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Abstract

Background: In human embryogenesis, loss of SRY (sex determining region on Y), SOX9 (SRY-related HMG box 9) or SF1
(steroidogenic factor 1) function causes disorders of sex development (DSD). A defining event of vertebrate sex
determination is male-specific upregulation and maintenance of SOX9 expression in gonadal pre-Sertoli cells, which is
preceded by transient SRY expression in mammals. In mice, Sox9 regulation is under the transcriptional control of SRY, SF1
and SOX9 via a conserved testis-specific enhancer of Sox9 (TES). Regulation of SOX9 in human sex determination is however
poorly understood.

Methodology/Principal Findings: We show that a human embryonal carcinoma cell line (NT2/D1) can model events in
presumptive Sertoli cells that initiate human sex determination. SRY associates with transcriptionally active chromatin in
NT2/D1 cells and over-expression increases endogenous SOX9 expression. SRY and SF1 co-operate to activate the human
SOX9 homologous TES (hTES), a process dependent on phosphorylated SF1. SOX9 also activates hTES, augmented by SF1,
suggesting a mechanism for maintenance of SOX9 expression by auto-regulation. Analysis of mutant SRY, SF1 and SOX9
proteins encoded by thirteen separate 46,XY DSD gonadal dysgenesis individuals reveals a reduced ability to activate hTES.

Conclusions/Significance: We demonstrate how three human sex-determining factors are likely to function during gonadal
development around SOX9 as a hub gene, with different genetic causes of 46,XY DSD due a common failure to upregulate
SOX9 transcription.

Citation: Knower KC, Kelly S, Ludbrook LM, Bagheri-Fam S, Sim H, et al. (2011) Failure of SOX9 Regulation in 46XY Disorders of Sex Development with SRY, SOX9
and SF1 Mutations. PLoS ONE 6(3): e17751. doi:10.1371/journal.pone.0017751

Editor: Jennifer Schmidt, University of Illinois at Chicago, United States of America

Received December 22, 2010; Accepted February 13, 2011; Published March 11, 2011

Copyright: � 2011 Knower et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Health and Medical Research Council of Australia (NHMRC) Program Grant number 334314 (2004–2009) and
number 546517 (2010–2014); and by the Victorian Government’s Operational Infrastructure Support Program. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: vincent.harley@princehenrys.org

Introduction

DSDs are among the most common genetic diseases in humans

referring to a group of congenital conditions in which the

development of the chromosomal, gonadal or anatomical sex

has been abnormal [1]. Mutations in the key testis-determining

factor SRY result in 46,XY DSD. Significantly, almost all 46,XY

female patients with SRY mutations show complete gonadal

dysgenesis [2,3], consistent with the function of SRY acting early in

the development of the embryonic testis. The incidence of SRY

mutations in 46,XY DSD is however quite small (10–15%) and

does support the notion that genes other than SRY are essential for

proper testis development. Despite the ongoing identification of a

number of these key testis-determining genes [4], most of which

are transcription factors, the actions, co-factors and downstream

targets of human SRY have proven difficult to ascertain.

SRY which is expressed in Sertoli cells plays key cellular roles in

the developing gonad including the differentiation of Sertoli cells

[5]; inducing migration of cells from the mesonephros into the

gonad [6]; inducing proliferation of cells within the gonad [7];

inducing the development of the vasculature patterning of the XY

gonad [8]; and glycogen accumulation in pre-Sertoli cells [9].

Each role may be mediated by a direct interaction between SRY

and one or more partner proteins on one or more independent

target genes. Hence, one question arising is whether the various

and multiple roles played by SRY are direct or indirect?

The human SOX9 gene when mutated causes CD/SRA1

(Campomelic Dysplasia/Autosomal Sex Reversal), and has

become known as a pivotal sex-determining gene [10,11]. The

upregulation, sexual dimorphic expression pattern and conserved

protein structure of SOX9 are consistent across all vertebrate

species, regardless of the switch mechanism controlling sex

determination, being SRY in mammals (except for the mole vole,

[12]), ZW chromosome gene(s) in birds [13] and temperature

sensitivity of egg incubation in turtles and crocodiles [14,15]. In

XX Sox9 transgenic mice, and probably also in human XX males

with SOX9 duplications or translocations, the increased levels of

SOX9 are sufficient to initiate testis formation in the absence of

Sry/SRY [16,17,18,19]. This raised the possibility that Sox9/SOX9

might be a direct and potentially only target for SRY. In
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agreement, the recent identification of a conserved testis-specific

enhancer of Sox9 (TES) in the mouse has revealed a co-

transcriptional network of SRY, SF1, and SOX9 involved the

direct initiation, upregulation and maintenance of Sox9 expression

in the mouse XY gonad [20]. Like SRY and SOX9, mutations in

human SF1 lead to 46,XY gonadal dysgenesis [21,22,23].

While in the mouse, SRY directly up-regulates Sox9 expression

to induce testis development [20], the relationship between human

SRY and SOX9 is less clear. The understanding of human SRY

protein function is hampered by its lack of protein sequence

conservation across mammalian species. Protein structural do-

mains of SRY are poorly conserved, the only conserved domain

between human and mouse is the high mobility group (HMG)

domain [24], yet human SRY under the control of mouse

regulatory sequences can still induce testis development in XX

transgenic mice [25]. The importance of the HMG domain in the

function of the human SRY protein is also highlighted by the fact

that most 46,XY gonadal dysgenesis mutations cluster within this

domain. It has thus been proposed that human SRY instigates

testis-determination by potentially (i) activating gene expression

through its consensus binding site (A/T)AACAAT [26], (ii)

functioning as an architectural factor by bending DNA [27], (iii)

repressing a putative suppressor of a testis-promoting factor [28],

and (iv) being involved in pre-mRNA splicing [29]. The lack of a

suitable in vitro model system, including a bone fide SRY testis-

determining target gene, has hindered the ability to test such

hypotheses of human SRY.

In the current study, we aimed to develop an in vitro assay to

understand the molecular actions of human SRY in sex

determination. We demonstrate that endogenous SOX9 is

upregulated in the human embryonal carcinoma cell line NT2/

D1 over-expressing SRY, a model of presumptive Sertoli cells

[30]. This upregulation is associated with SRY localisation to

actively transcribed chromatin and not pre-mRNA splicing

complexes. Furthermore, we reveal that the human homologous

SOX9 testis-specific enhancer (hTES) is responsive to human SRY,

SF1 and SOX9 co-transcriptional activation. However, mutant

SRY, SF1 and SOX9 proteins encoded by 46,XY DSD

individuals exhibit a reduced ability to activate hTES. As a central

hub gene, SOX9 regulation is an important event in mammalian

sex determination. This study provides an important insight into

the molecular actions of human SRY in this process. Furthermore,

by assaying SRY, SF1 and SOX9 from 46,XY DSD individuals

we have provided functional evidence of mutations that result in

reduced SOX9 expression.

Results

SRY up-regulates SOX9/SOX9 expression in the human
NT2/D1 cell line

To test whether human SRY can activate SOX9 transcription

we evaluated the human embryonal carcinoma cell line, NT2/D1,

as a model of presumptive Sertoli cells. NT2/D1 cells express

many of the genes implicated in testis differentiation, including

SRY, SOX9 and SF1 [30]. To simulate the onset of SRY

expression, we transiently transfected SRY into NT2/D1 cells. A

significant 2.2-fold increase in SOX9 mRNA was measured by

quantitative RT-PCR (QRT-PCR) (Fig. 1A). SOX9 protein levels

increased accordingly, as represented by the positive correlation

between exogenous SRY and endogenous SOX9 immunofluores-

cence (Fig. 1B). In vitro, SRY can act as an architectural

transcription factor, binding and bending specific DNA sequences

or structures [31]. We co-immunostained NT2/D1 cells to detect

both SRY and tri-methylated histone 3 lysine 4 (H3 Me3K4),

which is exclusively associated with actively transcribed chromatin

regions [32]. The co-localization of SRY and H3 Me3K4 proteins

within the nucleus of NT2/D1 cells suggests that, when

upregulating SOX9, SRY functions in a transcriptional complex

(Fig. 1C, upper panel). It has been proposed that SRY also acts in

pre-mRNA processing [29], however, in our study, and in

agreement with others [33], Flag-SRY protein does not co-localize

with splicing factor SC-35 (Fig. 1C, lower panel).

SRY, SF1 and SOX9 activate the human homologue of
the testis-specific enhancer of Sox9 (hTES)

SRY/SOX9 and SF1 synergistically activate a ,3.2 kb, testis-

specific enhancer of the mouse Sox9 gene, 13.2–10.1 kb upstream

of the transcription start site (termed mTES) [20]. mTES is highly

conserved across species including human [20,34]. What we

believe to be the equivalent human enhancer element (termed

hTES) is positioned 14.7–11.6 kb upstream of the transcriptional

start site of the human SOX9 gene. To test whether SRY could

activate the human enhancer, hTES and mTES (as control)

sequences were cloned into a reporter construct and each was co-

Figure 1. Endogenous SOX9 is up-regulated in NT2/D1 cells in response to SRY. (A) SOX9 is significantly upregulated in NT2/D1 cells
transiently overexpressing SRY (1 mg), as measured by QRT-PCR and compared to empty vector (n = 3). (B) Immunostaining for endogenous SOX9
and exogenous SRY (Anti-Flag) reveals a positive correlation between SOX9 fluorescence and exogenous SRY fluorescence (R2 = 0.835, n = 50). Scale
bar represents 10 mm. Each point averages three fluorescence readings per NT2/D1 cell (Blue Diamond - SRY-transfected cells; Pink triangle - non-Flag
cells). (C) (Upper panel) H3 Me3K4 (red) is exclusively nuclear in NT2/D1 cells. Overlap of SRY (green) and H3 Me3K4 in NT2/D1 cells reveals co-
localization (yellow) within nuclear compartments. (Lower panel) SC-35 (red) is localized to alternate nuclear compartments, as overlap images of
Flag-SRY and SC-35 staining do not show co-localization. DAPI (blue) stains nuclear DNA. Scale bar represents 10 mm. Error bars represent the
standard error of mean values. Two-tail t-Test of paired sample means was performed. * P,0.05.
doi:10.1371/journal.pone.0017751.g001
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transfected with a human SRY expression vector into Chinese

Hamster Ovarian (CHO) cells that lack endogenous Sry but confer

SRY transcriptional activity [35]. We also obtained similar results

using HEK293 cells, derived from a human embryonic kidney

(results not shown). Both enhancers were stimulated by human

SRY to a similar extent (Fig. 2A), whereas SRY did not activate

the empty E1b-luc reporter vector (data not shown). This indicates

that SRY-mediated activity was via the human and mouse SOX9/

Sox9 enhancer sequences. Within the transcriptional complex,

SRY has been proposed to function either as a transcriptional

activator [26] or as a repressor of a transcriptional repressor [28].

We fused SRY to the activation domain of the viral protein VP16

[36] and to the repressor domain of the Drosophila melanogaster

protein Engrailed (EnR) [37]. Both SRY fusion proteins were

stably translated and bound SRY consensus DNA sequences with

wild-type affinities (Fig. 2C and 2D respectively). If SRY were a

repressor of a repressor of SOX9, SRY-VP16 would decrease,

whereas SRY-EnR would increase hTES activity in comparison to

wild-type SRY. However, fusion to VP16 significantly increased

SRY-mediated hTES activation 2-fold, whereas SRY-EnR de-

creased hTES activation 3-fold (Fig. 2B). Taken together, these

data support a model where SRY functions as a transcriptional

activator.

We next tested the effects of SF1 on SRY-mediated hTES

activity. Transfection of exogenous SF1 into CHO cells, which

contain low levels of endogenous SF1 [22], activated the hTES

enhancer 1.8-fold, while SRY activated hTES 8-fold. Together,

SRY and SF1 stimulate hTES activity 16-fold, suggesting co-

operative regulation of the SOX9 enhancer is occurring (Fig. 3A).

Phosphorylation of SF1 appears to be essential for this co-

operation with SRY, as co-operativity was abolished when the

SF1-S203A phosphorylation mutant was used (Fig. 3B). This

mutant is known to disrupt co-factor recruitment and, as a

consequence, SF1 transcriptional activity [38].

Previously, it has been shown that in the presence SF1, SOX9

can synergistically activate mTES [20]. To investigate whether

SOX9 could help maintain its own expression also on the human

enhancer, a SOX9 expression plasmid was co-transfected with the

hTES reporter construct. SOX9 significantly stimulated hTES

reporter activity 2-fold (Fig. 3A). In the presence of SF1, SOX9

mediated stimulation increased to 3-fold. SOX9 mutations causing

46,XY gonadal dysgenesis frequently truncate the C-terminus

leading to loss of PQS and PQA transactivation domains [2].

Deletion analysis indicated that the PQS transactivation domain

was essential for the hTES enhancer activation that we observed,

whereas the PQA domain was not (Fig. 3C). The data suggest that

DNA binding and the PQS-region, but not dimerization, are

required for normal SOX9 activity.

Taken together, these data support a model of human gonadal

development whereby SF1 participates firstly with SRY to up-

regulate SOX9 expression, and then with SRY, SF1 and SOX9 to

maintain its own expression. These findings agree with data

obtained with mTES in COS cells [20], although here we observe a

co-operativity rather than a synergy between SF1 and SOX9.

SRY, SF1 and SOX9 mutant proteins fail to activate the
hTES enhancer

Patients with 46,XY gonadal dysgenesis carry mutations in

testis-determining genes including SRY, SF1 and SOX9. We used

hTES as in vitro assay to study the impact of SRY, SF1 and SOX9

mutations on SOX9 gene regulation. We first assayed the

transcriptional activity of SRY from eight 46,XY females using

the hTES enhancer. The SRY mutants varied in the location of

SRY mutation, mode of inheritance (Fig. 4A) and biochemical

defects (Table 1). Six of the eight SRY mutants tested showed a

significant reduction in transcriptional activity (Fig. 4A). Of the de

novo mutants with DNA binding defects, SRY-R62G, -R75N and

-R76P showed ,0–5% of wild-type SRY transcriptional activity,

while the nuclear import mutant SRY-R133W showed ,50%

activity. Interestingly, the familial SRY-I90M mutant showed a

significant ,100% increase in hTES activation. This mutation is

predicted to alter the hydrophobic isoleucine residue within a

nuclear export sequence (Lx(1–3)Lx(2–3)LxL) suggesting correct

SRY nuclear export could be important in vivo. Familial mutants

inherited from fertile fathers (SRY-S18N, -R30I, -L163X)

positioned outside of the HMG domain were investigated.

Consistent with the partial penetrance of these mutations, their

ability to activate hTES was consistently higher (,50–90%) than

that of the de novo mutants, highlighting the potency of this assay

Figure 2. SRY acts as a transcriptional activator to stimulate
the human homologous testis-specific SOX9 enhancer (hTES).
(A) mTES and hTES reporter constructs (1.6 mg) are activated ,6-fold in
CHO cells by exogenous human SRY (100 ng) compared to vector
alone. (n = 3–5) (B) SRY fusion to VP16 (SRY-VP16, 104 ng) increased
activation of hTES, whereas SRY fusion to EnR (SRY-EnR, 120 ng)
reduced activation compared to SRY (n = 2). All reporter assays
conducted in duplicate. Error bars represent the standard error of
mean values. Two-tail t-Test of paired sample means was performed.
*** P,0.001, ** P,0.01. (C) In vitro translated SRY-VP16 and SRY-EnR
fusion proteins migrate at their expected product size compared to SRY
WT. (D) Electrophoretic mobility shift assay demonstrates that in vitro
translated SRY-VP16 and SRY-EnR fusion proteins bind to a 32P radio-
labelled DNA oligonucleotide containing the SOX DNA binding
consensus sequence AACAAT. SRY WT also binds this oligonucleotide
whereas the luciferase control protein cannot.
doi:10.1371/journal.pone.0017751.g002
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for analysis of mutations and the threshold level of activity needed

for proper SRY function. In the presence of SF1, SRY mutants

tested showed similar results with significant reductions in hTES

stimulation (Fig. 5A).

SF1 mutations cause 46,XY gonadal dysgenesis and adrenal

defects in some cases [21,23]. Three SF1 mutations (SF1-G35E,

-R92Q and -D8bp) localized to different regions of the SF1 protein

affect DNA binding and transactivation of adrenal target genes

[21,39] (Table 2). We tested the ability of these SF1 mutants to

activate hTES (Fig. 4B). The homozygous mutation SF1-R92Q

showed ,50% of wild-type transcriptional activity, consistent with

the lack of phenotype in the heterozygous parents [21]. In

contrast, heterozygous mutants SF1-G35E and SF1-D8bp showed

no transcriptional activity. All three mutations significantly

reduced the co-operative activation, with SRY, of hTES (Fig. 5B).

Heterozygous SOX9 point mutations cause CD/SRA in most

46,XY individuals [2]. The SOX9 mutant, SOX9-A158T causes

CD/SRA with 46,XY gonadal dysgenesis, due to defects in SOX9

nuclear import and DNA binding [40] (Table 3). The SOX9-

A158T mutant failed to activate the hTES enhancer both alone

(Fig. 4C) or in the presence of SF1 (Fig. 5C). In contrast, the

SOX9-A76E mutant is encoded by a CD patient without 46,XY

gonadal dysgenesis and lacks the ability to dimerize [41]. The

SOX9-A76E mutant demonstrated wild-type activation of the

hTES enhancer, consistent with dimerization of SOX9 not being

required for sex determination.

Discussion

Regulation of SOX9 expression in the gonad is tightly

controlled. The key event that defines testis determination is the

male-specific upregulation of SOX9. Results obtained in this study

replicate the earliest developmental step in sex determination, the

activation of SOX9 transcription by SRY. Our findings have

demonstrated a role for human SRY, SF1 and SOX9 in activating

SOX9 expression, endogenously in the NT2/D1 ‘Sertoli’-like cell

line and also via a conserved human SOX9 testis-specific enhancer,

hTES. These same factors are involved in the initiation,

upregulation and maintenance of Sox9 expression in XY gonads

of mice [20].

Poor sequence conservation outside of the HMG domain

between human and mouse SRY has led to the belief that human

SRY may function through differing mechanisms. For example,

mouse SRY has a transactivation domain that is absent in human

SRY [26]. Furthermore, unlike the narrow window of transient

expression of mouse Sry, beginning at E10.5 and ending abruptly

at E12.5 [42], human SRY is first observed at E41 and is still

present after 18 weeks gestation [43]. SRY function has been

difficult to test due to the lack of bone fide target genes and good

transcriptional assays. We demonstrate a role for SRY as a

transcriptional activator, both on the hTES enhancer and on an

endogenous target in NT2/D1 cells over-expressing SRY. In

support of this, SRY was found to co-localise with transcriptionally

active chromatin in NT2/D1 cells correlating with its proposed

architectural property [27], but not pre-mRNA splicing as

previously demonstrated [29]. Likewise, fusion of the transcrip-

tional activator domain VP16 and not the repressor domain EnR

to SRY resulted in increases in hTES reporter activity, suggesting

that SRY is not merely repressing a repressor. While transcrip-

tional activation of SOX9 by SRY is clearly a pivotal process for

proper testis development, the repressive actions of human SRY

on ovary-determining pathways have also been proposed [44,45].

The variability in transactivating properties of SRY, SF1 and

SOX9 DSD mutants used in this study contribute to lower doses

of SOX9 and provide important functional information. The

transcriptional action of SRY identified here enabled us to

investigate why certain SRY mutations always cause gonadal

dysgenesis while other mutations do not. Certain sex-reversing

SRY mutations show variable reduced DNA binding, DNA

bending and nuclear import defects compared to wild type SRY

(Table 1), however, studying the transcriptional activity of such

mutants has been impossible due to a lack of known targets. Three

missense de novo mutants, SRY-R62G, -R75N and -R76P located

in the HMG box N-terminal NLS showed large losses in

transcriptional activity of hTES. The de novo SRY-R133W mutant

localised in the C-terminal NLS of SRY also showed a ,50% loss

in transcriptional activity in comparison to wild type SRY. These

four mutants demonstrate the relative importance of DNA

binding, bending and nuclear import for the activation of hTES.

Of the four mutants, SRY-R62G and SRY-R75N have the most

severe biochemical defects and this is also reflected by their

transcriptional activation properties being the lowest (Table 1).

The higher activation of hTES by SRY-R133W compared to

SRY-R76P may be accounted for by its relatively normal DNA

Figure 3. Co-operative regulation of the SOX9 enhancer by SRY, SF1 and SOX9. (A) Transfection of CHO cells with exogenous SF1 (20 ng)
stimulates hTES ,1.8-fold compared to vector. Together, SRY and SF1 co-operate to activate hTES by ,16-fold. SOX9 (26 ng) activates hTES ,2-fold
compared to vector, increased to ,3-fold by the presence of SF1. (B) Transfection of S203A SF1 phosphorylation mutant (100 ng) had similar
transcriptional activity of the hTES reporter construct in comparison to SF1 WT (100 ng). Co-operative effect between SRY and SF1-S203A had
abolished hTES reporter activity in comparison to SRY and SF1 WT co-transfected cells. (C) SOX9 truncation protein (amino acids 1–465) lacking the
PQS transcriptional activation domain did not activate the hTES reporter construct to the same extent as SOX9 WT either alone or in the presence of
SF1. Removal of the PQA transcriptional activation domain did not have any effect on activation of the hTES reporter construct compared to SOX9
WT. All experiments conducted three times in duplicate. Error bars represent the standard error of mean values. Two-tail t-Test of paired sample
means was performed. * P,0.05, *** P,0.001.
doi:10.1371/journal.pone.0017751.g003
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binding affinity. This result also reflects the importance of nuclear

import to the proper function of SRY [46,47]. SRY-R133W has

,50% the nuclear import capacity of wild type SRY due to a loss

in importin-b recognition [46]. Therefore, the use of such mutants

in the assay developed in this study is somewhat more

representative of SRY’s action in vivo, where even a subtle

mutation such as SRY-R133W may reduce the ability of SRY to

up-regulate SOX9.

Intriguingly, the SRY-I90M mutation, which shows slightly

reduced DNA binding and normal DNA bending by EMSA [27],

activated the hTES enhancer ,50% greater than that of wild type

SRY. The location of this mutation at residue 90 coincides with a

conserved hydrophobic residue present in a number of SOX

proteins that forms part of a functional nuclear export signal (NES)

[48]. Substitution of the hydrophobic amino acid position in the

SOX9 NES (L142A) produces a protein unable to be exported

from the nucleus. By analogy, the observed increase in

transactivation of the SRY I90M mutant could be a consequence

of increased nuclear accumulation. It is possible to speculate that a

mutation that increases levels of nuclear SRY could be deleterious

and the cause of 46,XY gonadal dysgenesis. This may also relate

with the finding that an individual with a XYY karyotype, bearing

two copies of the wildtype SRY coding sequence is female [49].

Patients with missense mutations lying outside of the HMG

domain present as rare cases of 46,XY individuals with partial

gonadal dysgenesis i.e. the two familial mutations SRY-S18N [50]

Figure 4. Relating SOX9 gonad-specific enhancer activity to
disorders of sexual development caused by mutations to SRY,
SF1 and SOX9. (A) Locations of four de novo and four familial SRY
mutations causing 46,XY gonadal dysgenesis (Table 1). CHO cells were
co-transfected with hTES reporter and constructs expressing the SRY
mutants (100 ng). Transcriptional activity was plotted as a percentage
of SRY wild-type (WT) and statistical analysis performed. HMG, high
mobility group domain. (B) Locations of two SF1 mutants causing 46,XY
gonadal dysgenesis and adrenal failure (G35E and R92Q) and one
mutant causing 46,XY gonadal dysgenesis (D8bp) (Table 2). All SF1
mutants (20 ng) showed reduced transcriptional activity, plotted as a
percentage of SF1 WT and statistically compared. DBD, DNA binding
domain; FtzF1, FtzF1-box (A-box); LBD, ligand binding domain; AF2,
activation function-2. (C) 46,XY gonadal dysgenesis mutant SOX9-
A158T (26 ng) failed to activate hTES compared to SOX9 WT (26 ng),
whereas 46,XY mutant SOX9-A76E (26 ng) (located in the dimerization
domain (dim.)) had comparable activity, plotted as percentage of SOX9
WT. PQA, proline, glutamine and alanine-rich motif; PQS, proline,
glutamine and serine-rich motif (Table 3). All experiments were
conducted three times in duplicate. Error bars represent the standard
error of mean values. Two-tail t-Test of paired sample means was
performed. *** P,0.001, ** P,0.01, * P,0.05.
doi:10.1371/journal.pone.0017751.g004

Figure 5. Mutant SRY, SF1 and SOX9 also fail to increase SOX9
enhancer activity when in combination. (A) Co-transfection of SF1
expression plasmid with either SRY WT or SRY from 46,XY females
demonstrates that hTES reporter activity, in the presence of SF1, is also
significantly diminished. Statistical comparison made between SRY-WT/
SF1 and SRY-Mutants/SF1. (B) Co-transfection with SRY and SF1
mutants also reveals significant reductions in hTES reporter activity
compared to SRY and SF1 WT co-transfection. (C) In the presence of
SF1, hTES reporter activity of the SOX9-A158T mutant is also
significantly lower than that of SF1 together with SOX9 WT. All
experiments were conducted at least twice with each transfection
conducted in duplicate. Error bars represent the standard error of mean
values. ** P,0.01, * P,0.05.
doi:10.1371/journal.pone.0017751.g005
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and SRY-R30I [51]. The decrease in transcriptional activity of the

SRY-S18N mutant points to a possible functional role for this

N-terminal region. Interestingly, the same SRY-S18N mutation

has also been isolated in a separate individual who presented with

Turner syndrome and Y chromosome mosaicism (Ulrich Turner

Syndrome) [52]. The SRY-R30I mutant was present in six 46,XY

siblings where one patient showed complete gonadal dysgenesis,

two showed partial gonadal dysgenesis and three were unaffected

[51]. The SRY-R30I mutation is located near serine residues that

when phosphorylated increase DNA binding [53]. SRY-R30I

shows no loss in transcriptional activation of hTES and suggests a

lesser importance on SRY phosphorylation. Together with the

SRY-S18N mutant, it seems that in contrast to the severe

biochemical defects of de novo mutations, inherited variants such as

SRY-S18N and SRY-R30I produce SRY proteins with residual

transactivating properties.

A third familial mutant tested was the nonsense mutation SRY-

L163X that lacks the last 41 amino acids of the wild type SRY

protein. This mutation showed a reduction in transcriptional

activation of the SOX9 enhancer, albeit moderate. The C-terminal

region of SRY has two possible protein interacting domains, the

PDZ and KRAB binding domains [54,55]. The protein produced

by this nonsense mutation still contains the KRAB binding region

(amino acids 138–155, the bridge) but lacks the PDZ binding

domain (the last 7 amino acids of the protein). The fact that the

KRAB-O protein is theoretically still able to bind to this region

and that recent work has demonstrated the potential role of

KRAB-O in mouse sex determination [56], this does suggest that

the first 163 amino acids of the SRY protein may be essential.

The incomplete penetrance of SRY mutants such as SRY-

S18N, -R30I, -L163X together with the documentation of some

families with fertile fathers being mosaic for both wild type and

mutant SRY [57,58,59], does support the notion that dose

dependency, genetic background and in extension, SOX9

activation levels, all play important roles in sex determination.

With Sry, this can be demonstrated in mice where ectopic SRY

activates Sox9 in a dose-dependent manner [60]; expression of Sry

transgene constructs below a critical threshold level in XX

transgenic mice results in partial gonadal dysgenesis [33,61,62,

63,64]; and Sry alleles from some mouse strains will cause gonadal

dysgenesis when placed in certain genetic backgrounds

[65,66,67,68]. Whereas in humans the disruption to SF1 and

SOX9 can result in 46,XY gonadal dysgenesis, haploinsufficiency

of these critical factors in mice does not, making the assessment of

essential SF1 or SOX9 dosage levels difficult in this context. In

agreement to data obtained with the mTES [20], we have shown

that both SF1 and SOX9 are also involved in the activation of

hTES. In contrast to the mTES, our data does not reveal a

synergistic activation between SF1 and SOX9. This result may

reflect the sustained expression of human SRY in the XY gonad

that is responsible, in addition to SF1 and SOX9, for maintaining

SOX9 levels. Indeed, human SRY is able to stimulate hTES on its

own, whereas mouse SRY on mTES cannot [20].

Importantly, the SF1 and SOX9 transcriptional properties of

mutants and levels of hTES activity can be related to DSD phenotypes.

The SOX9 mutant, SOX9-A158T causes CD/SRA with 46,XY

gonadal dysgenesis, due to defects in SOX9 nuclear import and DNA

binding [40], whereas the SOX9-A76E mutant is encoded by a CD

Table 1. Summary of defects in SRY mutants.

Mutant compared to wild type protein (%)

SRY Mutants Position Phenotype DNA Binding DNA Bending Nuclear Localization hTES enhancer activation

S18N* N terminal to HMG PGD/CGD ,90 ,100 ND ,50

R30I* N terminal to HMG PGD/CGD ,50 ND ND ,90

R62G N-NLS CGD ,1 ,67 ,25 ,1

R75N N-NLS CGD ,1 ND ,28 ,1

R76P N-NLS CGD ,33 ,95 ,50 ,5

I90M* HMG TH/PGD/CGD ,95 ,100 ND ,200

R133W C-NLS CGD ,95 ,100 ,52 ,40

L163X* C-terminal to HMG CGD ND ND ND ,50

ND – Not determined.
*- denotes a familial mutation. N- and C- NLS – terminal nuclear localization signals. HMG – high mobility group domain. CGD – complete gonadal dysgenesis. PGD –
partial gonadal dysgenesis. TH – true hermaphrodite. Biochemical defects obtained from respective references [27,46,51,77].
doi:10.1371/journal.pone.0017751.t001

Table 2. Summary of defects in SF1 mutants.

Mutant compared to wild type protein (%)

SF1 Mutants Position
Adrenal
Failure

46,XY Gonadal
Dysgenesis

DNA
Binding

Transcriptional
activity

hTES enhancer
activation

G35E/WT DBD Yes Yes ,1 ,1 ,5

R92Q/R92Q FtzF1 Yes Yes ,50 ,25 ,50

D8bp/WT LBD No Yes ,50 ,30 ,1

DBD – DNA binding domain. FtzF1 – FtzF1 box. LBD – Ligand binding domain. Biochemical defects obtained from respective references [21,39]. Transcriptional activity
for SF1 was assayed using reporter constructs for the CYP11A1 [21] and CYP172 [39] adrenal genes respectively.
doi:10.1371/journal.pone.0017751.t002
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patient without 46,XY gonadal dysgenesis and lacks the ability to

dimerize [41]. In fitting with previous observations, SOX9-A158T

could not activate hTES, while the SOX9-A76E mutant demonstrated

wild-type activation, consistent with dimerization of SOX9 not being

required for sex determination. It is noteworthy that identical

mutations in SOX9 can cause 46,XY DSD in one instance but not

in another [69,70]. While genetic background and SOX9 expression

levels may be contributing to these diverse phenotypes, analysis of the

transcriptional activities of such mutations in the context of the hTES

assay warrant further investigation, as the activity of these mutants

might be reduced to a threshold level.

The three SF1 mutants used all present 46,XY gonadal dysgenesis

with SF1-G35E and SF1-R92Q mutants also showing adrenal failure

(Table 2). The biochemical action of the SF1-G35E and SF1-R92Q

mutants has previously been tested only on adrenal targets and not sex-

determining genes [21,71,72]. Both SF1-G35E and SF1-R92Q on its

own or in combination with SRY had reduced transcriptional activity

on hTES, presumably through reduced DNA binding properties

(Table 2). It is noteworthy that the homozygous SF1-R92Q mutant is

recessive, familial in nature and that the gonadal dysgenesis phenotype

only presents on certain genetic backgrounds [21]. The hypomorphic

nature of this mutant reflects an ability to activate the SOX9 enhancer

to half the extent of SF1-WT. The SF1-D8bp mutant lacks half of the

ligand binding domain and also the AF2 domain important for

facilitating interactions with co-activators to stimulate transcription

[73], although not sufficient alone [74]. We show a significant decrease

in SF1-D8bp transcriptional activity on hTES. The SF1-D8bp has also

been demonstrated to show a dominant-negative effect on wild type

SF1 transcriptional activation of the CYP17 promoter in human

HEK293 (kidney), mouse MA10 (Leydig) and mouse Y1 (adrenal) cell

lines [39]. The reduction in hTES activity, both alone and in co-

operation with SRY, may therefore be a result of a dominant-negative

effect of SF1-D8bp on endogenous SF1 or lack of co-factor recruitment

in CHO cells, this warrants further investigation.

In conclusion, we have developed an in vitro assay that replicates

the initial events of mammalian sex determination and puts into

context the functional properties of mutations to SRY, SF1 and

SOX9 in DSD.

Materials and Methods

Cell Culture and transfections
NT2/D1 (ATCC CRL-1973) cells were grown in Dulbecco’s

and Ham’s F12 medium; CHO cells (ATCC CCL-61) were grown

in Dulbecco’s medium. Medium was supplemented with 10% fetal

bovine serum and L-glutamine in an atmosphere of 5% CO2.

Transient transfections were conducted using Fugene6 (Roche) in

accordance with the manufacturer’s instructions.

Expression Plasmids
All mammalian expression plasmids were of pcDNA3 origin

(Clontech) unless otherwise stated. DNA encoding wild-type Flag-

tagged human SRY was previously described [46]. SRY mutants

R62G, R75N, R76P and R133W were also previously described [46].

SRY mutants S18N, R30I, I90M and L163X were produced using

the Site-directed Quick change mutagenesis kit (Qiagen) according to

the manufacturer’s instructions. pSlax-VP16 and -Engrailed shuttle

vectors were a kind gift from Dr. Jonas Muhr as previously described

[75] and were used to produce SRY fusion proteins. Briefly, the SRY

ORF was amplified by PCR from pcDNA3-SRY using a forward

oligonucleotide (containing BamHI, FLAG and KOZAK sequences)

and a reverse oligonucleotide that replaces the stop codon with an

EcoRI restriction site. The PCR product was then ligated to an EcoRI

restriction site that was the beginning of the ORF of either VP16 or

Engrailed domains. The fusion proteins were subsequently sub-cloned

into pcDNA3. HA-tagged human SF1 and G35E SF1 mutant

expression plasmids were kind gifts from Dr. Robert Viger as

previously described [72]. D8bp SF1 mutant was a kind gift from Dr.

Keith Parker as previously described [39]. The R92Q SF1 mutant

was received as a gift from Dr. Larry Jameson as previously described

[21]. pCI-neo-mSf1 (mouse cDNA) and the S203A phosphorylation

mutant in the same expression plasmid were gifts from Dr. Holly

Ingraham as previously described [38]. HA-tagged human SOX9

expression plasmid, SOX9-DPQA and SOX9-1-465 plasmids are

previously described [76].

Reporter Plasmids
The hTES sequence was amplified from the BAC contig clone

RP11-84E24 (Genbank Accession AC007461), located on chro-

mosome 17, by PCR using a forward oligonucleotide containing

an XhoI restriction site (GATCATCCGCTCGAGCGGTGTT-

GAGAAGTGAACTGT) and a reverse oligonucleotide containing

an AccI restriction site (GATGGCCGGTCGACCGGCCACTT-

GGCTCAAATCTCAC). The resultant PCR product was cloned

into the multiple cloning site of the E1b-CAT reporter construct

[26]. Subsequently, the CAT reporter gene was replaced with the

open reading frame of the luciferase reporter gene derived from the

pGL3-basic (Promega). The mTES sequence contained within a

shuttle vector was also sub-cloned into E1b-luc.

Fluorescence activated cell sorting (FACS) and RNA
extraction

NT2/D1 cells were seeded at a density of 2.56105 cells per

well in 6-well plates 24 hours prior to transfection. In each

transfection, pEF-GFP expression plasmid was added in a 1:3

molar ratio with other expression plasmids to ensure efficient

transfection efficiency. After 48 hours, cells were subjected to

FACS. RNA was collected from GFP-positive cells using the

RNeasy Mini Kit (Qiagen) in accordance with the manufacturer’s

instructions.

Quantitative RT-PCR
0.5 mg of total RNA was reverse transcribed using the modifying

enzyme Superscript III according to the manufacturer’s specifica-

Table 3. Summary of defects in SOX9 mutants.

Mutant compared to wild type protein (%)

SOX9 Mutants Position Phenotype DNA Binding DNA Bending Nuclear Localization hTES enhancer activation

A76E Dimerization CD alone ,100 ND ,100 ,100

A158T HMG CD with CGD ,17 ,100 ,50 ,1

HMG – high mobility group domain. CGD – complete gonadal dysgenesis. CD – Campomelic Dysplasia. Biochemical defects obtained from respective references [40,41].
doi:10.1371/journal.pone.0017751.t003
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tions (Invitrogen). Real time quantification of mRNA levels was

conducted using Lightcycler technology (Roche). Values obtained

for each sample were standardized to amplification levels of the

housekeeping gene b-2-Microglobulin (b2M). Standardized values

were divided by vector alone transfectants to obtain total fold

differences. Sequences of oligonucleotides used to amplify cDNA

are (59 to 39 orientation): SOX9 F-AAGACATTTAAGCTAA-

AGGCAACTCGTAC, R– TGATCACACGATTCTCCATCA-

TCCTC; b2M F-TGAATTGCTATGTGTCTGGGT, R- CCT-

CCATGATGCTGCTTACAT.

Reporter assays
CHO cells were seeded at a density of 2.36105 cells per well in

6-well plates 24 hours prior to transfection. 48 hours post-

transfection the culture media was removed, cell lysate collected

and luciferase or CAT reporter activity was measured according to

the manufacturer’s instructions (Promega). Reporter activity was

normalized to b-galactosidase as an internal control (Promega).

Empty reporter transfection data was divided from each

transfection condition to standardize data. Fold activations were

determined by dividing with vector alone transfection data.

Immunohistochemistry
NT2/D1 cells used for immunohistochemistry were seeded on

coverslips placed into 6-well plates. Standard protocols were used

for immunohistochemistry. The primary antibodies used include

affinity purified sheep anti-human SRY (1:400), affinity purified

rabbit anti-SOX9 (1:400), affinity-purified mouse monoclonal anti-

FLAG (1:500) (Sigma), mouse Anti-SC35 monoclonal antibody

(1:1000) (Sigma) and the rabbit Anti-Tri-methylated lysine 4 of

histone 3 (H3 Me3K4) polyclonal antibody (1:200) (Upstate

Biotech). The secondary antibodies used include Alexa 488-

conjugated donkey anti-rabbit IgG (1:800), Alexa 598-conjugated

donkey anti-mouse IgG (1:800) (Molecular Probes). Coverslips were

mounted onto slides with DAKO fluorescence mounting medium

containing DAPI (final 0.6 mg/ml). Images were captured using an

Olympus FV500 confocal laser scanning microscope. Image

analysis was performed using NIH ImageJ (public domain software).

In vitro translation and EMSA analysis of SRY fusion
proteins

Proteins were produced using an in vitro coupled transcription

and translation process using a TNT Coupled Reticulocyte Lysate

System (Promega) according to the manufacturer’s guidelines. A

small proportion of each sample was translated with the incor-

poration of 35S-Methionine to produce a radio-labeled protein to

enable verification that the protein produced was of the correct

molecular mass. EMSA analysis was performed using in vitro

translated protein combined with 1 ml of 32P-labeled DNA probe

(,40,000 cpm) using standard protocols. Oligonucleotide se-

quence of the SRY consensus probe was (59 to 39 orientation)

GGGTTAACTAAACAATAGAATCTGGTAGA; core binding

sequence is underlined. The gel was visualized using the Storm

phosphor-imaging system and ImageQuant analysis software

(Amersham).
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