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ABSTRACT

During minus-strand DNA synthesis, RNase H
degrades viral RNA sequences, generating potential
plus-strand DNA primers. However, selection of the
3’ polypurine tract (PPT) as the exclusive primer is
required for formation of viral DNA with the correct
5’-end and for subsequent integration. Here we
show a new function for the nucleic acid chaperone
activity of HIV-1 nucleocapsid protein (NC) in
reverse transcription: blocking mispriming by non-
PPT RNAs. Three representative 20-nt RNAs from
the PPT region were tested for primer extension.
Each primer had activity in the absence of NC, but
less than the PPT. NC reduced priming by these
RNAs to essentially base-line level, whereas PPT
priming was unaffected. RNase H cleavage and
zinc coordination by NC were required for maximal
inhibition of mispriming. Biophysical properties,
including thermal stability, helical structure and
reverse transcriptase (RT) binding affinity, showed
significant differences between PPT and non-PPT
duplexes and the trends were generally correlated
with the biochemical data. Binding studies in reac-
tions with both NC and RT ruled out a competi-
tion binding model to explain NC’s observed
effects on mispriming efficiency. Taken together,
these results demonstrate that NC chaperone activ-
ity has a major role in ensuring the fidelity of plus-
strand priming.

INTRODUCTION

Reverse transcription consists of a complex series of reac-
tions that result in synthesis of a linear double-stranded
DNA copy of the single-stranded viral RNA genome. This
process is catalyzed by the virus-encoded enzyme, reverse
transcriptase (RT), which exhibits RNA- and DNA-
dependent DNA polymerase activities (1-3) as well as
RNase H activity, i.e. the ability to degrade the RNA
strand of an RNA-DNA hybrid (4).

In one of its key roles, RNase H generates and
later removes the polypurine tract (PPT) plus-strand
DNA primer, a short, purine-rich sequence present in
the viral RNA genome immediately upstream of U3
(3’ PPT). In the case of HIV-1, there is a second copy of
the PPT (central PPT) in the integrase coding region
(5) that will not be discussed here. Cleavage at the
PPT-U3 junction must be precise to permit formation
of a viral DNA that has the correct 5 long terminal
repeat (LTR) end and is competent for integration.
Moreover, to fulfill this requirement, the PPT must be
the exclusive primer for initiation of plus-strand DNA
synthesis (6-8).

From available evidence we know that the exclusive use
of the PPT is achieved, at least in part, because the PPT
duplex, in contrast to all other RNA-DNA hybrids, is
resistant to RNase H degradation during reverse tran-
scription (6-8). Several factors are responsible for this
unusual property. For example, the PPT has a unique
sequence, including six Gs at its 3’-end (Figure 1) that
are required for proper RNase H cleavage at the
PPT-U3 junction and extension by HIV-1 RT (9)
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Figure 1. Schematic diagram of the RNA primers used in this study. The gray rectangle represents nt 8994-9138 from the 3’-end of the HIV-1 NL4-3
RNA genome (numbering according to GenBank accession number: AF324493) (70). The RNA primers (each 20nt) are shown beneath the gray
rectangle and the tick marks are placed according to the position of the first base in the primer sequence in the viral RNA genome. Note that in the
case of the PPT, we used a primer containing the PPT plus the five downstream bases, so that all primers would be the same size. The five additional
bases are removed by RNase H to generate the actual PPT primer (9). Symbols: 589R, stippled; 194R (PPT+5), open; 587R, solid; and 591R,
hatched. The table below the diagram indicates the nt positions and the sequence (5’ to 3’ direction) of each primer.

[for further details on mutational analysis of retroviral
PPT sequences, see refs. (7,8) and references therein].

In addition to sequence, there are also structural
considerations. Based on an X-ray crystal structure, an
HIV-1 PPT duplex bound to RT was reported to have
significant structural anomalies (10). In addition, struc-
tural distortion at the PPT-U3 junction was seen in the
absence of RT (11,12). More recently, high-resolution
NMR analysis showed that the PPT duplex alone consists
entirely of intact, standard Watson—Crick base pairs (bp)
(13). Although weakened base pairing could be detected
at particular bases (13), it appears that major perturba-
tions in PPT structure are associated with RT binding
(10,13,14).

To catalyze cleavage at the junction with U3 and sub-
sequently extend the primer, RT must assume two orien-
tations: one that favors cleavage (see below) and the other,
in which the polymerase active site is positioned at the
3’-hydroxyl group of the PPT, as would normally occur
with a DNA primer, but not with a non-PPT RNA
(15,16). A recent report indicates that a single RT
molecule can flip between RNase H cleavage- and DNA
polymerase-competent orientations (16).

Interestingly, in the course of reverse transcription,
there is a step that could interfere with selection of the
PPT as the sole plus-strand primer: during minus-strand
DNA synthesis, genomic RNA template sequences that
become annealed to the nascent DNA are removed by
RNase H cleavage to enable minus-strand transfer to
occur and also to allow minus-strand DNA to function
as the template for subsequent plus-strand DNA synthesis
(6,17). Some of the RNA fragments are large enough to
remain in a hybrid structure and could potentially prime
DNA synthesis (7). Normally, non-PPT hybrids are fur-
ther degraded by RNase H-catalyzed 5'-end-directed

cleavages. In this case, the polymerase active site is posi-
tioned near the 5-end of the RNA, whereas the RNase H
domain is positioned near the 3’-end (15,16,18-24). This
orientation of RT is incompatible with DNA synthesis.
Thus, the RNA fragments are poorly extended, if at all
(9,16,23,25-27).

Nevertheless, there are a few in vivo studies that describe
what we refer to as ‘mispriming’, i.e. priming by an RNA
other than the PPT, albeit at low levels (28,29).
Interestingly, when the 3" PPT was changed to a comple-
tely random sequence, HIV replication occurred, but to
only a small extent, e.g. on Day 3, the mutant virus was
1.5 orders of magnitude less infectious than wild-type
(WT). By Day 6, however, the mutated PPT sequence
had reverted to the WT sequence and the mutant was
able to replicate like WT HIV-1 (29). It has also been
reported that HIV-1 plus-strand DNA synthesis is discon-
tinuous, presumably reflecting the use of multiple
upstream initiation sites (30). In this case as well, the 3’
PPT must be used to initiate plus-strand synthesis so that
viral DNA has the correct end for integration. Taken
together, these findings emphasize the importance of
maintaining the 3’ PPT for successful virus replication.

Based on events occurring during plus-strand DNA
transfer, we hypothesized that in addition to RNase H
degradation, HIV-1 might also use a complementary
mechanism for inhibiting mispriming reactions. Thus, in
earlier work, we demonstrated that both secondary RNase
H cleavage as well as the destabilizing activity of the HIV-
1 nucleocapsid protein (NC) are required for maximal
removal of the tRNA\%yS primer still hybridized to (+)
SSDNA [for more details, see refs. (31-33)]. We therefore
considered the possibility that HIV-1 NC and RNase H
activity may both play roles in blocking mispriming and
we set out to test this prediction.



HIV-1 NC is a small, highly basic, nucleic acid binding
protein with two zinc finger domains that are connected
by a short, basic amino acid linker (34-36). Each zinc
finger contains the invariant CCHC metal-ion-binding
motif (37). The NC protein is a nucleic acid chaperone,
which means that it can catalyze nucleic acid conforma-
tional rearrangements that lead to the most thermody-
namically stable structures (34-36,38-40). Chaperone
function consists of two independent activities, which
are both essential for NC-dependent reactions in vitro
(36) and virus replication in cells (40): (i) aggregation
of nucleic acids, which is important for annealing and is
localized primarily to the N-terminal basic domain (41-44)
and (ii) moderate destabilization of nucleic acid duplexes,
an activity that is associated with the zinc fingers
(32,33,45-64).

In the present study, we have investigated the influence
of HIV-1 NC on the primer extension activities of the PPT
and three representative 20-nt purine-rich non-PPT pri-
mers having sequences derived from the upstream
or downstream regions near the 3’ PPT (Figure 1), in con-
junction with authentic HIV-1 minus-strand DNA tem-
plates. With WT RT, the non-PPT primers exhibit
a range of priming activities in the absence of NC,
but addition of NC reduces priming in each case to
almost base-line level. RNase H cleavage and zinc
coordination by NC are required for maximal inhibition
of mispriming, but a modest effect of NC in the absence of
RNase H is also observed. In contrast, the PPT duplex
is unusually stable and therefore resistant to NC destabi-
lization. The results of the primer extension assays
could be correlated with the biophysical properties of
the PPT and non-PPT hybrids and all of the assays
showed that the PPT duplex is distinct from the non-
PPT complexes. Collectively, our findings demonstrate a
novel role for NC nucleic acid chaperone activity in
reverse transcription, which together with RNase H cleav-
age dramatically increase the fidelity of plus-strand
initiation.

MATERIALS AND METHODS
Materials

RNA oligonucleotides were obtained from Integrated
DNA Technologies (Coralville, TA) or Dharmacon
(Lafayette, CO). DNA oligonucleotides were purchased
from Lofstrand (Gaithersburg, MD) or Integrated DNA
Technologies. DNA oligonucleotides labeled at the 5-end
with fluorescein and purified by HPLC were obtained
from TriLink BioTechnologies (San Diego, CA) (65).
[y->*PJATP (3000 Ci/mmol) was purchased from GE
Healthcare (Piscataway, NJ) and PerkinElmer (Shelton,
CT). T4 polynucleotide kinase, SUPERaseIn RNase
inhibitor, and Gel Loading Buffer II, were purchased
from Applied Biosystems (Foster City, CA). HIV-1 RT
was obtained from Worthington Biochemical Corp.
(Lakewood, NJ). An RNase H-minus HIV-1 RT, E478Q
(66), was a generous gift from Dr Stuart Le Grice
(HIV  Drug Resistance Program, NCI-Frederick,
Frederick, MD).
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Table 1. Thermal stability of RNA-DNA duplexes determined by UV
melting studies

Duplex T (°C)*
Minus NC Plus NC
PPT 61.5 61.5
587 55.0 52.0
589 54.5 53.0
591 54.5 52.5

“Experimental error is £0.5 (°C).

Methods

Preparation of HIV-1 NC proteins. Recombinant WT NC
was prepared as described previously (67,68). The SSHS
mutant NC protein, in which all six Cys residues are chan-
ged to Ser, was expressed and purified as described in
reference (32). Zinc-less WT NC was prepared by solid-
phase peptide synthesis (69) and was never exposed to
zinc. NC (11-55), which is missing residues 1-10 (36)
and was reconstituted with Zn>", was also prepared by
solid-phase chemical synthesis (69).

RNA and DNA oligonucleotides. The HyTher program
(http://ozone3.chem.wayne.edu/) was used to predict
which 20-nt RNA oligonucleotides in the vicinity of the
3’ PPT would form stable duplexes with T, values similar
to that of the PPT. Experimentally determined 7, values
of the duplexes used in this study are given in Table 1. The
RNA primers were 194R (the 15-nt PPT with the addition
of five bases downstream of the 3" PPT, ie. PPT+5),
587R, 589R and 591R. The sequences and positions of
the primers on the viral RNA genome are illustrated in
Figure 1. We used the 20-nt version of the PPT so that all
of the primers would be the same size and also because
this oligonucleotide, unlike the 15-nt PPT, displayed only
one gel band in the absence of RT (Figure S1). In the case
of the 20-nt PPT, the additional 5nt are removed by
RNase H so that the extension products of a 15-nt or
20-nt PPT are identical (9). For biophysical experiments
(see below), we used a 15-nt PPT duplex, since the addi-
tional 5 nt would not be cleaved under the conditions used.
The minus-strand DNA template (100 nt) for primers
194R, 587R and 591R was 581D (5-GTG TGT GGT
AGA TCC ACA GAT CAA GGA TAT CTT GTC
TTC TTT GGG AGT GAA TTA GCC CTIT CCA
GTC CCC CCT TTT CTT TTA AAA AGT GGC TAA
GAT CTA C (nt 9039-9138) and for primer 589R, the
100-nt template was 582D (5-AGT GAA TTA GCC
CTT CCA GTC CCC CCT TTT CTT TTA AAA AGT
GGC TAA GAT CTA CAG CTG CCT TGT AAG TCA
TTG GTC TTA AAG GTA CCT GAG GTG TGA C (nt
8994-9093). All sequences were derived from the HIV-1
pNL4-3 clone (GenBank accession no: AF324493) (70).
The RNA and DNA oligonucleotides were gel-purified
by polyacrylamide gel electrophoresis (PAGE) in 15% or
12% denaturing gels, respectively, followed by excision of
the desired band from the gel and further purification
with Microcon YM-3 or YM-10 centrifugal filter units
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(Millipore). RNA primers were 5-end labeled using T4
polynucleotide kinase and [y-**PJATP, as described
previously (71), except that labeled primer was separated
from unincorporated ATP using a Princeton Separations
spin column (Princeton Separations, Adelphia, NIJ),
following the instructions provided by the manufacturer.

Primer extension assay. RNA-primed plus-strand DNA
synthesis was measured in the absence or presence of
HIV-1 NC, as specified. Primer extension was assayed
with 5-3*P-labeled primer RNAs. Thus, in each case,
only extension from the intact primer was detected.
Each 5-*P-labeled primer RNA (0.4 pmol) was heat
annealed to its complementary minus-strand DNA tem-
plate (0.4 pmol); gel-shift assay verified that annealing
was complete (data not shown). Reaction mixtures
contained the annealed duplex, reaction buffer (50 mM
Tris—=HCI1 (pH 8.0), 75mM KCI, 7mM MgCl,, | mM
DTT), SUPERaseln (final concentration, 0.5 U/ul),
HIV-1 RT (1 pmol) and the four dNTPs (100 pM each)
in a final volume of 20pl. Reactions were initiated by
addition of MgCl, and the four dNTPs. After incubation
at 37°C for the indicated times, reactions were terminated
by addition of 8ul of Gel Loading Buffer II followed
by heating at 95°C for 4 min. Three-microliter samples
were subjected to denaturing PAGE in an 8% gel.
Radioactivity was quantified by wusing a Typhoon
PhosphorImager (GE Healthcare) and ImageQuant soft-
ware. For time course experiments, reactions were scaled
up and contained 1.7pM NC (1.45nt/NC), where speci-
fied. Five-microliter aliquots were withdrawn at the indi-
cated times and were processed as described above, except
that only 2 ul of loading buffer was added. The amount of
full-length (FL) **P-labeled DNA synthesized in the reac-
tion was expressed as the percentage of total radioactivity
in the lane (% FL DNA).

Biophysical assays. The assays, described below, were
performed in the absence of Mg®" (see Supplementary
Data, Materials and Methods section).

CD spectroscopy. CD spectra were obtained with a
JASCO J710 spectropolarimeter equipped with a water-
jacketed cell holder using 1 mM path-length cells. The
RNA-DNA hybrid (25pM) was annealed in buffer con-
taining 50mM Tris-HCI (pH 8.0) and 75mM KCI by
heating to 80°C for ~20min and cooling slowly to room
temperature.

UV melting experiments. UV absorption readings at
260 nm were taken as a function of temperature, using a
GBC 918 spectrophotometer equipped with thermoelectri-
cally controlled cell holders. Melting studies were per-
formed in the absence or presence of NC as described
(60). The concentration of the duplexes was 2uM and
NC was 4puM (1 NC/strand). The observed melting
curves allowed an estimation of melting temperature,
T, the midpoint temperature of the unfolding process.
Under our experimental conditions, no noticeable precip-
itation (i.e. no light scattering) was observed, as verified by
monitoring the UV absorption at 350 nm. Note that for

these experiments NC (11-55), which is missing the
N-terminal basic residues of NC, was used to minimize
aggregation.

Fluorescence anisotropy (FA) measurements. Equilibrium
binding constants of RT to RNA-DNA hybrids were
determined by measuring the FA of 20nM duplexes
(DNA strands were labeled at their 5'-ends with fluores-
cein) as a function of increasing concentration of RT or
NC. Hybrid duplexes were annealed as described above in
buffer containing 50 mM Tris—HCI (pH 8.0), 75mM KCI
and 1 mM DTT. The protein—-DNA mixtures were incu-
bated at room temperature for 1 h. Anisotropy measure-
ments were made on a Photon Technology International
spectrofluorimeter (Model QM-2000). The excitation and
emission wavelengths were 485 and 535 nm, respectively.
Data analysis was performed by fitting binding data to a
1:1 binding model as described previously (72). K4 values
were determined from two or three independent
experiments.

For competition studies, the PPT or 591 duplexes
(20 nM) were prebound to either 500 nM RT or
1000nM NC in 75mM KCI, 1mM DTT, 50mM Tris—
HCIl (pH 8.0) for 1h at room temperature. FA was
measured as a function of increasing concentration of
competing protein (either RT or NC).

RESULTS

HIV-1 NC is required for blockage of mispriming by
non-PPT RNA primers

The goal of this work was to determine whether the
nucleic acid chaperone activity of NC contributes to selec-
tion of the PPT as the exclusive 3’ primer for plus-strand
initiation by helping to block mispriming by non-PPT
RNAs. Our approach was to test RNA sequences in the
vicinity of the 3’ PPT, since suppression of mispriming in
this region and in particular, downstream of the PPT, is
crucial for producing viral DNA that is competent for
integration (6,7). The diagram in Figure 1 shows a sche-
matic representation of the viral RNA genome from nt
8994 to nt 9138 and the positions of the first nt of (i)
three representative non-PPT RNA fragments (589R,
upstream of the PPT; 587R and 591R, both downstream
of the PPT); and (ii) the PPT plus five downstream bases
(194R). The nt boundaries and sequence for each primer
are given in the table. Note that all of the primers are
purine-rich and that 194R has only two pyrimidine
bases, which are part of the 5-nt sequence downstream
of the PPT.

Each RNA was labeled at its 5-end with **P and was
then hybridized to a complementary 100-nt DNA tem-
plate (581D for 194R, 587R and 591R; 582D for 589R).
Primer extension was assayed as described in Materials
and Methods section and the results are shown in
Figure 2. The only gel products detected are extended
DNAs that retain the 5’ 3P label, i.e. DNAs still attached
to the intact primer, and small labeled RNAs produced by
RNase H cleavage of the labeled RNA primer in the
RNA-DNA hybrid (bands located beneath the primer
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Figure 2. Effect of HIV-1 NC on plus-strand initiation with four RNA primers. The 194R (PPT +5), 587R, 591R and 589R primers were extended
by HIV-1 RT in the absence or presence of HIV-1 NC. (A) Gel analysis. FL DNA products synthesized during primer extension after incubation at
37°C for 30 min in the absence (No) (lanes 1, 7, 13, 19) or presence of increasing concentrations of HIV-1 NC as follows: 14 nt/NC (0.17 uM), lanes
2, 8, 14, 20; 7nt/NC (0.34pM), lanes 3, 9, 15, 21; 3.5nt/NC (0.7 uM), lanes 4, 10, 16, 22; 1.75nt/NC (1.4uM), lanes 5, 11, 17, 23; 0.88 nt/NC
(2.7uM), lanes 6, 12, 18, 24. The positions of the primer (P) and the FL DNA products formed by 587R (55nt), 591R (40nt) and S89R (85nt) are
shown on the right and for 194R (80nt), on the left. The bracketed bands are RNase H cleavage products. The sizes of the DNA products were
verified with appropriate markers. (B) Bar graphs showing the percentage of total radioactivity in a given lane present as the FL *’P-labeled DNA
(% FL DNA) as a function of NC concentration. The numbers below each bar in the bar graph also correspond to the lane numbers of the gel. Note
that the inset in the bar graph for 587R shows the values for % FL DNA on an expanded scale. Symbols: 194R (PPT +5), open bars; 587R, filled

bars; 591R, hatched bars; and 589R, stippled bars.

band [P]) (Figure 2A). As predicted from the sequence of
the templates, the sizes of the FL DNA extension products
(including the RNA sequence) for each non-PPT primer
were: 587R, 55nt; 591R, 40 nt; and 589R, 85nt. For 194R,
the FL product was 80nt. Unannealed primers in reac-
tions without RT and NC migrated as essentially a
single band (Figure S1).

Gel analysis of primer extension reactions is illustrated
in Figure 2A. As expected, 194R was the most efficient
primer. The five downstream bases are removed by the
RNase H activity of RT (9) leaving a 15-nt RNA; other
less prominent RNA bands could represent a small
amount of imprecisely cleaved RNA in vitro. In addition,
the data showed that RNase H degradation of the non-
PPT primers resulted in multiple RNA cleavage products.
The most prominent DNA in each case was the FL DNA
extension product, although low levels of smaller DNA
products were also detected.

What is most striking about the data in Figure 2A is
that addition of increasing concentrations of NC resulted
in a dramatic reduction of mispriming by the non-PPT
primers, but had absolutely no effect on priming by
194R. This is shown most clearly when the data were plot-
ted as bar graphs [percentage FL DNA versus NC

concentration (nt/NC)] (Figure 2B). To visualize the
effect of NC on priming by 587R, the data in Figure 2B
are shown with an expanded scale for the y-axis (see inset
of Figure 2).

In the absence of NC, the order of priming efficiency of
the RNA primers was as follows: 194R > 591R > 589R >
587R. For example, 591R and 589R had 50% and ~10-
15% of 194R priming activity, respectively, whereas 5§7R
had almost no activity (~80-fold less activity than 194R).
Under these conditions, only RNase H activity can inhibit
mispriming of the non-PPT primers. However, when NC
was added, the differences between the activities of the
non-PPT primers were less dramatic, since in all cases
NC further reduced priming activity to essentially base-
line levels, particularly at high NC concentrations. The
magnitude of NC’s inhibitory effect was dependent on
NC concentration. The relatively high amount of NC
needed for maximal activity in this system, compared to
the 7nt/NC ratio in vivo, reflects the fact that high con-
centrations of Mg”>" ions are required for in vitro reac-
tions in which both RT polymerase and RNase H
activities are required (73). In this case, Mg> " ions dis-
place some of the NC bound to the nucleic acid (64,74,75).
Note too that results obtained from internal labeling
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experiments  (9,76-78), using unlabeled primer,
[0-**P]dATP and three unlabeled dNTPs, were consistent
with the findings illustrated in Figure 2 (data not shown).

Taken together, the results of Figure 2 show that both
RNase H cleavage and NC contribute to blocking mis-
priming by non-PPT primers during HIV-1 reverse
transcription.

Biophysical properties of PPT and non-PPT RNA-DNA
hybrids

To gain further insight into the observed differences in
priming activity and the effect of NC, it seemed reasonable
to assume that differences in the structures of non-PPT
primers and the PPT would be of great importance (8)
(also, see below). Here, we used several different opti-
cal techniques to probe the structure, stability and
RT binding affinity of the PPT and non-PPT hybrids:
CD spectroscopy, which measures helical structure; UV
melting studies (temperature-dependent UV absorption)
in the presence and absence of NC; and FA to determine
the affinity of RT and NC for the RNA-DNA hybrids. In
all of these experiments, the non-PPT hybrids were 20 bp,
whereas the PPT hybrid was 15bp, as described in
Materials and Methods section.

CD spectroscopy

In an earlier study of the requirements for PPT priming,
we found that helical structure is important for the effi-
ciency of priming activity (9). To determine whether CD
spectroscopy might provide a correlation with the
observed priming activity of the PPT and non-PPT pri-
mers used in this work (Figure 2), we analyzed the spectra
of the corresponding RNA-DNA hybrids (Figure 3).
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Figure 3. CD spectra of primer RNA-DNA hybrid duplexes. The
hybrids were 20bp in length except for the PPT hybrid, which was
15bp. The spectra of the PPT (blue), 587 (black), 591 (green) and
589 (red) duplexes were determined as described in Materials and
Methods section.

The CD spectrum of a B-form DNA duplex is generally
characterized by a positive peak at ~270 nm and a nega-
tive peak of similar size at ~250nm. An A-form RNA
duplex displays a stronger positive peak at ~270nm
than a B-form duplex and a relatively weak negative
peak at ~235nm. In addition, the spectrum of an
A-form duplex has a negative peak at 210 nm, whereas
this peak is either missing or present as a small positive
peak in the spectrum of a DNA-DNA duplex (79,80). CD
(79-82) and NMR (83,84) spectroscopy studies have
shown that RNA-DNA hybrids are usually intermediate
between A- and B-form conformations, although overall,
the duplexes studied here appeared to have conformations
with more A-like character (Figure 3).

For this work, the positive bands in the spectra at
~270nm are of greatest interest. These bands differed in
the magnitude and location of their maxima, which is con-
sistent with the different purine content in the RNA
strand. For example, the PPT duplex has an all purine
RNA strand with the highest G content (47%), and pro-
duced a CD spectrum with the smallest positive band
intensity at 271 nm. In contrast, the 589 duplex contains
35% Gs and 45% purines in the RNA strand and the
spectrum displayed the strongest positive band at
266 nm. Additionally, reduced peak intensity in the
270 nm region is indicative of greater B-form (DNA-like)
character. Inspection of Figure 3 indicated that the mag-
nitude of the maxima in this region from smallest to lar-
gest was in this order: PPT<591<589~587. These data
support the conclusion that greater B-form character is
correlated with increased priming activity (Figure 2). It
should be noted that although 589 has more priming activ-
ity than 587 (Figure 2), only subtle differences were
detected in the CD spectra (Figure 3). This suggests that
factors other than B-form character might contribute to
the level of priming activity that is observed.

Thermal stability

Melting temperatures of hybrid duplexes were determined
in the presence or absence of NC and were derived from
UV thermal unfolding experiments (Table 1; Figure S2).
For each of the duplexes, the transition started above
40°C, which indicates that at room temperature (used
for CD and FA determinations), duplexes were fully
folded. In the absence of NC, the hybrid duplexes were
characterized by a T, of 55°C, with the exception of the
PPT duplex, which displayed a significantly higher stabil-
ity (T, = 61.5°C) despite the fact that it is 5bp shorter
than the other duplexes. In the presence of NC (1 NC/
strand), the PPT sequence was not destabilized, whereas
the other sequences were destabilized by 2-3°C (Table 1).
These small differences in the AT, values of the non-PPT
duplexes are not significant. However, what is important is
that the data are consistent with the results shown in
Figure 2 indicating that NC only affects the priming activ-
ity of non-PPT RNAs.

RT and NC binding to RNA-DNA hybrid duplexes

In addition to structural considerations, it is possible
that differences in the binding affinities of the PPT and



non-PPT hybrid duplexes to RT and NC could contribute
to the observed differences in priming activity. To address
this issue, we initially used FA to measure the apparent
equilibrium dissociation constants (Kyq values) for RT
binding to the PPT, 587 and 591 duplexes (Table 2;
Figure S3A). The Ky value for the PPT was ~140 nM.
In contrast, the Ky for 591 was ~430 nM (3-fold higher
than the PPT value), whereas the Ky for 587 was
~770 nM (almost 6-fold higher than the PPT value).
The binding order of each of the duplexes to RT was:
PPT>591>587. This result corresponds to the order of
priming efficiency in the primer extension experiments
(Figure 2). Thus, the data strongly suggest that the affinity
of RT to the primer RNA-DNA template duplex also
contributes to maintaining the PPT as the exclusive
primer for initiation of plus-strand DNA synthesis.
Similar experiments were performed to determine the Ky
values for NC binding to the PPT and 591 non-PPT
duplexes (Figure S3B). In this case, the values were very
similar, i.e. ~650 nM and ~600 nM, respectively, and
were both higher than the values for the binding of these
duplexes to RT (Table 2; compare Figure S3B with S3A).

The results of these biophysical studies show that the
PPT duplex is distinct from the non-PPT duplexes. Thus,
although the PPT duplex is Sbp shorter than the other
duplexes studied here, it is characterized by high thermal
stability, lack of NC-induced destabilization and high
binding affinity to RT. Yet, despite these differences, the
PPT and 591 duplexes have equivalent binding affinity to
NC. This result suggests that the stability of the PPT
duplex in the presence of NC is not due to an NC prefer-
ence for binding to the non-PPT duplexes.

To investigate the possibility that NC might be inhibit-
ing mispriming by blocking RT from binding to the
3’-terminus of the primer (78), we performed competition
experiments (Figure 4). Either RT or NC was prebound to
the PPT or 591 duplexes and then increasing concentra-
tions of the competing protein were added. Binding was
evaluated by measuring FA. When NC was the competing
protein, FA of both the PPT and 591 duplexes was
unchanged over a broad range of NC concentration.
This indicates that NC was unable to displace RT that
was bound to the nucleic acid hybrids (Figure 4A). In
contrast, when RT was the competing protein, FA of
both duplexes was increased with increasing concentra-
tions of RT (Figure 4B). These data show that RT com-
peted effectively for binding to RNA-DNA hybrids
prebound to NC in a sequence-independent fashion,

Table 2. Apparent dissociation constants for RT and NC binding to
RNA-DNA hybrids

Duplex K4 (nM)

RT NC
PPT 140 £40 650+ 15
591 430£20 600 £ 20
587 770 £40 n.d.

The error determinations represent the SD.

n.d., not determined.

Nucleic Acids Research, 2009, Vol. 37, No.6 1761

i.e. the results were the same with the PPT and non-PPT
duplexes. Collectively, these findings rule out a direct
binding competition model to account for the ability of
NC to specifically inhibit mispriming of non-PPT primers.
The results are also in agreement with the measured dis-
sociation constants (Table 2; Figure S3).

RNase H requirement for blocking mispriming activity

The results presented thus far have demonstrated that the
biophysical properties of the duplexes as well as the activ-
ities of RNase H and NC are crucial determinants for
inhibition of non-PPT primer usage. To obtain a greater
understanding of the mechanism underlying this phenom-
enon and to provide further evidence for the RNase H and
NC contributions, we decided on a genetic approach that
would take advantage of available RNase H and NC
mutants. The relatively high priming activity of 591R
(Figure 2) makes the 591 RNA-DNA hybrid an especially
good substrate for such experiments.

To probe RNase H function, we compared the time
course of 591R priming activity with WT RT or an
RNase H-minus RT mutant (E478Q) (66) in the presence
and absence of NC (Figure 5). The WT reaction without
NC proceeded at a slow rate and significant extension was
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Figure 4. Competition binding experiments with RT and NC to PPT
(blue) and 591 (green) duplexes. The duplexes (20nM) were prebound
to 500nM RT (A) and to 1000nM NC (B). FA values for the protein-
free duplexes were approximately 0.05 and 0.08 for the PPT and 591
duplexes, respectively.
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Figure 5. Effect of HIV-1 NC on the kinetics of 591R primer extension
catalyzed by WT RT and RNase H-minus RT. The data were plotted
as % FL DNA versus Time (min). Symbols. WT RT: minus NC,
squares; plus NC, triangles. RNase H-minus RT: minus NC, circles;
plus NC, diamonds.

first detected at 30 min. By 1 h and 3 h, 8% and 15% of the
total radioactivity were present as the **P-labeled DNA,
respectively. With addition of NC, extension was very
poor at both the early and late time points: at 1h and
3 h, the extended DNA product was only 1% and 3% of
the total radioactivity, respectively. This indicates that the
extent of synthesis of the 5 labeled DNA product was
reduced by 5-8-fold in the presence of NC.

In contrast to these results, when reactions were per-
formed with the RNase H-minus RT in the absence of
NC, extension was more efficient than that observed
with WT RT. The rate of synthesis was higher and by
3h, 45% of the total radioactivity was present in the
extended DNA. This indicates that RNase H activity is
critical for inhibition of mispriming. Interestingly, even in
the absence of RNase H activity, addition of NC resulted
in a reduction in the rate and extent of the reaction. At 3 h,
20% of the primer was extended, which corresponds to a
2.5-fold reduction in the level of priming activity com-
pared with that seen in reactions without NC.

Taken together these results demonstrate that RNase H
plays a major role in blocking mispriming by a non-PPT
primer. In RNase H-minus RT reactions, NC alone also
had an inhibitory effect on the rate and extent of misprim-
ing. However, the greatest effect was observed when
RNase H and NC activities were both present, consistent
with the results of Figure 2 and previous studies of plus-
strand DNA transfer (31-33).

NC coordination of zinc is required to block mispriming

It was also of interest to determine whether NC’s ability to
coordinate zinc is required for inhibition of mispriming.
Since NC’s destabilization activity is associated with the
zinc finger domains [for references before 2005, see ref.
(36); (59,62)], this question is of great importance for elu-
cidating the mechanism of NC activity in our system. To
address this issue, we tested two NC proteins that do not
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Figure 6. Effect of zinc coordinating activity of NC on the kinetics of
591R primer extension. Reactions were performed with RT in the pres-
ence or absence of WT NC, SSHS NC (32), or zinc-less NC (69). The
data were plotted as % FL DNA versus Time (min). Symbols: minus
NC, squares; WT NC, triangles; SSHS NC, open circles, dashed line;
zinc-less NC, diamonds. Note that the minus NC and WT NC curves
are the same as those shown in Figure 5 for reactions with WT RT, but
the scale on the y-axis is expanded here.

have zinc finger structures: (i) the SSHS mutant, which has
all six Cys residues changed to Ser (32) and (ii) chemically
synthesized WT NC that was never exposed to zinc (zinc-
less NC) (69) (Figure 6). The time course of 591R priming
activity was assessed with the two NC variants and was
compared with activity in the absence and presence of WT
NC. Only WT RT was used in these experiments. The data
for reactions with and without WT NC are taken from
Figure 5, except that in this case, the values for percentage
FL DNA are displayed on an expanded y-axis.

Examination of the data presented in Figure 6 shows
that both SSHS NC and zinc-less NC behaved in an iden-
tical manner. Throughout the 3h incubation period,
primer extension was ~1.7-2-fold lower than extension
in the absence of NC, but by 3 h, there was no difference
between the three curves. This result indicates that SSHS
NC and zinc-less NC inhibited mispriming to only a very
small extent. In support of this conclusion, we also
observed that extent of mispriming was reduced ~5-fold
more efficiently with WT NC than with the NCs that do
not coordinate zinc. Thus, the data of Figure 6 demon-
strate that zinc coordination is essential for maximal NC
function in our system. The results also imply that NC
nucleic acid chaperone activity is responsible for destabi-
lization of the non-PPT duplexes.

DISCUSSION

In the present study, we have demonstrated a new role for
the nucleic acid chaperone activity of HIV-1 NC in reverse
transcription, i.e. the ability of NC to block mispriming by
non-PPT primers and ensure selection of the PPT as the
sole primer for initiation of plus-strand DNA synthesis at
the 3’-end of the genome. This activity, which functions
together with RNase H, is critical for synthesis of



integration-competent HIV-1 DNA and ultimately for
successful replication of the virus.

By using a genetic approach, we could formally estab-
lish that RNase H and NC are essential for reduction of
mispriming in our reconstituted primer extension system.
Indeed, with an RNase H-minus RT, mispriming by 591R
RNA was increased by 3-fold in the absence of NC
(Figure 5). However, the fact that NC could inhibit
primer extension even when RNase H was absent
(Figure 5) demonstrates that the inhibitory effects of NC
and RNase H can be uncoupled.

A major issue that we address concerns how differences
in the biochemical and biophysical properties of the PPT
and non-PPT primers affect priming activity. It has long
been recognized that the PPT duplex has unique sequence
and structural features that distinguish it from other
RNA-DNA hybrids (7,8,10,12,13,85) and contribute to
its being RNase H-resistant in biologically relevant reac-
tions (6,7,15,16) (also, see above).

Here, we find differences between the CD spectra of
PPT and non-PPT duplexes, which reflect differences in
helical structure. In particular, the observed differences
in the magnitude of the ~270nm peak (Figure 3), are
generally correlated with the order of priming efficiencies
(Figure 2) and B-form (i.e. DNA-like) character. These
results are in accord with the known preference of RT
for extending DNA primers (16,26,86-88). The data are
also consistent with NMR analysis indicating that the
major groove of a PPT-related duplex is different from
that of other RNA-DNA hybrids and has the shape and
relative width more characteristic of a B-form DNA
duplex (11).

We also determined Ky values for binding of RT to the
PPT and non-PPT hybrids (Table 2; Figure S3A) and
found that the data could be correlated with the order
of priming activity (Figure 2). For example, the high bind-
ing affinity of the PPT duplex to RT is consistent with the
fact that of all the primers examined here, the PPT exhi-
bits the most efficient plus-strand priming activity. These
data are also in agreement with a study demonstrating
that similar to the PPT, primers selected for high binding
affinity to RT have at least 6-8 Gs at their 3’-end (89).
Interestingly, although PPT priming is not affected by NC
(Figure 2), FA measurements demonstrate that the PPT
and 591 non-PPT duplexes bind to NC with the same
affinity (Table 2; Figure S3B). Thus, binding affinity
cannot explain the ability of NC to inhibit extension exclu-
sively from non-PPT primers.

While this manuscript was in preparation, a paper by
Jacob and Destefano appeared demonstrating that NC
inhibits priming by non-PPT RNAs (two random primers
and a primer from the gag-pol region of HIV-1), while
having no effect on PPT priming (78), in agreement with
our results. The authors postulate that the NC effect on
non-PPT priming reflects a competition between RT and
NC for binding to the 3’ primer terminus. However,
as discussed above, the competition experiments shown
in Figure 4 do not support this hypothesis. Additionally,
FA measurements show that Ky values for RT bind-
ing to the PPT and 591 hybrids are lower than the corre-
sponding values for NC binding (Table 2; Figure S3).
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This result reflects RT’s preference for binding ds nucleic
acids (65,90) and NC’s preference for binding ss nucleic
acids (36).

It is well known that NC’s nucleic acid chaperone activ-
ity is required for almost every reaction that occurs during
reverse transcription (36,40). Since differences in binding
affinity and a direct binding competition model do not
appear to be responsible for our results, NC’s ability to
destabilize nucleic acid secondary structures is likely to be
involved in blocking mispriming. Several lines of evidence
support this idea.

First, we find that NC lowers the T, of non-PPT
duplexes despite these values being relatively high,
whereas it has no effect on the 7, of the PPT duplex
(Table 1, Figure S2). The resistance of the PPT duplex
to NC reflects its strong secondary structure (e.g. see Ty,
value in Table 1), which is not susceptible to the moderate
destabilizing activity of NC (36,57,58,63,64). Note that
control experiments demonstrated that PPT priming was
also unaffected by addition of either SSHS NC (32), zinc-
less NC (69) or RNase H-minus RT (66) (data not shown).
Although the AT, values for UV melting of the non-PPT
hybrids are small (2-3°C range) (Table 1), these results are
nevertheless suggestive of a role for NC’s nucleic acid
chaperone activity in preventing mispriming by non-PPT
primers.

Using an RNase H-minus RT (66), we have shown that
in the absence of RNase H, NC still has an effect on mis-
priming (Figure 5). Since competition between RT and
NC for binding to the primer does not appear to be a
factor (Figure 4), it is more likely that NC destabilizes
the non-PPT hybrids. Most importantly, we have found
that SSHS NC and zinc-less WT NC, which have been
shown to be poor nucleic acid chaperones (36,59)
(M. Mitra, D. Mullen, G. Barany, I. Rouzina and K.
Musier-Forsyth, manuscript in preparation), are unable
to complement the inhibitory effect of RNase H on mis-
priming (Figure 6). This result does not reflect inefficient
nucleic acid binding by these two NCs. In fact, SSHS
NC (59) and zinc-less NC (M. Mitra, D. Mullen,
G. Barany, I. Rouzina and K. Musier-Forsyth, manu-
script in preparation) bind to nucleic acids with even
higher affinity than WT NC. The lack of activity in the
mispriming assays is therefore most likely due to the
severely reduced duplex destabilizing activity of these
NC proteins. This conclusion is consistent with many
other studies showing that NC-dependent destabilization
of nucleic acid duplexes is associated with zinc finger func-
tion (32,33,45-47,49,52,53,59-62).

Thus, taken together, our results strongly support a
mechanism by which NC’s nucleic acid chaperone activity
destabilizes the moderately stable non-PPT hybrids, which
could lead to dissociation of the primer RNA. It should be
noted that when RNase H and NC are both present, the
helix destabilizing activity of NC most likely results in
displacement of RNase H cleavage products that are still
annealed to template DNA.

In summary, we have uncovered a new role for NC’s
nucleic acid chaperone activity that together with RNase
H assures the specific selection of the PPT as the primer
for plus-strand DNA synthesis. We show that significant
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differences in the biophysical properties of PPT and non-
PPT duplexes correlate with differences in priming activ-
ity. Moreover, the requirement for the coordination of
zinc by the CCHC residues indicates that the mechanism
for NC’s role in blocking mispriming is its ability to desta-
bilize nucleic acid duplexes that lack a highly stable sec-
ondary structure. In turn, this also explains why the
unique structure of the PPT duplex renders it resistant
to NC. Finally, these findings reveal a novel target for
development of new strategies for anti-HIV therapy.
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