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Abstract
Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) often present with overlapping symptoms and 
cognitive impairments, such as increased fluctuations in attentional performance measured by increased reaction-time vari-
ability (RTV). We previously provided initial evidence of shared and distinct event-related potential (ERP) impairments in 
ADHD and BD in a direct electrophysiological comparison, but no study to date has compared neural mechanisms underlying 
attentional impairments with finer-grained brain oscillatory markers. Here, we aimed to compare the neural underpinnings 
of impaired attentional processes in ADHD and BD, by examining event-related brain oscillations during a reaction-time 
task under slow-unrewarded baseline and fast-incentive conditions. We measured cognitive performance, ERPs and brain-
oscillatory modulations of power and phase variability in 20 women with ADHD, 20 women with BD (currently euthymic) 
and 20 control women. Compared to controls, both ADHD and BD groups showed increased RTV in the baseline condition 
and increased RTV, theta phase variability and lower contingent negative variation in the fast-incentive condition. Unlike 
controls, neither clinical group showed an improvement from the slow-unrewarded baseline to the fast-incentive condition 
in attentional P3 amplitude or alpha power suppression. Most impairments did not differ between the disorders, as only an 
adjustment in beta suppression between conditions (lower in the ADHD group) distinguished between the clinical groups. 
These findings suggest shared impairments in women with ADHD and BD in cognitive and neural variability, preparatory 
activity and inability to adjust attention allocation and activation. These overlapping impairments may represent shared 
neurobiological mechanisms of attentional dysfunction in ADHD and BD, and potentially underlie common symptoms in 
both disorders.
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Introduction

The abilities to regulate alertness and sustain attention are 
essential for efficient information processing and behav-
ior (Posner and Petersen 1990). Such cognitive processes 
are traditionally measured with reaction time variability 
(RTV), capturing the consistency and short-term fluctua-
tions in response speed during attentional performance 
in cognitive tasks (Kuntsi et al. 2013; Ode et al. 2011). 
Increases in RTV are characteristic of several psychiatric 
disorders (Kaiser et al. 2008), including attention-deficit/
hyperactivity disorder (ADHD) (Kofler et al. 2013; Wood 
et al. 2010) and bipolar disorder (BD) (Brotman et al. 
2009; Moss et al. 2016). ADHD and BD are common psy-
chiatric conditions in adults (Merikangas et al. 2011; Will-
cutt 2012), which severely impact many aspects of indi-
viduals’ lives (Asherson et al. 2014; Skirrow et al. 2012). 
Although ADHD and BD represent distinct disorders, they 
present with common symptoms of distractibility and diffi-
culty concentrating, which can lead to uncertainty regard-
ing the boundaries of the two disorders (Asherson et al. 
2014; Kitsune et al. 2016). These overlapping symptoms 
may reflect, at the cognitive level, the common fluctuations 
in attentional performance and increased RTV displayed 
by individuals with ADHD and BD (Albaugh et al. 2017; 
Kuntsi et al. 2014). Increased RTV is also observed in 
unaffected first-degree relatives of individuals with either 
disorder, compared to individuals without family risk, rep-
resenting a candidate marker of genetic/familial risk for 
both disorders (Adleman et al. 2014; Andreou et al. 2007). 
Direct comparisons of impairments in attentional perfor-
mance between ADHD and BD may lead to new insights 
into the pathways to overlapping symptoms and cognitive 
dysfunction in both disorders. Yet, cross-disorder compari-
sons in ADHD and BD are limited to date (Michelini et al. 
2016; Rommel et al. 2016; Torralva et al. 2011).

Previous research on RTV in psychiatric disorders has 
addressed the question of whether dysfunctions in alert-
ness and attentional performance, rather than being stable, 
could be malleable and sensitive to context changes, such 
as task manipulations. RTV impairments in children and 
adolescents with ADHD are maximal in slow and unre-
warded conditions, but with the introduction of faster 
event rate and incentives may improve significantly more 
than in neurotypical individuals (Andreou et al. 2007; 
Cheung et al. 2017; Kuntsi et al. 2013; Slusarek et al. 
2001; Uebel et al. 2010). It remains unknown, however, 
whether RTV also improves in adults with ADHD. Initial 
evidence also indicates potential malleability of RTV in 
BD, as suggested by one study showing increased RTV 
in individuals with BD in a continuous performance task 
(CPT) with low target frequency, but not with high target 

frequency (Moss et al. 2016). The evidence of malleabil-
ity in RTV is clinically relevant, as it may point to room 
for improvement in the observed cognitive impairment, 
which could be targeted in new interventions for the dis-
orders, aimed at reaching and maintaining an optimal state 
of alertness (Cheung et al. 2017; Kuntsi and Klein 2012). 
Understanding whether the same or different mechanisms 
underlie attentional fluctuations and their potential reduc-
tion in individuals with ADHD and BD may thus poten-
tially inform the development of interventions for ADHD 
and BD. No study to date, however, has compared adults 
with ADHD and adults with BD on the malleability of 
attentional fluctuation indexed by RTV.

The investigation of brain responses using the millisec-
ond temporal precision of electroencephalography (EEG) 
can help elucidate the neural correlates of a suboptimal 
attentional performance. Most EEG studies on attentional 
impairments in ADHD or BD samples have employed event-
related potentials (ERPs), measuring transient enhancements 
in brain activity following an event (Luck 2014). ERP stud-
ies in adults with ADHD have shown attenuated contingent 
negative variation (CNV) components over central regions 
(reflecting atypical response anticipation and preparation) 
(McLoughlin et al. 2010; Michelini et al. 2016; Valko et al. 
2009) and reduced attentional P3 components over parietal 
regions (reflecting impaired attentional resource allocation) 
(Cheung et al. 2017, 2016; McLoughlin et al. 2010; Szuromi 
et al. 2011). Similarly, impairments in P3 and CNV in BD 
during attentional tasks have also been found (Fridberg et al. 
2009; Li et al. 2015; Maekawa et al. 2013). Yet, only a few 
direct comparisons have examined whether cognitive and 
ERP indices are affected to a similar extent in ADHD and 
BD. In a recent investigation using a cued CPT paradigm, we 
showed that increased RTV and reduced CNV may represent 
shared attentional impairments in ADHD and BD (Michelini 
et al. 2016). Using quantitative EEG (QEEG), we further 
reported that both ADHD and BD groups showed higher 
spontaneous EEG theta power during rest and a lack of a 
task-related increase in theta from rest to CPT task compared 
to controls (Rommel et al. 2016). These results indicate 
potentially shared impairments in attentional processes in 
both disorders. Yet, in ERP analyses, the attentional P3 com-
ponents in response to cue and target stimuli were intact in 
both groups, consistent with other studies that also failed to 
report P3 reductions in adults with ADHD (Dhar et al. 2010; 
Grane et al. 2016; Michelini et al. 2016) or BD (Bestelmeyer 
2012; Chun et al. 2013; Michelini et al. 2016). One possible 
reason for inconsistencies between studies using different 
attentional paradigms is that the attentional P3, similar to 
RTV, may reflect a context-dependent and potentially mal-
leable, rather than stable, impairment (Cheung et al. 2017). 
We recently reported that a reduced parietal P3 in a slow 
and unrewarded condition in adolescents and young adults 
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with ADHD improved with faster event rate and rewards 
significantly more than in neurotypical controls (Cheung 
et al. 2017). In contrast, for CNV, the ADHD group showed 
reduced amplitude compared to controls only in the fast 
and rewarded condition. No study has examined the mal-
leability of these ERPs with faster rate and incentives in 
BD. Further direct comparisons between ADHD and BD 
are needed to clarify what neurophysiological impairments 
overlap between the two disorders, and whether ADHD and 
BD may show similar malleability with a changed context.

Advances in EEG methods called time–frequency analy-
ses, combining the strengths of ERP and QEEG methods, 
further allow to capture event-related brain oscillatory 
dynamics, which reflect sub-second modulations of power 
and phase in response to an event across the full EEG spec-
trum (Klimesch 1999; Loo et al. 2015; Makeig et al. 2004; 
Pfurtscheller and Lopes da Silva 1999). Processing and 
focusing attention on a relevant stimulus have been associ-
ated with various event-related brain oscillatory phenom-
ena in the time–frequency domain not captured by ERP or 
QEEG approaches: (1) an event-related synchronization 
(ERS) or increase in theta (3–7 Hz) power over fronto-cen-
tral (Bickel et al. 2012; Lenartowicz et al. 2014; Mazaheri 
et al. 2014) or parietal (Babiloni et al. 2004; Jacobs et al. 
2006) regions, reflecting the initial processing of the stimu-
lus; (2) an event-related desynchronization (ERD) or sup-
pression of power in posterior alpha (8–13 Hz), reflecting 
attentional selection and cortical activation (Klimesch 2012; 
Mazaheri and Picton 2005); and (3) an ERD in central beta 
(14–30 Hz) when a motor response is required (Guntekin 
et al. 2013; Pfurtscheller 1981). Additionally, indices of 
consistency of the phase (i.e., the “timing”) of brain oscil-
lations over trials can reveal whether the processing of a 
stimulus repeated over time reflects stable or variable neural 
mechanisms (Klimesch 2012; Makeig et al. 2004; Papenberg 
et al. 2013). Greater alpha and beta ERD and theta phase 
consistency have further been associated with better task 
performance (Bickel et al. 2012; Klimesch 2012; McLough-
lin et al. 2014). Multiple brain-oscillatory correlates of 
attentional processes may be affected in ADHD and BD. 
Individuals with ADHD have been reported to show reduc-
tions in event-related phase consistency in the theta band 
(Groom et al. 2010; McLoughlin et al. 2014), alpha ERD 
(Lenartowicz et al. 2014; ter Huurne et al. 2013), and beta 
ERD (Hasler et al. 2016). Emerging evidence also suggests 
that individuals with BD show attenuations in event-related 
theta (Atagun et al. 2013; Ethridge et al. 2012) and alpha 
power (Basar et al. 2012; Ethridge et al. 2012) and increases 
in beta power (Ozerdema et al. 2013; Tan et al. 2016). These 
studies in BD, however, applied time–frequency analyses on 
averaged ERP responses, thus not allowing the characteriza-
tion of both ERD and ERS dynamics (Bickel et al. 2012). 
The investigation of fine-grained brain-oscillatory indices 

underlying attentional processes with time–frequency analy-
ses may allow a deeper investigation into the neural corre-
lates of attentional performance, and help identify distinct 
or comparable impairments in neural processes between the 
two disorders (Loo et al. 2015). However, no study to date 
has compared ADHD and BD on time–frequency indices 
of brain oscillations, or whether these indices, like RTV, 
show adjustments under context changes, such as fast and 
rewarded conditions.

The present study aims to investigate and compare cog-
nitive-performance, ERP and detailed event-related power 
modulations of theta, alpha and beta oscillations and of 
phase variability in theta oscillations, previously linked to 
attentional processes, in adults with ADHD and adults with 
BD. We used an all-female sample, to match the groups on 
sex but also because little is known on these processes in 
females, especially in relation to ADHD (McLoughlin et al. 
2010; Saville et al. 2015). Participants completed the same 
four-choice reaction time task used in our previous studies 
of ADHD (Andreou et al. 2007; Cheung et al. 2017; Kuntsi 
et al. 2006), which compares a slow-unrewarded baseline 
condition with a fast-incentive condition designed to specifi-
cally reward reduction of RTV. A further aim is to examine 
whether differences in adjustments in the investigated cog-
nitive-performance, ERP and brain-oscillatory indices with 
a faster event rate and incentives emerge between groups, 
which could inform the development of cognitive/brain 
training programs for ADHD and BD.

Methods

Sample

The sample consisted of 20 women with ADHD, 20 with 
BD and 20 control women, aged between 20 and 52 years 
(Table 1). Full information on recruitment and clinical 
assessment of this sample can be found elsewhere (Kitsune 
et al. 2016). Briefly, participants with ADHD were recruited 
from the National Adult ADHD Clinic at the Maudsley 
Hospital, where any adult female cases meeting inclusion 

Table 1   Sample demographics divided by group, with ANOVA test 
for group differences

Group differences on age and IQ were tested with univariate ANO-
VAs
ADHD attention-deficit/hyperactivity disorder, BD bipolar disorder, 
Ctrl control group, F ANOVA statistic, p p value from the ANOVA

ADHD
Mean (SD)

BD
Mean (SD)

Ctrl
Mean (SD)

F p

Age 37.4 (7.7) 40.3 (7.7) 36.7 (4.3) 1.63 0.21
IQ 104 (17.9) 108 (12.5) 112 (14.2) 1.37 0.26
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criteria were considered for potential inclusion in the study. 
Participants with BD were recruited from the Maudsley 
Psychosis Clinic and a sample that had previously partici-
pated in another research study (Hosang et al. 2012). Control 
participants were recruited from the Mindsearch volunteer 
database maintained by the Institute of Psychiatry, Psychol-
ogy and Neuroscience, King’s College London, which com-
prises several thousand potential participants. Participants 
were randomly selected from all those meeting recruitment 
criteria for this study.

Diagnosis in the clinical groups was confirmed by check-
ing medical records for details of diagnosis and psychiatric 
history, following DSM-IV criteria. Fifty-seven women with 
ADHD, 75 women with BD, and 120 control women who 
matched requirements of age, gender and clinical diagnosis 
based upon DSM-IV criteria were approached to participate. 
Among individuals willing to participate (30 with ADHD, 
29 with BD and 32 controls), participants were selected for 
inclusion in the study based on the following exclusion cri-
teria (Kitsune et al. 2016). Exclusion criteria for all groups 
were drug or alcohol dependency in the last 6 months, 
autism, epilepsy, neurological disorders, brain injury, past 
ECT treatment, current involvement in another research trial 
likely to alter symptom severity, pregnancy or a limited pro-
ficiency in English language. Individuals with ADHD and 
individuals with BD with a reported comorbidity of both 
ADHD and BD were also excluded. Individuals with BD 
group who were experiencing a manic episode at the time of 
the assessment were excluded; only participants who were 
euthymic at the time of participation were included in the 
BD group. Control participants, who reported a history of 
psychiatric disorders or who were taking psychiatric medi-
cation, were excluded from the study. Comorbidity in the 
clinical groups and lack of psychiatric disorders in the con-
trol group were further assessed through clinical evaluations 
when participants underwent the cognitive-EEG assessment 
for this study (Kitsune et al. 2016). An ADHD diagnosis was 
excluded in the BD group after conducting the Diagnostic 
Interview for Adult ADHD (DIVA v. 2.0; (Ramos-Quiroga 
et al. 2016)). A BD diagnosis was excluded in the ADHD 
group by checking for a history of past episodes of depres-
sion or hypomania/mania and evaluating current mood 
symptoms using the Altman Self-Rating Mania Scale (Alt-
man et al. 1997) and the Beck Depression Inventory (Beck 
et al. 1996), and current and lifetime ever symptoms using 
the Young Mania Rating Scale (Young et al. 1978).

All participants underwent a thorough clinical evalu-
ation with gold-standard diagnostic tools as part of this 
study; full information on clinical profiles and severity of 
ADHD or BD in the clinical groups can be found in Kitsune 
et al. 2016. Participants in the ADHD group had a current 
combined-type diagnosis or an inattentive-type diagnosis 
with sufficient symptoms of hyperactivity-impulsivity in 

childhood to meet a childhood combined-type diagnosis, 
which reflects the typical adult ADHD clinical population 
(Asherson et al. 2014). Participants in the BD group had 
a diagnosis of BD Type I, having experienced at least one 
manic episode lasting 1 week or more in the past, but were 
euthymic at the time of the assessments. The ADHD and BD 
groups did not differ significantly on any of the mood scales 
for current symptoms, but the ADHD group showed signifi-
cantly greater levels of ADHD symptoms (e.g., total ADHD 
symptoms according to the DIVA interview: mean = 13.45, 
SD = 3.02 in the ADHD group, mean = 4.95, SD = 3.27 in 
the BD group) (Kitsune et al. 2016).

Procedure

Participants attended a single 4.5-h research session (includ-
ing breaks) for cognitive-EEG assessment, IQ assessment 
and clinical interviews. Participants’ IQs were assessed with 
the Wechsler Abbreviated Scale of Intelligence Fourth Edi-
tion (WASI-IV; (Wechsler 1999)) and did not differ between 
groups. All participants were asked to refrain from caffein-
ated drinks and nicotine 2 h before assessments. Participants 
with ADHD were asked to stop taking any stimulant medica-
tion prescribed for their ADHD 48 h prior to the assessment. 
On the day of the assessments, all ADHD participants who 
were taking stimulant medication (n = 13) confirmed that 
they had stopped medication in the preceding 48 h. For ethi-
cal reasons, participants were not asked to stop taking mood 
stabilizers (70% of the BD group), anti-psychotic medication 
(40% of the BD group) or anti-depressants (7% of the ADHD 
group and 25% of the BD group) they had been prescribed. 
Ethical approval for the study was granted by the Camber-
well St Giles Research Ethics Committee (approval number 
11/LO/0438) and all participants provided informed consent.

Fast Task

The task for this analysis was a computerized four-choice 
reaction time task which measures performances under a 
slow-unrewarded and a fast-incentive condition (Andreou 
et al. 2007; Kuntsi et al. 2006). In both conditions speed 
and accuracy were emphasized equally. The baseline (slow-
unrewarded) condition followed a standard warned four-
choice reaction-time task (Fig. S1, Supplementary material). 
A warning signal (four empty circles, arranged side by side) 
first appeared on the screen. At the end of the fore-period 
lasting 8 s (presentation interval for the warning signal), the 
circle designated as the target signal for that trial was filled 
(colored) in. The participant was asked to make a compat-
ible choice by pressing the response key that directly cor-
responded in position to the location of the target stimulus. 
Following a response, the stimuli disappeared from the 
screen and a fixed inter-trial interval of 2.5 s followed. If the 
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participant did not respond within 10 s, the trial terminated. 
First, a practice session was administered, during which 
the participant had to respond correctly to five consecutive 
trials. The baseline condition, consisting of 72 trials, then 
followed.

To investigate the extent to which a response style char-
acterized by slow and variable speed of responding may 
be reduced, the task includes a comparison condition that 
uses a fast event rate (fore-period of 1 s) and incentives 
(Fig. S1, Supplementary material). This condition started 
immediately after the baseline condition and consisted of 
80 trials, with a fixed inter-trial interval of 2.5 s follow-
ing the response. The participants were told to respond as 
quickly as possible to each target, in order to win smiley 
faces and earn real prizes at the end. Participants won a 
smiley face for responding faster than their own mean reac-
tion time (MRT) during the baseline (first) condition con-
secutively for three trials. The baseline MRT was calculated 
here based on the middle 94% of responses (the exclusion of 
the top and bottom 3% of responses is only used when cal-
culating a baseline MRT for the set-up of the fast-incentive 
condition, and is not used for analyses), therefore excluding 
extremely fast and extremely slow responses. The smiley 
faces appeared below the circles in the middle of the screen 
and were updated continuously. The fast-incentive condition 
was always administered after the baseline condition and, as 
such, did not involve a similar learning phase. Participants 
earned £5 in cash after the task battery. RTV for correct 
responses in each condition was measured to assess task 
performance.

EEG Recording and Pre‑processing

The EEG was recorded from a 62-channel DC-coupled 
recording system (extended 10–20 montage) (Brain Prod-
ucts, Gilching, Germany), using a 500 Hz sampling-rate, 
impedances under 10 kΩ, and FCz as the recording refer-
ence. The electro-oculograms (EOGs) were recorded from 
electrodes above and below the left eye and at the outer can-
thi. EEG recordings were pre-processed and analyzed using 
the EEGLAB toolbox (Delorme and Makeig 2004) in Matlab 
(MathWorks, Natick, MA, USA). Researchers were blind to 
group status during EEG pre-processing and analysis. Raw 
EEG recording were down-sampled to 256 Hz, re-referenced 
to the average of all electrodes (turning FCz into an active 
channel), and digitally filtered using a 0.25 Hz (− 6 dB cut-
off) high-pass filter and a 35 Hz (− 6 dB cut-off) low-pass 
filter. Independent component analysis (ICA) (Jung et al. 
2000) was used to identify and remove ocular (blink-related 
and vertical and horizontal eye movements) and muscular 
artefacts. Visual inspection was carried out for all trials to 
manually remove further artefacts. Channels showing techni-
cal problems or excessive electrical noise were removed and 

replaced with topographic spline interpolation after ICA, to 
estimate a virtual EEG activity based on artefact-free activ-
ity from other channels.

ERP and Time–Frequency Analyses

Only participants with at least 20 artefact-free EEG seg-
ments in each condition were included in ERP/EEG analy-
ses. All ERP/EEG analyses were performed using EEGLAB 
functions (Delorme and Makeig 2004) and Matlab custom 
scripts. ERP analyses were restricted to ERP components 
relevant for attentional processes previously found atypical 
in studies in ADHD or BD (Cheung et al. 2017; Michelini 
et al. 2016; Li et al. 2015). ERP peaks were identified within 
the selected electrodes and latency windows for which 
effects were expected to be maximal, based on our previ-
ous ERP analyses of this task (Cheung et al. 2017; James 
et al. 2017) and verified against the topographic maps and 
the grand averages (Fig. 1, Fig. S2, Supplementary mate-
rial). Following our previous work (Cheung et al. 2017), P3 
amplitudes were analyzed at Pz between 300 and 550 ms 
(Fig. S2, Supplementary material) following the target as 
the area amplitude measure (µV·ms), to reduce bias due to 
the varying noise levels induced by the different task condi-
tions (Luck 2014). All trials were baseline-corrected by sub-
tracting the mean activity (200 ms before target onset) from 
the P3 ERPs. The mean amplitudes of this pre-target period 
between − 200 and 0 ms were also analyzed separately as 
a CNV measure at Cz (Fig. 1) with technical zero-baseline 
approach (which measures the absolute state rather than the 
amount of neural change introduced by the event) following 
previous CNV work (Albrecht et al. 2013; Banaschewski 
et al. 2003; Cheung et al. 2017). This short CNV interval, 
characterized by a typical CNV topography in the fast-incen-
tive condition with its 1000 ms warning-target interval, was 
chosen as it captures the late CNV component unconfounded 
by the processing of warning stimuli. Although no typical 
CNV emerged in the slower baseline condition, CNV ampli-
tude at Cz in the same corresponding time window was used 
to examine within-subject change in preparatory activity 
across conditions.

Time–frequency analyses examined the target-related 
modulations of power and phase consistency of brain oscil-
lations previously implicated in attentional processes and 
with initial evidence of atypical profiles in ADHD or BD 
samples based on previous literature (Groom et al. 2010; 
Hasler et al. 2016; Ethridge et al. 2012). Modulations of 
power were quantified with the event-related spectral per-
turbation (ERSP) index (Delorme and Makeig 2004). ERSP 
values were computed in a 4000 ms window (from − 2000 to 
2000 ms) centered around target onset by applying a Morlet 
wavelet decomposition of frequencies between 3 and 30 Hz, 
with linearly increasing number of cycles (frequency step 
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of 0.80 Hz) from 2 cycles for the lowest frequency (3 Hz) 
to 24.60 cycles for the highest frequency (30 Hz). Each 
ERSP trial was normalized with respect to the mean log-
power spectrum from the pre-stimulus period, from − 2000 
to − 1000 ms, corresponding to the 1000 ms preceding the 
warning onset in the fast-incentive condition; the same com-
parable window was used in the baseline condition as the 
long fore-period before targets did not produce a modulation 
of power before stimulus onset in the baseline condition (see 
Supplementary material for further explanation). Averaging 
all ERSPs across trials produced a time–frequency repre-
sentation in decibel (dB) units of increases (ERS, in red) 
and decrease (ERD, in blue) in the spectral power at a given 
frequency and latency with respects to pre-stimulus activity 
(Figs. 2, 3), from which frequency-specific ERSPs can be 
extracted. Phase consistency was calculated with the inter-
trial phase coherence (ITC) index, measuring the degree to 
which the phase of the evoked response (derived from the 

same Morlet wavelet used for the ERSP index) at a given 
latency and frequency is consistent across trials (Delorme 
and Makeig 2004; Makeig et al. 2004; Tallon-Baudry et al. 
1996). ITC values are independent of power, and range from 
0 (reflecting absence of phase consistency and highest phase 
variability across trials) to 1 (indicating perfect phase con-
sistency and lowest phase variability) (Fig. 4).

Target-related ERSP in the theta (3–7  Hz), alpha 
(8–13 Hz) and beta (14–30 Hz) bands were extracted in the 
1000 ms window capturing the broad target-related modula-
tion of power, divided into two consecutive windows for ear-
lier (0–500 ms) and later (500–1000 ms) processing (Figs. 2, 
3, Fig. S3, Supplementary material). ITC was measured at 
target onset in the first window (0–500 ms), where greater 
phase consistency in response to the event was observed 
(Fig. 4), as expected (Groom et al. 2010). The ITC analysis 
was restricted to the theta band, consistent with previous 
studies reporting a role of this frequency band in neural 

Fig. 1   Contingent negative variation (CNV) amplitude measured at 
Cz in the − 200–0 ms window in the ADHD (in red), BD (in green) 
and control (in black) groups across the baseline and fast-incentive 

conditions of the Fast task. a Grand average in the baseline condition; 
b grand average in the fast-incentive condition; c condition effects by 
group; d topographic maps by group at each condition
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consistency (Groom et al. 2010; McLoughlin et al. 2014; 
Papenberg et al. 2013). ERSP and ITC were measured at 
scalp locations where they were maximal (Figs. 2, 3, 4, Fig. 
S3, Supplementary material), in line with previous studies 
on similar attentional processes: theta over parietal regions 
(average of electrodes: CPz, CP1–CP6, Pz, P3–P4) (DeLo-
sAngeles et al. 2016; Jacobs et al. 2006); alpha over parieto-
occipital regions (average of electrodes: Pz, P3–P4, P7–P8, 
POz, PO3–PO4, PO7–PO8) (Bickel et al. 2012; Mazaheri 

and Picton 2005); beta over central regions (average of 
electrodes: Cz, C1–C4, CPz, CP1–CP4) (Bickel et al. 2012; 
Mazaheri and Picton 2005).

Statistical Analyses

All measures were investigated using random intercept 
linear models (i.e., multilevel regression models). Main 
effects of group (ADHD vs BD vs control), condition 

Fig. 2   Alpha event-related spectral perturbation (ERSP) at parieto-
occipital regions in the ADHD, BD and control groups in the baseline 
and fast-incentive condition of the Fast task. a ERSP in the baseline 
conditions; b ERSP in the fast-incentive condition; c topographic 

maps by group in the 500–1000 ms window at each condition; d con-
dition effects in the 500–1000 ms window by group (ADHD group in 
red, BD group in green, control group in black)
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(baseline vs fast-incentive) and group-by-condition inter-
actions were examined. Significant (p < 0.05) and trend-
level (p < 0.10) effects were followed up with post-hoc 
analyses testing for (1) between-group differences in 
baseline and fast-incentive conditions separately, and (2) 
within- and between-group effects of change between con-
ditions with difference scores. Since ERSP indices were 
measures at two time windows (0–500, 500–1000 ms), we 
tested for three-way group-by-condition-by-time interac-
tions for these measures, followed by additional post-hoc 
tests examining group differences in each time window. 
Since groups did not differ on IQ or age (Table 1), these 
variables were not controlled for in analyses. Measures 
that showed skewed distributions were transformed to nor-
mal with square root (CNV, P3) and with logarithm using 
the “lnskew0” Stata command (MRT, RTV, beta ERSP). 
In order to inform future larger-scale studies, multiple-
testing corrections were deemed not appropriate to limit 
the chance of introducing type-two errors (i.e. false nega-
tive results). Variables for analysis were restricted to meas-
ures that were expected to be sensitive to impairments in 
ADHD or BD to limit the number of hypotheses tested. 
For between-group comparisons, we report both p-values 
and Cohen’s d effect sizes (with 95% confidence intervals), 
calculated using the difference in the means divided by the 
pooled standard deviation, where d ≥ 0.20 constitutes a 
small effect, d ≥ 0.50 a medium effect and d ≥ 0.80 a large 
effect (Cohen 1988). All statistical analyses were run in 
Stata 14 (Stata Corp, College Station, TX, USA). Data on 
the fast-incentive condition were missing for one partici-
pant with ADHD due to technical issues during the testing 
session. Two control participants had outlier RTV (> 5 
SD) in the baseline condition, indicating that they did not 
follow task instructions, and were excluded from all analy-
ses. As at least 20 artefact-free EEG segments are needed 
to obtain reliable ERP/EEG indices (McLoughlin et al. 
2009), one participant with ADHD and one with BD were 
excluded from ERP/EEG analyses on the baseline con-
dition, and one control from ERP/EEG analyses on both 
conditions. Due to the longer fore-period in the baseline 
condition, the two conditions were matched on the number 
of trials, but not on length. To control for this, we run the 
analyses of RTV performance first on the full baseline 
condition, and separately on a length-matched segment of 
the baseline (Andreou et al. 2007) (Supplementary mate-
rial). Condition length was not controlled for in the ERP/

EEG analyses, as data from the full baseline condition was 
required to obtain sufficient (> 20) trials for averaging.

Results

RTV

Significant group (p = 0.01) and condition (p < 0.001) 
effects, but no group-by-condition interaction (p = 0.92), 
emerged for RTV. Post-hoc tests of group effects showed that 
the ADHD and the BD groups had significantly increased 
RTV compared to controls in both conditions, but did not 
differ significantly from one another (Table 2). Post-hoc 
analyses of condition effects showed that all three groups 
had a significant within-group decrease in RTV from the 
baseline to the fast-incentive condition, with no significant 
differences between groups in the degree of change between 
conditions (Table 3). Comparable results were obtained 
using the length-matched segment of the baseline condition 
(Supplementary material).

ERPs

CNV

Significant main effects of group (p = 0.03) and condition 
(p < 0.001), and a significant group-by-condition interaction 
(p < 0.01), emerged for the CNV. Post-hoc tests showed no 
group differences in the baseline condition (Table 2). In the 
fast-incentive condition, the CNV was significantly reduced 
in the ADHD compared to the control group (Fig. 1). The 
BD group showed a trend-level effect for greater CNV 
compared to the ADHD group, and a significantly reduced 
CNV compared to controls (Table 2). All three groups had 
a significant within-group decrease from the baseline to 
the fast-incentive condition (Table 3; Fig. 1). The degree 
of change in CNV between conditions in the ADHD group 
was significantly lower compared to the control group, and 
at trend level compared to the BD group. The BD group 
also showed a trend-level reduction in CNV compared to the 
control group in the degree of change between conditions.

P3

A trend-level group-by-condition interaction (p = 0.06), but 
no main effects of group (p = 0.84) or condition (p = 0.56), 
emerged for the P3. Post-hoc tests did not show significant 
group differences in the baseline or in the fast-incentive condi-
tion (Table 2, Fig. S2, Supplementary material). A significant 
within-group change from the baseline to the fast-incentive 
condition in stimulus-locked P3 emerged in controls, but not 
in participants with ADHD or BD (Table 3). The degree of 

Fig. 3   Beta event-related spectral perturbation (ERSP) at central 
regions in the ADHD, BD and control groups in the baseline and fast-
incentive conditions of the Fast task. a ERSP in the baseline condi-
tion; b ERSP in the fast-incentive condition; c topographic maps by 
group in the 0-500 ms and 500–1000 ms windows at each condition; 
d condition effects at each time window by group (ADHD group in 
red, BD group in green, control group in black)

◂
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change between conditions was significantly lower in the BD 
compared to the control group. The ADHD group did not 

differ significantly from the other two groups in the degree of 
change between conditions.

Fig. 4   Theta inter-trials phase coherence (ITC) at parietal regions 
in the ADHD, BD and control groups across the baseline and fast-
incentive conditions of the Fast task. a ITC in the baseline condition; 
b ITC in the fast-incentive condition; c topographic maps by group 

in the 0-500 ms window at each condition; d condition effects in the 
500–1000 ms window by group (ADHD group in red, BD group in 
green, control group in black)
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Event‑Related Power (ERSP)

Theta

No effects of group (p = 0.96), condition (p = 0.11) 
or group-by-condition-by-time interaction (p = 0.94) 
emerged for theta ERSP. After removing the three-way 
interaction, there were no significant group or group-by-
condition interaction effects on this measure (p > 0.61), 
and a significant main effect of condition emerged in the 
0–500 ms window (p < 0.001) but not in the 500–1000 ms 
window (p = 0.41). In the 0–500 ms window, a signifi-
cant within-group decrease from the baseline to the 
fast-incentive condition emerged in theta ERSP for the 
ADHD and BD groups, and at trend level for the control 
group (Table 3), but there were no group differences in 
the degree of change between conditions (Table 3). An 
additional analysis examined the event-related theta ERSP 
that was evident also at fronto-central regions (Fig. S3, 
Supplementary material), yielding the same results as 
found for parietal theta power (Tables 2, 3).

Alpha

A main effect of condition (p < 0.001), but no effects of group 
(p = 0.25) or group-by-condition-by-time interaction (p = 0.23), 
emerged for alpha ERSP. After removing the three-way inter-
action, there was a significant effect of condition (p < 0.001), 
but no significant group (p = 0.30) or group-by-condition inter-
action effects in the 0–500 ms time window for this measure 
(p = 0.48). All three groups showed a significant within-group 
decrease in alpha ERSP (i.e., increase in alpha suppression) 
in the change from the baseline to the fast-incentive condition 
(Table 3), but there were no group differences in the degree 
of change between conditions. In the 500–1000 ms window, 
a main effect of condition (p = 0.01), a trend-level group-by-
condition interaction (p = 0.08), but no main effect of group 
(p = 0.23), emerged for alpha ERSP. Post-hoc tests showed no 
differences between groups in the baseline condition (Table 2). 
In the fast-incentive condition, the ADHD group showed a 
significantly decreased alpha ERSP (i.e., lower alpha sup-
pression) compared to controls (Fig. 2). The BD group did 
not differ from the other groups. A significant within-group 

Table 3   Comparison of condition effects within group and between groups

95% CI 95% confidence intervals around d estimates, ADHD attention-deficit/hyperactivity disorder, BD bipolar disorder, CNV contingent nega-
tive variation, CP centro-parietal region, Ctrl control group, d Cohen’s d, ERSP event-related spectral perturbation, FC fronto-central region, 
ITC inter-trial phase coherence, MRT mean reaction time, p p value from mixed models, RTV reaction time variability
**p < 0.01, *p < 0.05, †p < 0.10. Bold = large effect size (d ≥ 0.80); Italics = medium effects size (d ≥ 0.50).

Within-group differences Between-group differences

ADHD BD Ctrl ADHD vs BD ADHD vs Ctrl BD vs Ctrl

p p p d (95% CI) p d (95% CI) p d (95% CI) p

RTV < 0.001** < 0.001** < 0.001** 0.01 (− 0.61, 
0.93)

0.982 0.22 (− 0.42; 
0.86)

0.507 0.30 (− 0.35; 
0.94)

0.366

CNV 0.019* < 0.001** < 0.001** 0.59 (− 0.08; 
1.24)

0.083† 1.17 (0.44; 1.87) 0.002** 0.59 (− 0.09; 
1.25)

0.088†

P3 0.723 0.331 0.026* 0.08 (− 0.56; 
0.72)

0.814 0.49 (− 0.19; 
1.16)

0.159 0.68 (0.12; 1.32) 0.048*

Theta ERSP 
(0–500 ms, CP)

0.039* 0.003** 0.085† 0.19 (− 0.45; 
0.83)

0.567 0.03 (− 0.63; 
0.69)

0.930 0.21 (− 0.45; 
0.86)

0.543

Theta ERSP 
(0–500 ms, FC)

0.004* < 0.001** 0.056† 0.40 (− 0.25; 
1.05)

0.231 0.17 (− 0.49; 
0.84)

0.612 0.55 (− 0.11; 
1.22)

0.106

Alpha ERSP 
(0–500 ms)

0.001** < 0.001** < 0.001** 0.44 (− 0.21; 
1.09)

0.188 0.44 (− 0.23; 
1.10)

0.202 0.05 (− 0.60; 
0.70)

0.879

Alpha ERSP 
(500–1000 ms)

0.568 0.510 < 0.001** 0.13 (− 0.52; 
0.77)

0.701 0.71 (0.02; 1.39) 0.045* 0.52 (− 0.15; 
1.18)

0.132

Beta ERSP 
(0–500 ms)

< 0.001** < 0.001** < 0.001** 0.69 (0.02; 1.35) 0.044* 0.72 (0.03; 1.40) 0.040* 0.05 (− 0.61; 
0.70)

0.885

Beta ERSP 
(500–1000 ms)

0.104 0.007** 0.054† 1.05 (0.35; 1.73) 0.003** 0.87 (0.17; 1.56) 0.014* 0.14 (− 0.52; 
0.79)

0.683

Theta ITC 0.083† 0.018* < 0.001** 0.16 (− 0.49; 
0.80)

0.634 0.43 (− 0.25; 
1.09)

0.216 0.30 (− 0.36; 
0.95)

0.379
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decrease from the baseline to the fast-incentive condition in 
alpha ERSP (i.e., increase in alpha suppression) emerged 
for the control group, but not for the ADHD or BD groups 
(Table 3). The ADHD group showed a significantly lower 
degree of change between conditions than the control group 
in this measure, while the BD group did not differ from the 
other groups (Table 3).

Beta

A significant main effect of condition (p < 0.001), but no 
significant effect of group (p = 0.75) or group-by-condition-
by-time interaction (p = 0.61), emerged for beta ERSP. After 
removing the three-way interaction, there was no significant 
group effects in either time window (p > 0.25), but there were 
significant condition (p < 0.001) and trend-level group-by-
condition interaction (p = 0.06) effects in the in the 0–500 ms 
window, and significant group-by-condition interaction 
(p = 0.01) and trend-level condition (p = 0.08) effects in the 
500–1000 ms window. A significant within-group decrease in 
beta ERSP (i.e., increase in beta suppression) from the base-
line to the fast-incentive condition emerged for all groups in 
the 0–500 ms window, but only for control and BD groups 
in the 500–1000 ms window (Table 3; Fig. 3). The ADHD 
group differed from the BD and control groups in the degree 
of change in beta ERSP between conditions in both time win-
dows, while the BD and control groups did not differ from one 
another (Table 3).

Theta Phase Consistency (ITC)

A main effect of group (p = 0.03) and condition (p < 0.001), 
but no group-by-condition interaction (p = 0.41), emerged for 
theta ITC in the 0–500 ms window. Post-hoc tests showed no 
differences between groups in the baseline condition (Table 2). 
In the fast-incentive condition, theta ITC was significantly 
decreased (i.e., phase was more variable) in the ADHD and 
BD groups compared to the control group, with no differences 
between ADHD and BD groups (Fig. 4). A significant within-
group increase in theta ITC (i.e., decrease in phase variability) 
from the baseline to the fast-incentive condition emerged in the 
control and BD groups, and at trend-level in the ADHD group 
(Table 3), but no differences between groups emerged in the 
degree of change between conditions. Further analyses com-
pared groups prior to target onset, and found no differences in 
theta ITC before target appearance (Supplementary material).

Discussion

In this comparison between ADHD and BD on cognitive, 
ERP and brain-oscillatory markers of attentional pro-
cesses, women with ADHD and women with BD showed 

overlapping impairments in fluctuations in attentional per-
formance (RTV), neural variability (theta ITC) and neural 
response preparation (CNV). Individuals with either disorder 
further displayed a similar inability to adjust neural attention 
allocation (P3) and activation (alpha suppression) from a 
baseline to a fast-paced and rewarded condition, suggesting 
no adaptation to a changed context in these processes. Addi-
tional disorder-specific alterations in alpha and beta sup-
pression were displayed by women with ADHD only, but 
impairments in most processes were shared between the two 
disorders. By examining both ERP and fine-grained brain-
oscillatory indices of brain activity, these findings reveal 
novel neural mechanisms of shared attentional dysfunction 
in ADHD and BD, which potentially underlie some of the 
common symptoms in both disorders.

At the cognitive level, both ADHD and BD groups 
showed increased RTV in both task conditions, indicating 
more frequent fluctuations in response speed and impair-
ments in the ability to sustain attention during the task. 
Increased RTV in both disorders is consistent with our 
results with this sample using a cued CPT task (Michelini 
et al. 2016), and previous studies on ADHD (Cheung et al. 
2016; Kofler et al. 2013; Kuntsi et al. 2010) and BD (Bora 
et al. 2006; Brotman et al. 2009; Moss et al. 2016). We fur-
ther show novel evidence of intra-individual variability also 
at the neural level in the phase of theta oscillations in both 
women with ADHD and women with BD. Low phase vari-
ability over trials is thought to reflect an adaptive mechanism 
to maintain stable neural processing of a stimulus (Makeig 
et al. 2004; Papenberg et al. 2013). The increased variabil-
ity in theta oscillations, previously reported in adolescents 
with ADHD (Groom et al. 2010; McLoughlin et al. 2014), 
thus points to increased variability in the timing of evoked 
theta responses to targets over trials in adults with ADHD 
and BD (Cavanagh et al. 2009; McLoughlin et al. 2014). 
Although these differences emerged as significant only in 
the fast-incentive condition, the group-by-condition interac-
tion was not significant, suggesting that there may be subtle 
differences also in the baseline condition, non-significant in 
this sample. Further analyses in the pre-stimulus window 
indicated that, compared to individuals with ADHD or BD, 
control women displayed greater phase consistency upon 
target presentation, but lower consistency before targets. As 
such, with presentations of targets across trials, the controls 
displayed a consistent alignment and increase in consistency 
in the phase of theta (called phase resetting) (Lakatos et al. 
2009; Palaniyappan et al. 2012) from the low consistency 
observed in the pre-stimulus window. This mechanism may 
be lacking in women with either ADHD or BD as indicated 
by the more frequent fluctuations in this neural mechanism 
across trials. Overall, our findings of increased variability in 
cognitive and neural processes in women with ADHD or BD 
indicate an overlap in the neural underpinnings of impaired 
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attentional fluctuations in both disorders, which may point 
to common neurobiological dysfunctions.

By further examining pre-stimulus response preparation 
in ADHD and BD, we found shared preparatory impair-
ments, as indicated by reduced CNV, in both clinical groups 
in the fast-incentive condition. This finding is consistent 
with our previous results in this sample using a CPT task 
(Michelini et al. 2016), and in adolescents and young adults 
with ADHD using the same task employed in this study 
(Cheung et al. 2017). Suggestive (trend-level) differences 
between ADHD and BD in this measure may also indicate 
more pronounced CNV impairment in ADHD, although this 
awaits replication in future studies. The pattern for P3 ampli-
tude in response to targets, which was not different from con-
trols in either ADHD or BD groups, indicates that women 
with either disorder may not be impaired in this ERP of 
attentional allocation. This result is consistent with our pre-
vious study with this sample (Michelini et al. 2016), show-
ing intact P3s following cue and target stimuli, and other 
previous studies reporting normal attentional P3 amplitudes 
in adults with ADHD (Barry et al. 2009; McLoughlin et al. 
2010) or BD (Bestelmeyer 2012). Yet, this P3 finding does 
not align with our previous larger-scale investigation using 
this task in ADHD, where our predominantly-male group 
of adolescents and young adults with ADHD (mean age: 
18 years) showed a reduced P3 in the baseline condition 
(with a small effect size) compared to controls (Cheung et al. 
2017). In the current study, the intact target P3 in ADHD 
may be due to gender or age, the present study being the 
first on this task using an all-female and all-adult sample 
(mean age: 37 years). In addition, the ADHD group had 
lower IQ than the control group in our previous study, and 
the ADHD-control difference on the P3 was non-significant 
when IQ was controlled for (Cheung et al. 2017). The lack 
of IQ differences between groups in the current sample may 
have contributed to the lack of group differences in the P3. 
Taken together, these findings indicate that both ADHD and 
BD are associated with reduced ERP activity of attentional 
preparation and anticipation of motor responses.

With faster target presentation and incentives, further 
shared impairments between ADHD and BD emerged in 
adjustments between conditions. These task manipulations, 
originally designed in ADHD studies to reward more con-
sistent response times, produced comparable reductions 
in RTV in clinical and control groups. At the neural level, 
women with ADHD, and potentially (at trend-level) with 
BD, displayed significantly reduced increases in CNV ampli-
tude compared to controls, and no improvements in alloca-
tion of attentional resources (P3) (Polich 2007) or attentional 
selection (alpha suppression) (Klimesch 2012). The novel 
finding of a reduced ability to increase alpha suppression 
with task demands in both disorders points to a common 
inability in individuals with ADHD and BD to regulate brain 

activity implicated in attentional selection processes (Klime-
sch 2012; Klimesch et al. 2007). A reduced adjustment in the 
response preparation CNV in women with ADHD replicates 
our previous findings in adolescents and young adults with 
the disorder (Cheung et al. 2017). Yet, in the P3, neither of 
the clinical groups showed the improvement between condi-
tions displayed by controls. This pattern for the P3 contrasts 
with our previous findings using this task in a sample of 
adolescents and young adults with ADHD, where the ADHD 
group showed improvements between conditions in the P3, 
which were greater than those observed in the control group, 
suggesting malleability in this attentional ERP component 
in ADHD (Cheung et al. 2017). Similarly, these results in 
ADHD do not align with studies in children, adolescents 
and young adults indicating greater RTV malleability and 
improvements in ADHD than in neurotypical samples 
(Andreou et al. 2007; Cheung et al. 2017; Kuntsi et al. 
2013, 2009). A possible explanation for the inconsistencies 
in P3 and RTV adjustments is the age difference between 
the samples of current and previous studies: it could be 
hypothesized that adults with ADHD, compared to younger 
individuals, may be less sensitive to task manipulations in 
these processes. Gender effects represent another possible 
reason for inconsistencies with previous studies based on 
predominantly-male samples (Andreou et al. 2007; Cheung 
et al. 2017). Longitudinal studies and replications in larger 
samples, including individuals of both sexes, are needed to 
examine potential developmental and gender effects on the 
malleability of markers of attentional processes in ADHD.

While most impairments were shared between ADHD 
and BD, we further found impairments specific to ADHD 
relative to controls, which were not displayed by women 
with BD. Women with ADHD displayed a dysfunction in 
attentional selection, as indexed by lower alpha power sup-
pression in response to targets in the fast-incentive condi-
tion (Klimesch 2012; Klimesch et al. 2007). These results 
are consistent with previous studies reporting attenuated 
event-related alpha suppression in ADHD (Hasler et al. 
2016; Lenartowicz et al. 2014; Mazaheri et al. 2014; Mis-
sonnier et al. 2013). In addition, in the change from the 
baseline to the fast-incentive condition, individuals with 
ADHD were specifically associated with lower adjustments 
in the suppression of beta power than in individuals with 
BD and controls, indicating reduced improvements in neu-
ral mechanisms associated with response execution (Bickel 
et al. 2012; Mazaheri et al. 2014). The lack of a difference 
between women with BD and controls on measures of alpha 
and beta power suppression has not been reported in pre-
vious studies of BD, which measured event-related power 
extracted from averaged ERP responses and thus could not 
capture event-related power suppressions. Future inves-
tigations using the finer-grained time–frequency methods 
employed in this study are needed to confirm typical profiles 
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in alpha and beta power suppression measures in individuals 
with BD. While the ADHD-specific impairment in alpha 
suppression did not distinguish women with ADHD from 
women with BD, the reduction in the adjustment in beta 
power suppression with task demands significantly differ-
entiated the two clinical groups. The latter brain-oscillatory 
process may thus represent neurobiological dysfunctions 
specific to ADHD, which may potentially help delineate 
ADHD from BD in adults.

The following limitations should be considered when 
interpreting our findings. First, although the groups were 
matched on gender, age and IQ, there were differences in 
the prescribed medications that participants were taking. 
We asked participants with ADHD to stop taking stimulant 
medication 48 h before assessments, but it was not possible, 
for ethical reasons, to ask participants to stop mood-stabi-
lizing, anti-psychotic or antidepressant medications. Medi-
cation effects are difficult to control for in cross-disorder 
studies where different groups are prescribed different treat-
ments, resulting in a limited number of participants within 
medication subgroups. However, previous studies suggest 
that medication may show positive effects (reducing differ-
ences from controls) or no effects on cognitive-EEG meas-
ures (Anderer et al. 2002; Degabriele and Lagopoulos 2017; 
Galletly et al. 2005; Karaaslan et al. 2003). As such, it is 
unlikely that the significant group differences reported in 
this study reflect confounding medication effects. Yet, the 
possibility remains that the lack of differences between clini-
cal groups and the control group on some measures (espe-
cially for the BD group, where the majority of individuals 
were taking medication) may be due to medication effects, 
which may have attenuated case-control differences. Future 
studies on samples including non-medicated individuals or a 
higher number of individuals in each medication sub-group 
are needed to clarify this issue. Second, while the two task 
conditions were matched on number of trials, they differed 
in duration and in length of the fore-period between warning 
and target stimuli. While we obtained comparable findings 
in RTV with length-matched segments, ERP/EEG analy-
ses could not be repeated on length-matched segments, as 
doing so would have produced insufficient number of tri-
als in the baseline condition to obtain reliable ERP/EEG 
indices. In addition, the different fore-periods and the use 
of a 0.25 Hz high-pass filter may reduce comparability of 
preparatory activity between the conditions. Yet, the analysis 
of the CNV (showing typical topographies at central sites) 
and the further analyses of EEG activity in the warning-
target interval under fast-incentive conditions (Supplemen-
tary material) allowed detailed investigation of neural pre-
paratory processes in this latter condition. Future studies 
could examine stimulus-related and preparatory processes 
in ADHD and BD using other tasks, as well as examine 
the influences on slower frequencies on the CNV. Third, 

although the current study and previous analyses on this 
sample (Michelini et al. 2016; Rommel et al. 2016) represent 
the most comprehensive comparisons between ADHD and 
BD on cognitive, ERP and EEG markers to date, the sam-
ple is relatively small. While several significant differences 
between groups emerged with medium-to-large effects with 
current sample sizes, larger studies are needed to confirm 
these results and further investigate subtler impairments in 
ADHD and BD. Finally, the adult participants in the clinical 
groups recruited for this study showed higher than expected 
IQ scores, which did not differ from IQ scores in the control 
group. Future replication in samples with a wider range of 
IQs is required in order to generalize these findings to more 
typical clinical populations.

Taken together, these findings further our understanding 
of the neural underpinnings of attentional impairments in 
both disorders, and provide new evidence into the overlap 
and specificity of impairments in these processes in women 
with ADHD and BD. The shared markers of attentional 
dysfunctions may represent biomarkers for both disorders. 
The shared atypical neural profiles related to attentional 
processes may underlie similarities in behavioral symptoms 
(e.g., distractibility) between ADHD and BD, which can 
lead to difficulty in delineating between ADHD and BD and 
incorrect treatment decisions. Finally, since ADHD and BD 
show genetic overlap (Lee et al. 2013; Song et al. 2015; van 
Hulzen et al. 2016), and increased attentional fluctuations 
may represent candidate markers of genetic/familial risk for 
both disorders (Adleman et al. 2014; Andreou et al. 2007), 
future studies could examine whether shared genetic factors 
may underlie overlapping attentional dysfunctions in ADHD 
and BD.
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