCs showed similar excitation spectra (Figure 11 and Figures S28 and S29, ESI), dominated by broad
bands in the UV region resulting from the interconfigurational transition 4f 2

→ 4f 15d1 of Pr3+, since
yttria presents no absorption in this below-gap spectral range [15]. According to Aumüller et al. [14],
this transition occurs at higher energies at C2 sites than at S6 sites for sesquioxides. Thus, the broad
excitation band centred at 280 nm is assigned to Pr3+ ions at C2 whereas the peak at 317 nm is assigned
to Pr3+ ions at S6 site. Additionally, the sharp lines identified in the 430–520 nm wavelength range
are attributed to the intraconfigurational transitions from the ground state to the 3PJ + 1I6 multiplets
(Figure 10).
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Figure 11. Excitation spectra at C2 and S6 (red, λem = 717 nm; blue, λem = 603 nm, respectively,
see Figure 9) sites of Y2O3: Pr3+ NCs prepared by solvothermal method at 220 ◦C followed by calcination
at 1000 ◦C for 4 h. The inset shows a zoom of the intraconfigurational f-f transitions of Pr3+ ions.
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3.3. Comparative Study of the Synthetic Methods Based on the 1D2 Emission Lifetime of Y2O3:
Pr3+ Nanocrystals

Luminescence lifetime (τ) measurements were performed to carry out a quantitative comparison
of the luminescence efficiency of Y2O3: Pr3+ NCs obtained by the different synthesis methods. The time
evolution of 1D2→

3H4 luminescence detected at 629 nm was recorded after direct excitation into 3PJ

excited state at 429 nm for all synthesized samples. All luminescence decay curves were fitted to a
double-exponential behavior that can be attributed to the excitation of both sites and the coincidence
of peaks from both sites at this wavelength (Figure 12). This fact, together with the probable energy
transfer between both sites [15], could be the reason of this bi-exponential behavior. Consequently, the
shorter lifetime component could be assigned to Pr3+ ions at the C2 site, and the longer one, to Pr3+

species at the S6 site.
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Figure 12. Luminescence decay curves of the Pr3+ 1D2 →
3H4 emission of Y2O3: Pr3+ NCs prepared

by: combustion method after calcination at 900 ◦C for 4 h (green); molten salt procedure at 500 ◦C
followed by 10 washing cycles (blue); sol–gel Pechini using citric acid as chelating agent and followed
by calcination at 900 ◦C for 16 h (black); homogeneous precipitation using 0.832 mol of urea and 200 mL
of H2O during 2 h reaction followed by thermal treatment at 800 ◦C for 3 h (red); solvothermal method
at 220 ◦C followed by calcination at 1000 ◦C for 4 h (orange); and solvothermal method at 220 ◦C
followed by calcination at 900 ◦C for 4 h (cyan).

Firstly, diverse parameters were optimized for the five different synthesis procedures to maximize
the luminescence lifetime. Assuming that all synthesis methods give rise to a similar occupancy
of both crystallographic sites, the observed differences in the luminescence lifetime values can be
attributed to parameters such as nanocrystal size, Pr3+ distribution, crystallinity, and the presence of
remaining reagent residues and molecules adsorbed at the NCs surface. In this context, Y2O3: Pr3+ NCs
synthesized by combustion method showed an increase in their average lifetime from 114 µs to 173 µs
after the thermal treatment at 900 ◦C (Figure 12 and Figure S30, ESI). Firing the NCs at this temperature
promoted not only a better crystallinity, but also the elimination of organic residues assumed to be the
most important channel for non-radiative relaxation processes. This effect of remaining impurities
on luminescence decay was clearly observed in NCs prepared via molten salt procedure. Indeed,
the lifetime increased with the number of washing cycles. NCs that were washed-up 5, 7, and 10
times provided luminescence average lifetimes of 128, 138, and 160 µs, respectively (Figure 12 and
Figures S31 and S32, ESI).
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Samples prepared via Pechini method were also analyzed. As expected, an increase in calcination
time and temperature (Table 2, entries 1–3) had a positive effect on luminescence average lifetime,
raising from 104 to 114 and 118 µs (Figure 12 and Figures S33 and S34, ESI), respectively. This may be
attributed to the removal of the organic layer and a better crystallinity of the sample. In addition, the
use of EDTA as chelating agent produced a slight improvement in lifetime up to 125 µs (Figure S35,
ESI), presumably caused by the monodisperse-size character of these NCs (Table 2, entry 4). However,
given that high aggregation was also promoted in this case, the enhancement in radiative lifetime was
not remarkable enough to consider EDTA as a better chelating agent.

An increase in the luminescence lifetime was observed for Y2O3: Pr3+ NCs synthetized through
homogeneous precipitation method. Indeed, NCs prepared with the initial reaction conditions
(Table 5, entry 1) presented an average luminescence average lifetime of 152 µs (Figure S36, ESI).
The optimization of the different synthesis parameters not only provided better NCs in terms of
size, dispersion, and crystallinity, but also improved the luminescence decay rate. For instance, the
reduction in the amount of H2O to 200 mL (Entry 2) led to an increase in the lifetime up to 161 µs
(Figure S37, ESI). In this line, 184 µs as a luminescence lifetime (Figure 12) was observed under the
optimized reaction conditions based on the use of 200 mL of deionized H2O and 0.832 mol of urea
(Entry 3).

Table 5. Luminescence lifetime of the Pr3+ 1D2→
3H4 emission transition at RT for selected Y2O3: Pr3+

NCs synthesized by homogeneous precipitation method.

Entry V H2O (mL) Urea Amount (mol) Observations τ (1D2)/µs

1 360 0.485 Well-dispersed spheres of 260(26) nm;
NC size: 20.2(2) nm. 152

2 200 0.485 Well-dispersed spheres of 229(20) nm;
NC size: 25.2(4) nm. 161

3 200 0.832 Very well-dispersed spheres of 155(20)
nm; NC size: 30(5) nm. 184

Finally, we studied the Y2O3: Pr3+ NCs synthesized via solvothermal method (Table 6),
which showed the longest luminescence lifetimes. A luminescence decay time of 198 µs (Figure
S38, ESI) was observed for NCs prepared at 180 ◦C and 800 ◦C as reaction and calcination temperatures,
respectively (Table 6, entry 1). The use of reaction conditions that produce a strong NC aggregation led
to a decrease in the lifetime values (Entries 3–5 and Figures S39–S41, ESI).

Table 6. Luminescence lifetime of the Pr3+ 1D2 →
3H4 emission transition at RT for Y2O3: Pr3+ NCs

synthetized by solvothermal method a.

Entry Alcohol T (◦C) Calcination T
(◦C)/Time (h) Observations τ (1D2)/µs

1 EG 180 800/4 Aggregation; 31(7) nm (TEM),
21(1) nm (PXRD); organic layer. 198

2 EG 180 900/4 Slight aggregation; 42(11) nm
(TEM), 31.1(3) nm (PXRD). 202

3 b EG 180 900/4 Strong aggregation; 40(10) nm
(TEM), 43.1(3) nm (PXRD). 144

4 EtOH 180 900/4 Strong aggregation; 28(10) nm. 163
5 EG 180 900/8 Strong aggregation. 135
6 EG 220 900/4 Slight aggregation; 47(12) nm. 223

7 EG 220 1000/4 Slight aggregation; 68(15) nm
(TEM), 52.8(5) nm (PXRD). 216

a 7.848 mmol RE. b 15.696 mmol RE.
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Conversely, an increase in the reaction and calcination temperatures improves the crystallinity,
suppressing the observed organic layer, thus providing NCs with longer values for the luminescence
lifetime (Entries 2, 6 and 7, Figure 12, and Figure S42, ESI). A radiative decay of 216 µs (Figure 12) was
measured using 220 ◦C and 1000 ◦C as reaction and calcination temperatures, respectively (Entry 7).
Similarly, a subtle increase in the luminescence lifetime up to 223 µs (Figure 12) was obtained with
220 ◦C and 900 ◦C (Entry 6).

The variations of luminescence lifetime attributed to non-radiative processes can be related to
factors such as nanocrystal size, annealing temperature, impurities content, trap defects associated with
the synthesis method, and small fluctuations in Pr3+ concentration, to name a few. In fact, an increase
in the nanocrystal size generally led to a reduction of surface effects and thus an improvement of
luminescence properties, i.e., an increase of the luminescence lifetime (see Table 5; Table 6, entries 2, 6,
and 7). On the other hand, it seems that an increase in the NC aggregation produces a decrease in
the lifetime values (see Table 6, entries 3–5). The NCs described in the present work are bigger than
20 nm, and the Pr3+ concentration is low (0.1%). These features can minimize the surface effects mainly
due to the small number of Pr3+ ions located at the surface and the adsorption of molecules from
the environment [50,51]. In this line, we have additionally studied the dependence of the emission
lifetime on Pr3+ concentration for NCs obtained through solvothermal, precipitation, and sol–gel
Pechini methods (Figure 13). As expected, a decrease in the luminescence decay rate values with an
increase in the Pr3+ concentration was observed, thus confirming that 0.1% is the optimal Pr3+ content,
regardless the synthesis procedure.
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All things considered, the optimization of the different synthesis parameters for each discussed
method has allowed to improve the optical properties of Y2O3: Pr3+ NCs, therefore achieving longer
luminescence lifetimes for the visible red Pr3+ emission (1D2→

3H4). Table 7 summarizes the optimized
lifetimes for the NCs prepared via the five synthesis procedures. Some of the presented methods
have proven to produce NCs with superior optical properties. Among the different procedures,
the solvothermal synthesis provided the best results. This method is not only reproducible and
time-efficient, but also produces NCs with appropriate size and dispersion. In addition, these Y2O3:
Pr3+ NCs showed one of the most intense emission spectra together with the longest luminescence
lifetime. While the luminescence lifetime value for bulk 0.1% Pr3+-doped Y2O3 is reported to be
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124 µs [32], some authors have described emission decay rates between 110–115 µs for Y2O3: Pr3+

(0.1%) NCs [17,52]. To the best of our knowledge, 180 µs is the longest luminescence emission lifetime
reported to date for Pr3+-doped yttria NCs [53]. Consequently, it is worth noting that three of the
optimized methods described herein provide Y2O3: Pr3+ NCs with the longest luminescence lifetime
values described so far.

Table 7. 1D2 →
3H4 Pr3+ average lifetimes of Y2O3: Pr3+ NCs after optimization of the different

synthesis methods.

Synthesis Method τ (1D2)/µs

Combustion 173
Molten salt 160

Pechini 118
Precipitation 184
Solvothermal 223

4. Conclusions

In summary, we have successfully implemented five different wet-chemistry methods for the
synthesis of Y2O3: Pr3+ NCs. An extensive characterization of these NCs was performed by a
wide variety of techniques. The synthesis method has been found to have a crucial effect on both
structural and optical properties, namely NC size, dispersion, morphology, and luminescence lifetime.
All samples showed a pure cubic phase and good grade of crystallinity, while the NC size and dispersion
were dependent on the synthesis procedure. In addition, an in-depth optical characterization was
carried out by photoluminescence excitation and emission spectroscopy and luminescence lifetime
measurements. In particular, emission from the Pr3+ 1D2 state at two available crystallographic sites
C2 and S6 was observed for all synthesized Y2O3: Pr3+ NCs, while emission from 3PJ was completely
absent. The reaction conditions were also optimized for each synthesis method in order to obtain the
best optical response, measured as the longest luminescence decay time. Finally, a comparative study of
the different methods on the basis of the fluorescence average lifetime of so-obtained Y2O3: Pr3+ NCs
was performed. In this line, the solvothermal synthesis was demonstrated to be the best-suited method
to produce Y2O3: Pr3+ NCs with the most intense luminescence and longest lifetimes (τ = 223 µs).

As a final remark, this work illustrates perfectly how different synthesis methods can be used for
the preparation of Y2O3: Pr3+ NCs with amazingly different structural and optical properties. In this
context, the present study may help in selecting the most appropriate nanocrystal synthesis route for
other oxides depending on the desired structural and optical properties.
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