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Abstract

The sequences of different proteins evolve at different rates. The relative evolutionary rate (ER) of a single protein also changes over

evolutionary time. The cause of this ER fluctuation remains uncertain, and study of this phenomenon may shed light on protein

evolution more broadly. We have characterized ER fluctuation in mammals and Drosophila. We found little correlation between the

amount of rate variation observed for a protein and such factors as its expression level or phylogenetic distribution. Perhaps more

surprisingly, we found little correlation between our measure of rate variation and ER itself. We also investigated the extent to which

the ERs of different domains of a protein vary independently. We found that rates of different domains do tend to vary together. In

fact, rates at positions in different domains are coupled just as strongly as rates at equally distant positions in the same domain. These

findings provide clues to the protein evolutionary process.
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Introduction

The role of various types of selection in protein sequence

evolution is a matter of ongoing debate. The “neutralist/

selectionist controversy” concerns whether adaptation drives

sequence evolution (selectionism) or selection serves mainly as

a constraint on sequence evolution (neutralism) (Kreitman

1996; Ohta 1996). Within the neutralist framework, the

nature of selective constraint is not settled.

There is considerable variation in the evolutionary rates

(ERs) of proteins encoded by the same genome. This variation

is commonly interpreted as an indication of differences in

selective constraints. Perhaps surprisingly, measures of a pro-

tein’s contributions to fitness do not correlate well with its ER.

The best correlate of a protein’s ER is its expression level; highly

expressed proteins tend to evolve slowly (Pál et al. 2001;

Krylov et al. 2003; Rocha and Danchin 2004; Drummond

et al. 2006; Drummond and Wilke 2008).

Temporal variation in the ERs of individual proteins provides

another window into selection on protein sequence. The evo-

lution of many protein sequences is overdispersed: The

number of sequence changes occurring along a lineage is

more variable than expected with a constant rate of indepen-

dent substitutions, which predicts a Poisson distribution of the

number of substitutions, and hence equality of the variance

and the mean (index of dispersion equal to 1) (Ohta and

Kimura 1971; Langley and Fitch 1974). This phenomenon

remains when genome-wide, lineage-specific changes in

rate are accounted for (Gillespie 1989). Some have taken

the existence and characteristics of overdispersion to be evi-

dence that protein sequence evolution is largely driven by

adaptation (Gillespie 1989, 1991). Others have attempted to

explain overdispersion in terms of nearly neutral evolution

(Takahata 1987; Cherry 1998; Bloom et al. 2007).

Rate variation might result from changes in the protein

sequence itself or from external factors. The “Fluctuating

Neutral Space” model of Takahata (1987) posits that nearly

neutral changes to the protein sequence alter the subsequent

rate of nearly neutral substitution, leading to overdispersion. A

more specific hypothesis (Bloom et al. 2007) attributes

changes in ER to changes in the stability of the protein’s

folded state: Stabilizing changes to the sequence lead to

greater tolerance of subsequent destabilizing changes, and

hence increase ER, and destabilizing changes have the oppo-

site effect. Alternatively, extrinsic factors such as changing

environment, changing lifestyle, or genetic changes elsewhere

in the genome, all of which may alter the selective forces

acting on a protein sequence, might be responsible for over-

dispersion. Bedford et al. (2008) analyzed ER variation in mam-

mals, flies, and yeast, and concluded that it is driven in large

part by changes to the protein sequence itself.

Here, we compare the ERs of orthologs in different parts of

the phylogenetic tree, examining whether various factors cor-

relate with the tendency of a protein’s ER to vary. We find that

several factors that are correlated with ER are not strongly
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correlated with variation in ER, that variation in ER does not

correlate strongly with ER itself, and that ERs of distinct

domains of the same protein tend to vary together over

time. These findings are evidence against the hypothesis

that changes in a protein’s ER are primarily due to changes

in the protein’s sequence, especially the hypothesis that ER

changes are the result of changes to the stability of the

protein’s folded state.

Materials and Methods

Genomic Data

We gathered protein-coding sequences from four mammals

and four Drosophila species. The mammalian species were

Homo sapiens (Homsa), the rhesus macaque Macaca mulatta

(Macmu), Mus musculus (Musmu), and Rattus norvegicus

(Ratno). We refer to Homsa and Macmu, and the phyloge-

netic branches that connect them, as “primate.” Similarly,

Musmu and Ratno are referred to as “rodent.” The

Drosophila species were D. melanogaster (Drome), D. simulans

(Drosi), D. yakuba (Droya), and D. erecta (Droer). We refer to

Drome and Drosi, which form a clade, as “fly1,” and refer to

Droya and Droer, which also form a clade, as “fly2.”
For all but two of the species (Macmu and Drosi), we ob-

tained predicted proteins from the National Center for

Biotechnology Information (NCBI) RefSeq database (Pruitt

et al. 2007; Sayers et al. 2011). For each protein, we obtained

the protein sequence and the corresponding coding se-

quence. We also determined the chromosomal locations of

the genes and, for the mammals, their intron/exon structures.

For D. simulans (Drosi), we used coding sequences assem-

bled from RNA-seq data using the Drome coding sequences

as templates. Paired RNA-seq reads were obtained from the

SRA database, project SRP007818. These Drosi reads were

aligned to a set of Drome coding sequences using BLAST

with command-line parameters “-word_size 16 -best_hit_

overhang 0.1 -best_hit_score_edge 0.1.” Alignments with

length less than 60 bp were discarded. Mate pairs with correct

orientation on the transcript and unique read placement were

retained. A sequence was constructed for each transcript

using a consensus approach. Where possible, gaps in the

sequence were filled with the aid of unused reads.

For Macmu, we used the genome sequence of the Chinese

rhesus (Yan et al. 2011), which has higher sequencing cover-

age than the Indian rhesus sequence (Rhesus Macaque

Genome Sequencing and Analysis Consortium et al. 2007).

Coding sequences were identified on the basis of alignments

with the high-confidence human mRNA sequences in the

RefSeq database (accessions beginning with “NM”). These

were aligned to the Chinese rhesus genome using Splign

(Kapustin et al. 2008). The best placement of each mRNA

sequence was projected onto the rhesus genome, and the

resulting rhesus coding sequence was retained if it was

consistent with coding sequence of the human mRNA, that

is, if it constituted an open reading frame with start and stop

codons at the projected positions. In addition, we used a few

gene models from the original annotations of this genome,

which included some genes that were not found by our anal-

ysis and yet were acceptable by our filtering criteria (discussed

later).

Orthologs and Alignment

For each pair of mammalian or fly genomes, reciprocal BLASTP

searches (Altschul et al. 1997) were performed on proteins

with E value threshold of 1e�06, and putative orthologs

were identified as bidirectional best hits (Tatusov et al.

1997). Sets of four orthologs were identified by the require-

ment that each protein was the reciprocal best hit of each of

the three other proteins in the set (i.e., each of the six possible

pairings corresponded to a reciprocal best hit relationship).

Orthologous protein sequences were aligned using the

MUSCLE program (Edgar 2004). The protein sequence align-

ments were then used to construct corresponding alignments

of the coding sequences.

We filtered the mammalian alignments based on the exon

structures of the coding sequences. This filtering consisted of

two components. First, we required that amino acids encoded

by the same exon in one organism were not aligned to amino

acids encoded by different exons in another. Second, we

required at least 50% amino acid identity for the aligned po-

sitions of any exon. These criteria were applied pairwise to the

human/mouse, human/macaque, and mouse/rat components

of every alignment.

To avoid undue influence of families of paralogs, we chose

subsets of genes such that no pairs of paralogs with greater

than 60% amino acid identity were included. Identity higher

than 60% within any of the four genomes was sufficient to

prohibit inclusion of a pair of ortholog groups. Paralogs were

identified by within-genome all-against-all BLASTP searches. A

pair of paralogs usually produced two hits, with query and

subject interchanged; the larger of the two values of percent

identity was used in these cases. We found that using a more

conservative cutoff of 50% identity, or liberally including all

genes without regard to presence of paralogs, produced sub-

stantially the same results.

Evolutionary Rate

ER parameters dN/dS, dN, and dS were estimated using

CODEML program from the PAML package (Yang 1997),

with separate dN/dS ratios for each branch and

CodonFreq¼ 2. This was done for each ortholog set based

on its corresponding CDS alignments. For most of the analy-

ses, the calculations were based on the phylogenetic tree of

the mammals or flies (fig. 1), yielding estimates for each of the

five branches of the tree. Then, dN for each lineage (primate,

rodent, fly1, or fly2) was calculated as the sum of dN values
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from the two terminal branches of that lineage. Values of dS

were obtained analogously. The dN/dS for each lineage was

taken to be the ratio of the dN and dS values obtained in this

way. For the domain analysis, dN/dS, dN, and dS values were

instead calculated separately for each pair of closely related

species. Genes with dN/dS, dN, or dS values more than three

standard deviations from the mean were excluded from the

analyses.

Our measure of temporal variation of ER was based on the

ratio of the estimated ERs in two lineages (primate and rodent,

or fly1 and fly2). If relative ERs were unchanging and there

were no errors in the estimates, this ratio would be the same

for all genes (for dN and dS, it would correspond to a ratio of

branch lengths). As a measure of rate variability, we took the

absolute deviation of the logarithm of this ratio from an

expected value. The expected value was simply the logarithm

of the geometric mean ratio (equivalently, the mean of the

logarithm of the ratio) for most of the analyses. For the cor-

relations between rate and rate variability, we used the abso-

lute values of the deviations from a regression line in the

logarithmic domain. This analysis is similar to the Breusch–

Pagan test, but it involves a rank-order correlation rather

than Pearson’s product-moment correlation.

Expression and Age Class of Genes

Expressed sequence tag (EST) counts for Homsa and Musmu

were downloaded from the NCBI Unigene database (Sayers

et al. 2012). The mRNA data for Drome were downloaded

from FlyAtlas (Chintapalli et al. 2007) and the mean values

were used. The protein abundance data were obtained from

the work of Schrimpf et al. (2009). The age class of genes

from Homsa and Drome were kindly provided by Y. Wolf and

described in the work of Wolf et al. (2009). The age classes

were numbered, with 1 corresponding to the least phyloge-

netic depth and 7 to the greatest.

Protein Domain Analysis

Domain architecture was determined using the Conserved

Domain Database based on the superfamily classification

(Marchler-Bauer et al. 2011) for each protein. Partial domain

matches were not used. Only domains that were detected in

all the mammal or fly species were used, and the extent of the

domain was taken to be the intersection of regions identified

in the four species.

To gauge the effects of chromosomal proximity, we per-

formed a comparable analysis with pairs of nearby genes.

Adjacency of gene pairs in mammals was assessed solely by

their position in the Homsa genome. A fraction of pairs cate-

gorized as adjacent in this way will not be nearby in one or

more of the other mammals due to genome rearrangements.

Similarly, adjacency in flies was assessed using the Drome

genome sequence.

To compare within-domain to between-domain effects, we

constructed sets of three regions from a coding sequence, two

of which encoded regions of one protein domain and the third

of which encoded a region in an adjacent domain. These re-

gions were chosen such that all three had the same length and

the distance along the protein sequence from the first to the

second was the same as the distance from the second to the

third. Only one set of regions was constructed for each ortho-

log set. Regions were chosen so as to maximize their length.

Statistical Analysis

Spearman’s rank-order correlation was used for correlation

analysis. The statistical significance of a correlation was as-

sessed by a permutation test. The values for one variable

were randomly permuted, so that each value for one variable

was randomly paired with a value for the other variable. The

correlation for the randomized data was then calculated. This

process was repeated 10,000 times. The P value was taken to

be the fraction of these correlations that had an absolute value

at least as large as that of the correlation of the actual (unper-

muted) data. For the correlations of ER with rate variability, the

regression line was calculated separately for every permuta-

tion, and, in the sampling analysis (discussed later), for every

combination of a permutation and a random sample.

As discussed in Results, genes that evolve more slowly will

exhibit more sampling variance for rate estimates, leading to

greater deviations of the observed ratio of rates from the cen-

tral value. This may make a variable appear to correlate with

rate variability when it merely correlates with rate. To eliminate

this effect, we equalized sampling variance by sampling some

fixed total number, n, of amino acid changes from each gene

with at least n changes in the terminal branches. These were

drawn at random, without replacement, from the changes in

the two lineages (e.g., primate and rodent), “thinning” the

observed substitutions so that the same total number

remained for all genes. Equivalently, the number of the n

changes assigned to one lineage was drawn from a

Musmu
(Mus musculus)

Primate: Homsa+Macmu
Rodent: Musmu+RatnoHomsa

(Homo sapiens)

Ratno

Mammal Rodent
Primate

Macmu
(Macaca mulata)

(Ra�us norvegicus)

Droya
(D. yakuba)

Drome
(D. melanogaster) Fly Fly2

Droer

Fly1

Fl 1 D D i Drosi
(D. simulans)

(D. erecta)Fly1: Drome+Drosi
Fly2: Droya+Droer

FIG. 1.—Phylogenetic relationships among the mammalian and

Drosophila species used in this study. For both trees, the root lies along

the internal branch.
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hypergeometric distribution, with the remainder assigned to

the other. Suppose, for example, that n¼ 10. Consider a

mammalian ortholog set with 7 inferred amino acid changes

in the primate lineage and 15 in the rodent lineage. After

sampling, the number of changes in the primate lineage will

be an integer between 0 and 7, inclusive, with probabilities

given by a hypergeometric distribution. The number in the

rodent lineage will correspondingly range from 10 to 3, so

that the sum for the two lineages is necessarily 10. This sam-

pling process was performed repeatedly, and an average of

the resulting correlations was taken. The statistical significance

of the result was evaluated using a permutation test as

described earlier.

Results

Gene Sequences

Our analyses involved ortholog sets from either four mamma-

lian species or four Drosophila species, related as shown in

figure 1. We found that these analyses were compromised

by the quality of the originally reported genome sequences of

the rhesus macaque (Rhesus Macaque Genome Sequencing

and Analysis Consortium et al. 2007) and D. simulans

(Drosophila 12 Genomes Consortium et al. 2007), and

therefore used alternative sets of coding sequences for

these organisms. For D. simulans, we used an assembly of

high-coverage RNA-seq reads. For the rhesus macaque, we

used a more recent genome sequence (Yan et al. 2011). We

found that we could improve upon the annotations of this

genome; apparently the propagation of gene models from the

earlier, less complete rhesus genome sequence had led to

some incorrect gene models (see supplementary information,

Supplementary Material online, for an example). We therefore

utilized coding sequences generated by our own gene-finding

techniques.

ER Correlations between Clades

For each ortholog quartet, we estimated dN, dS, and dN/dS

for each branch of the phylogenetic tree. As illustrated in

figure 2, the correlation between primate and rodent protein

ERs (dN) is strong, but far from perfect (Spearman’s rank-order

correlation 0.70). The same holds for the two Drosophila spe-

cies pairs (correlation 0.79). The relationships are similar for

dN/dS (supplementary fig. S5, Supplementary Material

online).

One source of deviation from a perfect correlation is sam-

pling variance due to the finite number of substitutions ob-

served. We assessed this effect by simulating Poisson sampling

of estimated rates. The inferred substitutions were partitioned

between the two lineages according to branch lengths, cor-

responding to a nonfluctuating ER and a perfect correlation.

We then drew Poisson-distributed samples using these substi-

tution numbers as the means. This produced correlations sig-

nificantly higher than those observed for the real data: 0.87

for mammals and 0.91 for flies. Thus, sampling variance does

not explain all of the deviation from a perfect correlation, and

ERs indeed vary between lineages. The results presented later

provide information about the nature and causes of this rate

variation.

Do Factors That Correlate with Rate Also Correlate with
Rate Variation?

Based on cross-species comparisons, genes can be classified

with respect to “age” or phylogenetic depth, ranging from

presence in the last common ancestor of all life to narrow

FIG. 2.—Relationships between protein ERs in different lineages. Each point represents a set of orthologous genes.
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lineage-specificity. Table 1 shows the relationship between

phylogenetic depth and variation in ER. For the two measures

of relative protein ER, dN and dN/dS, little or no correlation is

apparent. Thus, the “age” of a gene tells us little about how

much and how rapidly its ER varies.

Table 2 shows the relationship between mRNA or protein

abundance and variation in ER. Little or no correlation is ob-

served. What little correlation is observed for flies can appar-

ently be explained largely by greater sampling error for highly

expressed proteins because they tend to evolve more slowly,

as demonstrated by the sampling analysis shown in table 3.

Thus, despite the fact that expression level is the best known

predictor of ER, it does not correlate strongly with the ten-

dency of that rate to fluctuate.

Relationship between ER and Its Temporal Variability

If changes to a protein’s ER are caused by changes to the

protein’s sequence, there should be a relationship between

the rate at which a protein evolves and the degree to which its

ER varies. If, on the other hand, changes in ER are due to

factors external to the protein, no such relationship is

expected.

We investigated the relationship between the variability of

each rate parameter (dN, dN/dS, and dS) and the correspond-

ing rate parameter for the internal branch of the phylogenetic

tree for each ortholog quartet. The internal branch value

served as an estimate of the mean of the rate parameter.

This is, we believe, preferable to using the external branch

values for this purpose: because these values are used to cal-

culate the ratio, using them for the rate estimate as well could

lead to artificial correlations. As illustrated in figure 3, variabil-

ity was assessed by the absolute deviation of the ratio (pri-

mate/rodent or fly1/fly2) from a regression line relating the

ratio to the internal branch value in the logarithmic domain.

The relationship between rate and variability was measured by

the rank-order correlation between the deviations and internal

branch parameters.

As shown in table 4, the correlation between protein ER

and its variability is weak. For both mammals and Drosophila,

the correlation coefficients for dN and dN/dS, though statisti-

cally distinguishable from zero, are small in magnitude, rang-

ing from �0.09 to �0.17.

Even this weak correlation might be artifactual. Genes with

higher dN and dN/dS will tend to have a larger number of

observable substitutions and hence lower sampling variance

for the rate parameters. This statistical fact would lead to a

negative correlation even in the absence of a biological effect.

To investigate the contribution of this effect, we performed

computations that eliminated it by randomly thinning the sub-

stitution counts in the branches used to calculate the ratios.

This leaves all genes with the same total number of substitu-

tions in these branches, but with a variable distribution be-

tween branches that reflects the ratio of rates. Hence, it

largely equalizes sampling variance among proteins with dif-

ferent ERs. For simplicity, this analysis uses protein p-distances

based on a most parsimonious reconstruction.

The sampling procedure eliminates much or all of the small

negative correlations described earlier (table 5). Thus, those

correlations are, in part or in whole, artifacts of sampling var-

iance. The true correlation between protein ER and its ten-

dency to fluctuate appears to be close to zero.

The use of a regression line to remove trends was moti-

vated by the appearance of a rate/ratio correlation for dS in

flies when rate parameters were simply normalized to the

geometric mean. The use of deviations from the overall

mean rather than regression residuals has little effect on the

correlations for dN or dN/dS. The small negative correlation for

sampling with n¼ 5 for flies (table 5) becomes very close to

zero, and statistically insignificant, when deviations from the

mean are used; apparently the line-fitting and rank-order cor-

relation can interact when n is small to produce artifactual

correlations.

We also performed a test based on the index of dispersion.

A measure of the departure from a Poisson process is the

quantity (R� 1)/M, where R is the index of dispersion and M

is the mean. This quantity will be independent of the mean ER

if the variability of the rate, as measured by the coefficient of

variation (ratio of standard deviation to mean), does not

depend on the rate. We estimated this quantity from the ter-

minal substitution counts using the method of Gillespie (1989)

and calculated its correlation with the internal branch count.

Table 2

Correlation between ER Fluctuation and Expression Level

Mammals Flies

EST Count

(Human)

EST Count

(Human + Mouse)

D. mel.

mRNA

Abundance

D. mel.

Protein

Abundance

Genes 2,976 2,607 8,137 2,981

dN/dS 0.03 0.03 0.06*** 0.12***

dN 0.04* 0.06** 0.06*** 0.09***

dS 0.00 �0.01 �0.02* 0.07***

*0.01�P< 0.05.

**0.001�P< 0.01.

***P< 0.001.

Table 1

Correlation between ER Fluctuation and Phylogenetic Depth

Mammals Flies

Genes 4,330 6,309

dN/dS �0.05*** �0.01

dN �0.05*** 0.02

dS �0.04** �0.08***

**0.001�P< 0.01.

***P< 0.001.
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FIG. 3.—Analysis of the relationship between ER and its temporal

variation. The method is illustrated using a set of hypothetical genes,

each represented by a point. The horizontal axis represents the logarithm

of the estimated rate parameter (e.g., dN) for the internal branch of the

tree. (A) The vertical axis represents the logarithm of the ratio of the rate

parameter estimates for the two terminal lineages (e.g., primates and

rodents). A least-squares line is fit, and the absolute deviations from the

line are taken as estimates of rate variability. (B) The vertical axis represents

the magnitude of these deviations. The coefficient of correlation between

the variables in (B) is an indication of the relationship between rate and rate

variability.

Table 4

Correlation between ER Fluctuation and ER

Mammals Flies

Genes 5,053 8,726

dN/dS �0.16*** �0.09***

dN �0.17*** �0.10***

dS 0.04 0.03*

*0.01�P< 0.05.

***P< 0.001.
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For mammals, the Spearman rank-order correlation was

0.101. The Pearson product-moment correlation, however,

was indistinguishable from zero (correlation coeffi-

cient¼�0.008, not statistically significant). For flies, the

Spearman correlation was 0.169 but the Pearson correlation

was only 0.062. Simulations show that when rate variability

does not depend on rate, the Spearman correlation is none-

theless moderately positive, whereas the Pearson correlation is

close to zero (supplementary information, Supplementary

Material online). We therefore conclude that, at least for

mammals, this test also detects no relationship between rate

and rate variability.

Covariation of ERs between Different Domains of the
Same Protein

Many proteins consist of more than one domain. Domains

may fold independently of one another, and they often cor-

respond to functional units. We therefore asked the following

question: If the ER of one domain changes over evolutionary

time, does that of another domain in the same protein tend to

change in the same way, or do the ERs of the different do-

mains vary independently?

To address this question, we estimated ERs for protein

domains in pairs of taxa, and compared the ratio of rates

for one domain with the ratio for an adjacent domain of

the same protein. As shown in table 6, the ERs of adjacent

protein domains do tend to fluctuate together: Moderate pos-

itive correlations are observed for both flies and mammals,

using either dN or dN/dS as the measure of protein ER.

Positive correlations are also observed for dS.

A possible contributor to these correlations, at least for dN

and dS, is local fluctuation of the mutation rate. More gener-

ally, the correlations might reflect the fact that the domain

pairs are encoded by nearby parts of the genome rather than

the fact that they are part of the same protein. To assess the

contribution of this factor, we calculated analogous correla-

tions for pairs of genes that are adjacent on the chromosome.

As table 6 shows, the correlations for dN and dN/dS for adja-

cent genes, though still positive, are significantly smaller than

the correlations for domains of the same protein. For dS, in

contrast, the correlations for adjacent genes are indistinguish-

able from those for domains in the same protein. This is

consistent with some contribution of location-specific effects

to the correlations for dN and dN/dS but a comparable or

larger contribution from fluctuations in the selective forces

Table 5

Sampling Analysis for Correlation between ER Fluctuation and ER

Sample Size Mammals Flies

Correlation Coefficient Correlation Coefficient

Genes All Substitutions Sampled Substitutions Genes All Substitutions Sampled Substitutions

5 4,041 �0.16*** 0.00 7,238 �0.10*** �0.05**

8 4,142 �0.14*** �0.03*** 7,618 �0.09*** 0.00

15 3,479 �0.10*** �0.04*** 6,808 �0.07*** 0.01

25 2,473 �0.08*** �0.05** 5,365 �0.04** 0.00

50 1,103 �0.04 �0.03 2,844 �0.05* �0.02

*0.01� P< 0.05.

**0.001�P< 0.01.

***P< 0.001.

Table 6

Correlations of Rate Changes for Different Domains of a Protein, with Correlations for Adjacent Genes Shown for Comparison

Mammals Flies

Adjacent Domains Adjacent Genes Significance

of Differencea

Adjacent Domains Adjacent Genes Significance of

Differencea

Cases 393 1,631 496 6,453

dN/dS 0.18*** 0.04 ** 0.14** 0.06*** *

dN 0.17*** 0.05* * 0.21*** 0.09*** **

dS 0.33*** 0.34*** 0.14** 0.19***

aThe statistical significance of the difference between the correlation coefficient for adjacent domains and that for adjacent genes.

*0.01� P< 0.05.

**0.001�P< 0.01.

***P< 0.001.
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acting on protein sequences. These results likely underesti-

mate the contribution of the within-gene effect because indi-

vidual domains tend to be smaller than whole proteins,

leading to higher sampling variance, and hence weaker

apparent correlations, for the within-gene ratios.

Although these results establish a between-domain rela-

tionship between rate fluctuations, they leave open the pos-

sibility that the within-domain relationship is stronger still. We

therefore sought to compare within-domain correlations with

between-domain correlations. Because distance in the protein

sequence might affect the coupling of rates between amino

acid positions, we considered within- and between-domain

pairs of sequence regions that were separated by the same

distance and had the same length (fig. 4). We also report the

correlations for the more distant between-domain pairs,

which might be lower than within-domain correlations

simply because of the greater distance. Table 7 shows that

the correlation for regions in different domains is just as strong

as the correlation for regions in the same domain: In every

case, the correlation coefficients for the three possible pairings

of regions are statistically indistinguishable. Even if we relax

the requirement for equal spacing of the three regions (sup-

plementary fig. S2, Supplementary Material online), which in-

creases statistical power but might disfavor between-domain

correlations, the within-domain correlations are not signifi-

cantly larger than the between-domain correlations (supple-

mentary table S1, Supplementary Material online). Thus, it

appears that rates at positions in different domains vary to-

gether just as much as positions in the same domain.

Discussion

Fluctuations in the ERs of proteins can provide information

about the forces that shape protein evolution. Studies based

on the index of dispersion have played a role in the ongoing

effort to elucidate the nature of protein sequence evolution

(Takahata 1987; Gillespie 1989, 1991; Bedford and Hartl

2008; Bedford et al. 2008). We have used a more straightfor-

ward measure of rate variability, based on the ratio of the

estimated ERs in different parts of the phylogenetic tree, to

test whether various factors correlate with rate variability. In

addition, we have investigated the extent to which different

domains within a protein vary together in ER, as opposed to

acting as isolated units whose rates fluctuate independently.

We found that the variability of a protein’s ER does not

correlate strongly with phylogenic depth or expression level.

This may not be surprising, but is to be contrasted with ER

itself, which does correlate with these factors. The lack of

correlation is particularly striking for expression level, which

universally displays a relatively strong negative correlation

with ER.

We found little correlation between a protein’s rate of evo-

lution and the amount of temporal variability of that rate. That

is, more rapidly evolving proteins did not appear to have more

(or less) variable rates of evolution. This result suggests that it is

not changes to the protein’s own sequence that are primarily

responsible for changes to its rate of evolution. It points to the

importance of extrinsic factors, such as sequence evolution at

other loci and changes to the environment, which can alter

the selective forces acting on a protein sequence.

Table 7

Correlations of Rate Change for Pairs of Regions in the Same Domain or in Adjacent Domains

Mammals (121 Genes) Flies (147 Genes)

Within-Domain Between-Domain Within-Domain Between-Domain

Same Distance Greater Distance Same Distance Greater Distance

dN/dS 0.31*** 0.34*** 0.34*** 0.12 0.07 0.07

dN 0.25** 0.20* 0.28** 0.33*** 0.18* 0.25**

dS 0.26** 0.29*** 0.30** 0.03 0.14 0.01

NOTE.—Within each row the three values for each taxon are statistically indistinguishable.

*0.01� P< 0.05.

**0.001�P< 0.01.

***P< 0.001.

Within-domain
Between-domain,

Same Distance

Between-domain,
Greater Distance

FIG. 4.—Scheme for comparing within- and between-domain covari-

ation of ERs. Two regions in one domain and one in an adjacent domain

were chosen so as to maximize their common size, subject to the con-

straint that they are equally spaced. In some cases, the two regions come

from the second domain rather than the first, and the relationships

between the region boundaries and the domain boundaries vary with

relative domain size and spacing.
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Some caution is warranted when interpreting results of this

type. Even if we suppose that all changes to a protein’s ER are

caused by changes to its sequence, it is not clear how strong a

correlation we should expect between measures of rate and

measures of rate variability. The value of this correlation

depends on the details of the evolutionary process and on

the lengths of the branches used in the analysis. Higher ERs

lead to more sequence differences between taxa (and

hence more variability), but also to greater averaging of

rates within taxa (and hence less variability). Thus, even the

direction of the correlation that would result is not clear, and

any correlations might be small in magnitude and difficult to

detect. Conversely, even if rates vary due to factors other than

changes to the protein’s sequence, a correlation is possible.

Simply increasing all selection coefficients by some factor, for

example, might affect the ERs of slowly evolving and rapidly

evolving proteins to different extents. Furthermore, such fac-

tors as sequencing errors, inaccurate gene models, imperfect

identification of orthology, and misalignment of sequences

have the potential to degrade or bias results.

Bedford et al. (2008) reported a small but nonnegligible

relationship between ER and a measure of rate variation in

mammals, flies, and yeast. We present a modified analysis of

the same data in supplementary information, Supplementary

Material online. For mammals, the reported relationship ap-

pears to be largely an artifact; our modified analysis yields a

correlation close to zero. For Drosophila, we infer approxi-

mately the same relationship as Bedford et al., though we

point out factors that might contribute to an artificial

correlation.

We noted earlier that the quality of some genome se-

quences, and inaccuracies in their annotations, were initially

obstacles to this study (see supplementary information,

Supplementary Material online, for an example). We believe

that we largely overcame these and other sources of error in

several ways: constructing our own assemblies or gene

models in some cases, filtering alignments based on knowl-

edge of intron/exon structure of the coding sequences, and

using different parts of the phylogenetic tree for estimates of

mean rate and rate variation (the internal branch for the rate,

the terminal branches for rate variation). We would note,

however, for both producers and users of sequence data,

that the presence of even a small number of inaccurate

coding sequences can have a large effect on studies of this

type.

The individual domains of a protein correspond to struc-

tural units and, to some extent, functional modules. Thus, it

might be expected that fluctuations in ER affect domains as

somewhat independent units. We found, however, evidence

to the contrary. Protein domain boundaries do not appear to

be important to the mechanisms that change a protein’s ER.

The ERs of regions in different domains tend to vary together.

This tendency is just as strong for such regions as it is for

equally distant regions that are part of the same protein

domain. This result is difficult to reconcile with the hypothesis

that fluctuation in ER is caused mainly by substitutions that

stabilize or destabilize the folded state, since the within-

domain effect of such substitutions should be substantially

larger than their effect on other domains.

Supplementary Material

Supplementary information, tables S1–S3, and figures S1–S5

are available at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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