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Abstract: While the technology is relatively new, low-cost 3D printing has impacted many aspects
of human life. 3D printers are being used as manufacturing tools for a wide variety of devices in a
spectrum of applications ranging from diagnosis to implants to external prostheses. The ease of use,
availability of 3D-design software and low cost has made 3D printing an accessible manufacturing
and fabrication tool in many bioanalytical research laboratories. 3D printers can print materials with
varying density, optical character, strength and chemical properties that provide the user with a vast
array of strategic options. In this review, we focus on applications in biomedical diagnostics and
how this revolutionary technique is facilitating the development of low-cost, sensitive, and often
geometrically complex tools. 3D printing in the fabrication of microfluidics, supporting equipment,
and optical and electronic components of diagnostic devices is presented. Emerging diagnostics
systems using 3D bioprinting as a tool to incorporate living cells or biomaterials into 3D printing is
also reviewed.
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1. Introduction

Charles W. Hull in 1986 was the first to report stereolithography [1] as a tool to fabricate 3D
structures. Since then, 3D printing has evolved into a multifunctional fabrication tool that offers
unique advantages for biomedical applications including diagnostics [2], scaffolds for 3D implants [3],
prosthesis [4] and tissue engineering [5]. In recent years, the ability to convert computer-assisted design
(CAD) files into 3D-printed pieces, also known as additive manufacturing, has sparked significant
progress in the field of diagnostics [6]. 3D printing has been utilized in a wide spectrum of applications
with excellent design and performance. As an additive manufacturing technique, production costs
are lower compared to traditional subtractive manufacturing techniques like milling or ablation
due to reduction of the labor and material cost. In addition, versatile 3D printers can be used to
produce different devices and parts without the need for pre-fabrication changes normally required
in subtractive manufacturing techniques [7,8]. These criteria make 3D printing a valuable tool in
prototyping, testing and production of tools and equipment for analytical and diagnostic laboratories.
In principle, CAD files of previously reported devices can be downloaded and printed in any laboratory.
In this way, advanced diagnostic tools can be directly utilized by researchers without the need for
purchase from a commercial vendor. This approach has the potential to bring advanced diagnostic
tools more rapidly to the research lab than ever before.

In this review, we focus on applications of 3D printing techniques in medical diagnostics.
We discuss different 3D printing techniques and how these techniques impact many design aspects
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including resolution, cost and fabrication of complex diagnostic devices in a continuous process [9–11].
3D-printed microfluidic devices have been used to fabricate semi and fully automated diagnostic
approaches for diseases like cancer [12,13], infectious diseases [14–16], and xenobiotic genotoxicity [17].
3D printing can also make tailored supporting devices that improve performance of existing diagnostics
like spectrophotometers [18] and Polymerase Chain Reaction (PCR) devices [14,19] and is used to
assist with smartphone integration for remote sensing [20,21]. The ability to print materials with
special properties allows for the creation of new equipment that can dramatically reduce the cost of
diagnostic devices like Surface Plasmon Resonance (SPR) [22]. All these applications use 3D printing
for cost-effective multifunctional production to integrate several functions in one device [23].

Fabrication of diagnostic devices with embedded electronics and circuits have also been
accomplished by 3D printing. The ability to print different materials simultaneously permits the
fabrication of electrodes that can be incorporated into the insulator plastic matrices allowing for
subsequent electrochemical detection of metals [24–26], organic compounds [27,28] and biologically
active molecules [29]. 3D printing avoids disadvantages associated with screen printing like the need
for masking and drying steps, while exhibiting better resolution and faster fabrication [30].

3D bioprinting is another emerging modification to traditional 3D printing where cells, enzymes
or proteins may be encapsulated or loaded into printable bio-ink solutions [31]. A major focus of
this technique is to provide cell growth medium for tissue and organ repair and regeneration, but it
has also been explored as a tool for diagnostic applications [32]. Bioprinting offers an opportunity to
fabricate 3D-printed implantable sensors that are biocompatible, geometrically complex, and cheap.
With 3D printing, there is a limited need for specialized training, and devices can be tailored to the
users’ requirements [33,34]. In this review, the most common techniques for 3D-printed diagnostics
are briefly described with several examples of diagnostic platforms incorporating microfluidics, device
supports, optical components, electronics and biomaterials.

2. Additive Manufacturing Techniques

2.1. Fused Deposition Modeling (FDM)

This technique utilizes thermoplastic polymeric materials extruded to print objects layer-by-layer
from a heated nozzle onto a surface or platform where it is cooled to below its thermoplastic
temperature (Figure 1). Several materials have been utilized in this printing technique, including
acrylonitrile butadiene styrene (ABS), polycarbonate (PC), PC-ABS blend, and polylactic acid
(PLA) [35]. Single-, double- and triple-print-head machines are available for FDM, making it a good
choice for simultaneous multi-material 3D printing [36]. The ability to incorporate conductive materials
like pyrolytic graphite, graphene, carbon nanotubes and metal nanoparticles into the thermoplastic
matrix enables FDM printing of conductive inks to fabricate electrodes and circuits [37–40]. FDM
is good for rapid prototyping and fabrication of holders and supporting devices, but still suffers
from several limitations, including mechanical strength, roughness and shape integrity of the final
product. Microfluidic devices printed using FDM can show leakage and shape deformation if printing
parameters and the thermoplastic polymer are not carefully tuned [37]. FDM has been successfully
used to print 3D scaffolds that can be seeded with living cells without loss of cell viability [41,42] and
to print bio-friendly polymer materials [43,44].
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Figure 1. Schematic representation of a dual-head fused deposition modeling 3D printer. 
Thermoplastic polymer is extruded from a heated nozzle into a printing platform, where it is cooled 
to below its thermoplastic temperature. Reproduced with permission from [35]. Copyright (2015) 
Springer. 

2.2. Direct Ink Writing 

Similar to fused deposition modeling, Direct Ink Writing (DIW) relies on extrusion of ink 
through a fine deposition nozzle to form a 3D structure in layer-by-layer approach [45]. Two different 
strategies are utilized in this technique, based on the ink type. First is the extrusion of low-viscosity 
ink that undergoes gelation via a chemical, photochemical or noncovalent process [46]. The second 
strategy is the use of a shear thinning hydrogel ink that possesses a viscoelastic response toward 
applied pressure. Hydrogels like sodium alginate and gelatin are commonly used [47]. In addition to 
hydrogel inks, epoxy-based direct writing was developed by Compton and Lewis [48], where epoxy 
ink with significant shear thinning is extruded through the printing nozzle. Once extruded, the ink 
has sufficient shear to maintain its printed filamentary shape. Direct ink writing is utilized in the 3D 
fabrication of injectable therapeutics [49], cell-laden scaffolds [50,51], degradable biomaterials [52] 
and stretchable complex cellularized structures [53]. The utilization of DIW in bioprinting offers a 
tool to develop multifunctional diagnostic devices with high resolution, which may improve assay 
sensitivities.  

2.3. Stereolithography 

Stereolithography, or digital light processing, employs a photocurable polymeric resin which, 
when exposed to light, cures into a solid. Initially, curing was only possible with UV light, but 
polymers cured with visible wavelengths have recently been introduced. Highly focused lasers or 
LED beams with high intensity are used and the spot size of the light beam determines printing 
resolution [54]. Each layer of the object is printed as a point-by-point 2D cross section cured by the 
scanning focused beam onto a printing platform immersed in a photocurable tank that holds the 
liquid resin [5] (Figure 2A). Recently, projection-based stereolithography has been introduced with a 

Figure 1. Schematic representation of a dual-head fused deposition modeling 3D printer. Thermoplastic
polymer is extruded from a heated nozzle into a printing platform, where it is cooled to below its
thermoplastic temperature. Reproduced with permission from [35]. Copyright (2015) Springer.

2.2. Direct Ink Writing

Similar to fused deposition modeling, Direct Ink Writing (DIW) relies on extrusion of ink through
a fine deposition nozzle to form a 3D structure in layer-by-layer approach [45]. Two different strategies
are utilized in this technique, based on the ink type. First is the extrusion of low-viscosity ink that
undergoes gelation via a chemical, photochemical or noncovalent process [46]. The second strategy
is the use of a shear thinning hydrogel ink that possesses a viscoelastic response toward applied
pressure. Hydrogels like sodium alginate and gelatin are commonly used [47]. In addition to hydrogel
inks, epoxy-based direct writing was developed by Compton and Lewis [48], where epoxy ink with
significant shear thinning is extruded through the printing nozzle. Once extruded, the ink has sufficient
shear to maintain its printed filamentary shape. Direct ink writing is utilized in the 3D fabrication of
injectable therapeutics [49], cell-laden scaffolds [50,51], degradable biomaterials [52] and stretchable
complex cellularized structures [53]. The utilization of DIW in bioprinting offers a tool to develop
multifunctional diagnostic devices with high resolution, which may improve assay sensitivities.

2.3. Stereolithography

Stereolithography, or digital light processing, employs a photocurable polymeric resin which,
when exposed to light, cures into a solid. Initially, curing was only possible with UV light, but polymers
cured with visible wavelengths have recently been introduced. Highly focused lasers or LED beams
with high intensity are used and the spot size of the light beam determines printing resolution [54].
Each layer of the object is printed as a point-by-point 2D cross section cured by the scanning focused
beam onto a printing platform immersed in a photocurable tank that holds the liquid resin [5]
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(Figure 2A). Recently, projection-based stereolithography has been introduced with a promise to
decrease print time while maintaining almost the same resolution as line-based stereolithography.
Projection-based stereolithography replaces point-by-point curing with entire-layer curing under
one single UV or visible light exposure [55,56] (Figure 2B). Stereolithography resin materials have
been extensively studied to produce devices with different properties, including transparency, color,
flexibility and thermal stability [57]. Stereolithography has also been used for printing cells using
biocompatible resins maintaining >90% cell viability after printing [58].
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a specific solvent [59]. Researchers have been able to utilize this printing technique to print metal 
nanoparticles for printed electronics [60], preceramic polymers for 3D-printed ceramics [61] and even 
metallic electrodes on flexible substrates [62]. The ability to print multiple materials with varying 
chemical and physical properties simultaneously makes MJM a good candidate for diagnostic device 
fabrication. Microfluidic channels integrated with either electrodes for electrochemical signal 
detection [63] or porous membranes that can be seeded with viable cells for drug permeability and 
toxicity studies have been printed using this technique [64]. Most printing resins and materials are 
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Figure 2. Schematic representation of stereolithographic 3D printing. (A) Scanning laser stereolithography,
where the focused laser beam scans point-by-point to cure a layer of resin on top of a previously
fabricated layer. (B) Projection-based stereolithography, where an entire layer is printed in a single
step by projecting the entire layer on top of the previous layer. In both strategies, a printing platform
is immersed in a tank filled with liquid photocurable resin. Reproduced with permission from [54].
Copyright (2014) American Chemical Society.

2.4. Photopolymer Inkjet Printing (Multi-Jet Modeling—MJM)

This technique utilizes multi-head printers with print heads similar to inkjet printers. The print
head extrudes layers of photocurable resin or molten wax, usually with a second head printing support
material to maintain the shape of the design until cured (Figure 3). After printing, the object is cured
by UV irradiation or heat and support material can be removed by heating or dissolving in a specific
solvent [59]. Researchers have been able to utilize this printing technique to print metal nanoparticles
for printed electronics [60], preceramic polymers for 3D-printed ceramics [61] and even metallic
electrodes on flexible substrates [62]. The ability to print multiple materials with varying chemical and
physical properties simultaneously makes MJM a good candidate for diagnostic device fabrication.
Microfluidic channels integrated with either electrodes for electrochemical signal detection [63] or
porous membranes that can be seeded with viable cells for drug permeability and toxicity studies have
been printed using this technique [64]. Most printing resins and materials are proprietary, which makes
the cost of using MJM relatively higher than other 3D-printing techniques [65].
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Figure 3. Schematic representation of multi-jet printing technique, a photocurable resin is printed
simultaneously with a support material that can be removed after curing. Up to 10 printing heads can
be used. Reproduced with permission from [59]. Copyright (2014) American Chemical Society.

2.5. Selective Laser Sintering (SLS)

A focused Infra-Red (IR) laser beam supplies enough localized energy to sinter a fine powdered
polymer into layers of solid. The IR laser scans through the surface of powder in the shape of
each layer of the sliced 3D design (Figure 4). Due to the high energy required to sinter powders,
high-energy CO2/Nd:YAG laser sources are typically used [66]. SLS can be divided into two distinctive
subcategories based on the printing temperature. The first is solid-state sintering, where binding
occurs at a temperature lower than the melting temperature and is usually used with polymers like
polycarbonate. The second is full melting SLS and is used for metals and ceramics where sintering
requires a high temperature above the melting temperature [67]. Printing resolution is affected by
powder particle size and can be controlled by the scan speed and intensity of the laser beam, which also
affects the density and strength of the printed parts [68]. SLS has utilized several printing substrates,
including natural and synthesized polymers like cellulose and polycarbonate, making it compatible
with bioprinting for tissue engineering and cartilage repair [69]. Other printing substrates include
metals, ceramics and polymer/ceramic composites. It is important to note that the printing resolution
of polymers is much lower compared to that of metals or ceramics [70]. Due to the high-energy laser
source required and the substrate specifications, SLS is currently considered to be the most expensive
3D printing technique [71]. Recently, Formlabs introduced Fuse1, a desktop SLS printer that provides
end-users with a more affordable option [72].
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Figure 4. Schematic representation of Selective Laser Sintering, a rolling ball pushes powdered substrate
to the surface of the printing platform. A high-energy focused laser beam scans the surface where it
sinters the powder particles into a solid layer. The printing chamber is sealed under vacuum or inert
gas atmosphere. Reproduced with permission from [70]. Copyright (2015) Springer Nature available
under Creative Commons Attribution.



Micromachines 2018, 9, 394 6 of 22

2.6. Direct Laser Writing (DLW) 3D Lithography

Direct laser writing is an emerging technique for 3D printing of high-resolution structures utilizing
a highly pulsed femtosecond laser beam to cure a photosensitive resin material [73]. Two-photon
absorption and polymerization facilitates fast fabrication of 3D scaffolds with high resolution [74].
This short pulsed laser is suitable for encapsulating living cells and biomaterials in 3D structures as it
does not generate localized overheating or UV toxicity. Due to versatility in substrate materials and the
ability to print high-resolution 3D scaffolds, DLW has been used in piezoelectric scaffolds for in vitro
cell stimulation [74], cartilage tissue engineering [75] and cells and whole organisms containing 3D
structures [76–78]. Due to the high resolution achieved by DLW, it has been utilized in fabrication of
microvalve assembly [79], custom microstructures [80,81] and complex microfluidic constructs [82,83].

2.7. Summary of 3D Printing Techniques

In order to select the appropriate 3D printing technique, the user must have in mind the properties
required for the printed piece. Several criteria, such as flexibility, resolution, complexity, transparency,
thermal and chemical stability, are crucial in determining the best technique. Table 1 summarizes the
3D printing techniques discussed in this section.

Table 1. Summary of 3D printing techniques. FDM: fused deposition modeling, PLA: polylactic
acid, ABS: acrylonitrile butadiene styrene, PC: polycarbonate, DIW: direct ink writing, SLA:
stereolithography, MJM: multijet modeling, SLS: selective laser sintering, DLW: direct laser writing.

3D Printing
Technique Principle Materials Pros Cons Commercially

Available Printers

FDM
[35,36] Filament Extrusion PLA, ABS, PC,

Acrylates
Inexpensive, Fast,
Multiple Materials

Low resolution,
Roughness, Leakage

Makerbot,
Ultimaker Prusa

DIW
[46–48] Ink Extrusion

Alginates, Gelatin,
Hyaluronates,
Epoxy resin

Biocompatible,
High Resolution

Extensive
Optimization

Required

3D-Bioplotter,
BioAssemblyBot

SLA
[54,55]

Light Assisted
Polymerization Acrylates Good Resolution,

Flexibility Single Material Form2, FabPro,
Nobel

MJM
[59,64,65]

Printable
Photocurable Resin

on Support
Multiple Materials Multiple Materials,

High Resolution Expensive ProJet, Multijet

SLS
[67,68]

IR Beam to Sinter
Powdered Polymer

Ceramics, Metals,
Polymers

Good Resolution,
Variety of
Substartes

Expensive, Special
handling Fuse 1, Sintratec

DLW
[73,74]

Two-Photonn
Absorption and
Polymerization

Polymeric Resin
Exceptional
Resolution,

Biocompatible
Bulky Instrument Femtowriter,

Tungsten-LAM

3. Applications of 3D Printing in Diagnostics

3D printing has improved biomedical diagnostics in many ways, specifically with advantages
in ease of onsite design and fabrication, providing researchers with the means to develop or modify
devices and equipment. Here we concentrated on the main areas in which biomedical diagnostic
research has been focused recently.

3.1. 3D-Printed Microfluidics

The most representative use of 3D printing technology in diagnostics is the design and
development of microfluidic devices. The ability to fine-tune geometrically complex structures
at the micrometer level is an attractive feature 3D printing can offer while maintaining low-cost
and time-efficient processing. Several applications that have used 3D-printed microfluidic devices
are discussed.
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3.1.1. Sample Pretreatment

Sample pretreatment is an essential step in many diagnostics, as it helps reduce the complexity of
the matrix and improve the sensitivity of the assay. 3D-printed microfluidics facilitates the integration
of sample pretreatment compartments into real applications including sample injection valves [84,85],
preconcentration [86] and sample reactors [87]. Rafeie et al. utilized 3D printing to fabricate an
ultrafast microfluidic blood plasma separator, an essential sample pretreatment step in most assays
requiring blood samples. They were able to fabricate a spiral microfluidic device (Figure 5A) where
cells would flow close to the inner wall of the channel and concentrate in a narrow band near the
outlet allowing the separation of cell/platelet free plasma. [88]. Lee et al. separated pathogenic
bacteria, E. coli, from milk using a 3D-printed helical channel [89]. They flowed magnetic nanoclusters
through the helical microfluidic channel (Figure 5B) where free magnetic nanoclusters were separated
from bacteria-bound clusters. Yan et al. proposed a portable hand operated microfluidic device
that can specifically separate platelets from peripheral blood mononuclear cells [90]. Their device
is composed of a microfluidic channel equipped with a groove (Figure 5C) that effectively sorts
platelets from blood samples with 100% purity where the user pumps the fluid manually with a
hand-held syringe. While fluctuation in the flow rate did not affect the platelet purity, the percent
recovery of blood mononuclear cells varied. A microfluidic pre-concentrator for detection of E. coli
was also proposed by Park et al. [91]. Magnetic nanoparticles labeled with E. coli-specific antibodies
were allowed to capture bacteria from blood samples. The microfluidic device was equipped with a
magnet to separate (Figure 5D) magnetic nanoparticles from the blood matrix which then transferred
with buffer for adenosine triphosphate (ATP) luminescence analysis. Although these devices are
interesting applications for 3D printing in sample pretreatment, they still require a manual transfer of
the treated samples for detection. This manual transfer can negatively affect the assays sensitivity and
reproducibility required for a good diagnostic approach.
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Figure 5. 3D-printed devices for sample pretreatment. (A) Spiral microfluidic device to separate blood
cells and platelets from plasma, as the cells and platelets tend to flow in a narrowing band near the
inner wall of the spiral channel. Reproduced with permission from [88]. Copyright (2016) Royal
Society of Chemistry. (B) Helical microfluidic device to separate magnetic nanoclusters coupled to
E. coli from free magnetic nanoclusters. Reproduced with permission from [89]. Copyright (2015)
Springer Nature, available under Creative Commons Attribution. (C) A hand-driven microfluidic
channel with a groove-like structure to separate platelets from blood mononuclear cells. Reproduced
with permission from [90] Copyright (2018) Springer Nature. (D) Trapezoidal filter equipped with a
microfluidic channel for the preconcentration of E. coli captured on magnetic beads. Reproduced with
permission from [91] Copyright (2017) Elsevier.
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3.1.2. Microfluidic Flow Devices

Microfluidic devices offer the most promising approach for miniature fluidic devices due to
their ability to handle small sample volumes and assay reagents in a controlled manner. 3D printing
has pushed prototyping and development of microfluidics forward by supporting fast and easy
design with lower production costs compared to traditional microfabrication techniques. 3D printing
also offers an efficient tool to generate geometrically complex microfluidic devices with the aid of
3D design software, thus eliminating the hassle associated with traditional manufacturing tools.
Utilizing these advantages, Oh et al. designed and fabricated a 3D-printed blood viscosity analysis
capillary circuit [92]. They designed a hand-held device that can be operated and read manually
that measures blood viscosity using the same principle as commercial viscometers which are very
expensive and complex (Figure 6A). Surprisingly, their device did not utilize the resolution advances
of 3D printing, but instead they added Tygon tubing, with inner diameter of 0.508 mm, to build
a capillary circuit inside a 3D-printed channel. Santangelo et al. proposed a highly sensitive
3D-printed continuous-flow microfluidic device for quantification of adenosine triphosphate (ATP)
molecules (Figure 6B). The device comprised two main functions: mixing of the ATP sample with the
luminescence reagent mixture (Luciferin/Luciferase mixture) and a detection chamber that brings
the produced luminescence close to a silicon photomultiplier detector [93]. Tang et al. utilized
3D printing to fabricate a unibody ELISA-inspired chemiluminescence assay to detect and quantify
prostate specific antigen (PSA) and platelet factor-4 (PF-4) as cancer biomarker proteins (Figure 6C) [94].
They proposed a design that can reduce the assay time to 30 min while approaching an ultra-low
sensitivity. Their design is divided into three connected compartments: first, a mixing chamber to
accelerate the interaction between reagents; second, a compartment of sample and reagent reservoirs;
and third, a transparent detection compartment. The ability to 3D print transparent objects allowed
them to directly detect the chemiluminescent signal in their device using a CCD camera without
the need for complex processing. Recently, a Lego-like modular microfluidic capillary-driven
3D-printed flow device was introduced by Nie et al. [95]. This approach proposed a strategy to build
microfluidic devices tailored to different applications. Flow in such devices is driven by capillary forces,
with improved flow rate programmability and biocompatibility. They were able to design different
modules assembled in various designs and utilized them in diverse applications, like degradable bone
scaffolds and cell culture. Kadimisetty et al. proposed a 3D-printed microfluidic unit that manually
controls the flow of sample and assay reagents for electrochemiluminescent detection of PSA, PF-4 and
prostate specific membrane antigen (PSMA) in human serum [12]. The printed device had a slot to
incorporate a screen-printed carbon electrode labeled with detection antibodies for each of the selected
protein biomarkers (Figure 6D). Similar 3D-printed microfluidic flow devices were fabricated and
utilized for flow chemical analysis [96], evaluation of blood components [97], electrochemiluminescence
DNA studies [98] and salivary cortisol detection [99]. In these discussed examples, 3D printing was
the key for better diagnostic performance by providing low-cost incorporation of multiple fluidic
functions easily and without the need for laborious manufacturing procedures.
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cents/chip. Another mixing device was introduced by Mattio et al. [106], where a complex valve 
design was fabricated using 3D printing (Figure 7B). The device has eight inlets for sample and 
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Figure 6. 3D-printed microfluidic devices for flow control. (A) Viscometer like 3D-printed syringe
attachment for blood viscosity measurement. Reproduced with permission from [92]. Copyright (2018)
Elsevier. (B) Mixing and detection microfluidic device for luminescent detection of ATP. Reproduced
with permission from [93]. Copyright (2018) Elsevier. (C) Unibody 3D-printed microfluidic chip for
detection of PSA and PF-4. Reproduced with permission from [94]. Copyright (2017) Royal Society of
Chemistry. (D) Manually controlled flow regulatory system for electrochemiluminescence detection of
PSA, PSMA and PF-4. Reproduced with permission from [12]. Copyright (2016) Elsevier.

3.1.3. Microfluidic Mixers

Efficient mixing can be used to improve diagnostic tests by enhancing interaction kinetics between
reactants. Microfluidics can be configured for efficient mixing to enhance chaotic convection in
solutions, increasing the frequency of interactions between solution components [100]. 3D-printed
microfluidic mixers have been successfully used to improve passive mixing enhancing mixing efficiency
that improve diagnostics sensitivity [101]. Devices equipped with 3D-printed mixers have been used
in amperometric quantitation of hydrogen peroxide [102] and DNA assembly [103]. 3D-printed mixers
have been successfully integrated with optical spectroscopic probes including UV/Vis, infrared and
fluorescence probes [104]. Plevniak et al. proposed a 3D-printed microfluidic mixer for diagnosis
of anemia (Figure 7A). In their work, they were able to integrate the device with smartphone-aided
colorimetric signal detection to overcome the distance barrier for efficient screening [105]. The device
can analyze a finger prick of blood (~5 µL) driven by capillary force into the mixing chamber where it
is mixed with an oxidizing agent in less than 1 sec with cost 50 cents/chip. Another mixing device
was introduced by Mattio et al. [106], where a complex valve design was fabricated using 3D printing
(Figure 7B). The device has eight inlets for sample and reagents connected to a valve where samples
and reagents are mixed and transferred to detector. The device was used to quantify Lead and
Cadmium in water samples extracted from soil. One inlet was used for nitric acid required for column
conditioning, other inlets were used for fluorescence reagent, Rhod-5N™, and co-reagents potassium
iodide, N,N,N′,N′-tetrakis-(2-Pyridylmethyl)ethylenediamine (TPEN) and ammonium oxalate.
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Figure 7. 3D-printed microfluidic mixers. (A) Microfluidic mixer for tele-diagnosis of anemia. Less than
one second of mixing required for the blood sample with the oxidizing agent; generated colorimetric
signal detected with a smartphone. Reproduced with permission from [105]. Copyright (2016) AIP
Publishing. (B) A lab on valve complex 3D-printed microfluidic chip for quantification of lead and
cadmium in water samples. Reproduced with permission from [106]. Copyright (2018) Elsevier.

3.1.4. Multifunctional Microfluidics

In the previous examples, 3D printing was utilized to fabricate microfluidics that served
only one purpose. Several researchers have proposed multifunctional 3D-printed microfluidic
devices capable of performing several tasks simultaneously. Kadimisetty et al. introduced a
microfluidic device that can analyze extracts from e-cigarette vapors [17]. The device is equipped
with sample and reagent reservoirs, in addition to an electrochemiluminescence signal detection
compartment (Figure 8A). Another multifunctional microfluidic device was also introduced recently
by Kadimisetty et al. [9], where they were able to extract, concentrate and isothermally amplify
nucleic acids in different bodily fluids as an approach for microfluidic point of care diagnostics
(Figure 8B). The microfluidic device is integrated with a membrane to isolate nucleic acids, then
placed in a chamber where loop mediated isothermal amplification is induced. Finally, the signal is
either detected colorimetrically by a mobile phone or by fluorescence with a portable USB fluorescence
microscope. This demonstrates the promising utility of 3D-printed microfluidic devices in Point-of-care
(POC) applications. Other multifunctional microfluidic devices have been proposed to detect Human
immunodeficiency virus (HIV) antibodies [107], zika virus [108] and glucose [109].
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Figure 8. Multifunctional 3D-printed microfluidics. (A) A 3D-printed chip to detect genotoxicity of
metabolites from e-cigarette extracts. The device has a sample and reagent reservoir compartment
and a detection compartment equipped with platinum counter electrode and Ag/AgCl reference
electrode. Reproduced with permission from [17]. Copyright (2017) American Chemical Society. (B) A
3D-printed microfluidic array for isolation of nucleic acids equipped with a separation membrane and
heating compartment to amplify nucleic acids using loop mediated isothermal amplification that can
be attached to a USB microscope for fluorescence detection. Reproduced with permission from [9].
Copyright (2018) Elsevier.
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3.2. 3D-Printed Sensing Electronics

A number of researchers, especially those employing electrochemistry, are interested in 3D
printing for its ability to design and fabricate sensing electronics. Supported by the versatility of
printable materials, 3D printers have the ability to produce well defined shapes without masking
required in traditional screen printing or photolithography This enables 3D printing to fabricate
integrated electrode biosensors and electronic sensors that can be utilized as personal diagnostics
devices and POC sensors. Li et al. used a home-made 3D printer to print a conductive polymer in
polydimethylsiloxane (PDMS) or EcoflexTM to fabricate stretchable electrode sensors [110] (Figure 9A).
Using this 3D printer, they achieved a resolution of 400 µm with an electrode height of 1 mm and
detected sodium chloride electrochemically with a 1 µM detection limit and good sensitivity and
reproducibility. Another approach for 3D printing electrodes using fused deposition modeling was
proposed by Palenzuela et al. [111]. A commercially available graphene/polylactic acid filament was
used to print electrodes of distinctive shapes designed on CAD software (Figure 9B). The printed
electrodes were characterized using different redox probes and utilized to detect picric acid and
ascorbic acid in solution. In order to fabricate more complex electronics, Leigh et al. used a triple-head
fused deposition modeling printer to impede conductive filament within a nonconductive ABS or PLA
matrix [38]. Using this approach, they were able to fabricate a variety of complex functional objects
like a 3D flex sensor, capacitive buttons and a smart vessel (Figure 9C). The ability of 3D printing
to develop electronic biosensing devices was demonstrated in the fabrication of strain sensors in
biological systems [112,113] and skin-like sensors using thermo-responsive hydrogels [114]. Most of
these applications are directed towards the fabrication of electronic skin, a promising diagnostic tool
that composed of flexible and stretchable sensor that can perform several health monitoring functions
like temperature, glucose, sodium chloride and pressure sensing [115].
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Figure 9. 3D-printed electronics. (A) 3D-printed tactile electrode sensor. Conductive PDMS doped
with carbon nanotubes were printed on PDMS or EcoflexTM to fabricate flexible electrode sensors.
Reproduced with permission from [110]. Copyright (2018) IOP Publishing. (B) A 3D-printed
graphene/polylactic acid electrode with ring or disc shape. Reproduced with permission from [111].
Copyright (2018) American Chemical Society. (C) A 3D-printed conductive carbon black electrode
in different objects from left to right: flexible glove sensor, capacitive buttons and smart vessel.
Reproduced from [38]. Copyright (2012) PLOS available under Creative Commons Attribution.
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3.3. 3D-Printed Supporting Devices

Versatility, ease of design and modification in a fast and economic manner made 3D printing
the method of choice to develop the supporting equipment and pieces required for diagnostics.
Shanmugam et al. used 3D printing to fabricate a custom designed mobile phone microscopy
support unit. This unit perfectly aligns the sample compartment with simple optics and a mobile
phone camera (Figure 10A) [116]. They also proposed a holder that can incorporate a microfluidic
chamber for analyzing flowing samples rather than stationary samples (Figure 10B). Using such
equipment, they were able to perform screening of soil-transmitted parasitic worms in resource-limited
areas. Another supporting device for a paper-based electrochemical sensor was proposed by
Scordo et al. [117]. A reagent-free sensor was proposed to test butyrylcholinesterase activity by
detecting thiocholine. A 3D-printed support equipped with a sample application hole was used to
provide the supporting strength and insulation required for electric connections (Figure 10C). Several
3D-printed supports for mobile phone-assisted diagnostics have been developed [118–120], in addition
to equipment pieces that can lower the cost of current diagnostic strategies [19,121,122] without
compromising performance.
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3.4. 3D-Printed Optics 

Despite the current limitations of the 3D printing of fully transparent surfaces without defects 
that could affect light reflection and transmission, researchers have tried to print functional optical 
components to reduce the cost and improve the performance of diagnostic devices. An interesting 
example from Hinamn et al. describes a 3D-printed prism that can be used for plasmonic sensing [22] 
(Figure 11A). In order to prove functionality, they deposited a layer of gold on one side of the prism 
and used it to detect cholera toxins. They also printed prisms with different geometries and used 
them to monitor nanoparticle growth (Figure 11B). Other researchers used two-photon 
polymerization 3D printing to fabricate high-resolution micro-optic components of optic fiber ends 
[123] and other micro-optics [124]. 3D-printed optical tweezers for sample trapping [125] were also 
developed to aid chemical and spectroscopic sample analysis. Some other 3D-printed fine optics that 
have not been used yet in diagnostics have also been proposed [126,127]. Integrating compact,  
lost-cost, effective optical components is a crucial development for POC diagnostics. These examples 
are good candidates for integration in POC optical diagnostic systems for medical testing [128].  

Figure 10. 3D-printed support devices. (A) Soil analysis system with 3D-printed mobile phone
holder equipped with a glass slide holder where samples were fixed in a lens in between the mobile
camera and the sample holder. This jig has a replaceable filter just above the lens for fluorescence
imaging. Reproduced from [115]. Copyright (2018) PLOS available under Creative Commons
Attribution. (B) Alternate soil analysis system with the same support components, but modified
to hold a microfluidic chip for flowing samples. Reproduced from [115]. Copyright (2018) PLOS
available under Creative Commons Attribution. (C) Support device with sample application hole for
paper-based electrochemical detection of butyrylcholinesterase activity. Reproduced with permission
from [116]. Copyright (2018) Elsevier.

3.4. 3D-Printed Optics

Despite the current limitations of the 3D printing of fully transparent surfaces without defects
that could affect light reflection and transmission, researchers have tried to print functional optical
components to reduce the cost and improve the performance of diagnostic devices. An interesting
example from Hinamn et al. describes a 3D-printed prism that can be used for plasmonic sensing [22]
(Figure 11A). In order to prove functionality, they deposited a layer of gold on one side of the prism
and used it to detect cholera toxins. They also printed prisms with different geometries and used
them to monitor nanoparticle growth (Figure 11B). Other researchers used two-photon polymerization
3D printing to fabricate high-resolution micro-optic components of optic fiber ends [123] and other
micro-optics [124]. 3D-printed optical tweezers for sample trapping [125] were also developed to aid
chemical and spectroscopic sample analysis. Some other 3D-printed fine optics that have not been
used yet in diagnostics have also been proposed [126,127]. Integrating compact, lost-cost, effective
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optical components is a crucial development for POC diagnostics. These examples are good candidates
for integration in POC optical diagnostic systems for medical testing [128].Micromachines 2018, 9, x FOR PEER REVIEW  13 of 21 
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Figure 11. 3D-printed optics. (A) 3D-printed prism polished with simple benchtop polishing decorated
with a layer of gold and used for plasmonic sensing of cholera toxins. Reproduced with permission
from [22]. Copyright (2017) American Chemical Society. (B) 3D-printed prism with a different geometry
than (A) used to monitor nanoparticle growth. Reproduced with permission from [22]. Copyright
(2017) American Chemical Society.

3.5. 3D Bioprinting
The ability to use biocompatible 3D printing substrates allowed the incorporation of biomaterials

in 3D-printed scaffolds. This facilitated the further investigation of multifunctional 3D-printed devices
that could express biomimetic activity in diagnostic applications. A bioinspired microfluidic chip
that can be attached to a whole organ was proposed by Singh et al. [129]. This microfluidic chip was
fabricated based on structured light scanning of a whole organ followed by stereolithographic 3D
printing using the scanned conformation. The as-printed device was attached to porcine kidney for
biomarker extraction and profiling (Figure 12A) without the need for tissue removal. This approach
enables the study of metabolic activities in a living whole organ, paving the way for further
investigation into drug toxicity screening and biomarker discovery.
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Figure 12. 3D bioprinting. (A) 3D-printed perfusion chip for extraction of metabolites and biomarkers
from whole organs. Reproduced with permission from [129]. Copyright (2017) Royal Society of
Chemistry (B) 3D-printed bone-like scaffold carrying bone stromal cells to study their interactions
with breast cancer cells. Reproduced with permission from [34]. Copyright (2016) American
Chemical Society.

A cell-laden bone matrix was proposed by Zhou et al. [34] to study breast cancer metastasis.
They printed a gelatin-based methacrylate hydrogel with incorporated bone stromal cells to study their
interactions with breast cancer cells (Figure 12B). An in vivo alkaline phosphatase testing platform
was introduced by Park et al. [32] using 3D-printed biocompatible calcium-deficient hydroxyapatite.
Although 3D bioprinting developments are mainly used in tissue constructs for therapeutics [130],
they offer great advancement opportunities in the field of diagnostics. These developments include
the immobilization of aptamers on silicon nitride surfaces [131], functionalizing gold electrodes with
bacterial reaction centers [132] and embedding bacteria in 3D constructs [133], all which can be useful
in diagnostic applications.

4. Conclusions and Outlook

Evolving applications and developments suggest that 3D printing will be a major player in
fabricating readily available, cheap, miniaturized, multifunctional and sensitive diagnostic devices.
Researchers from different backgrounds have developed diagnostic assays using this versatile
technology. 3D printing has been used as a tool for device prototyping and development with
photolithography most commonly used because of the availability of materials exhibiting different
properties and high resolution. However, its applications now go well beyond prototyping into
real-world device fabrication technology. That is, the fully optimized device becomes the final
diagnostic tool to be used in hospitals and clinics. In addition, 3D printing is pushing biomedical
diagnostic research towards multifunctional devices that can perform several functions, like protein
and metabolite extraction and detection using optical and electrochemical signal detection.



Micromachines 2018, 9, 394 15 of 22

3D printing technology still needs improvement in order to enhance current diagnostic abilities.
First, simultaneous printing of multiple materials with high resolution and good compatibility
is essential, especially for functional materials like conductive inks and biomimetic substrates.
Printing multiple materials with different physical properties would greatly improve the capabilities of
3D printers to produce more complex functional architectures. The ability to print active biomaterials
like enzymes and proteins in 3D formats without compromising their basic activity is also an important
requirement for better diagnostic devices.

Given the progressive nature of 3D printing, more complex microfluidic architectures can
be expected in the near future. Recent research has focused on the development of microfluidic
pumps [134], automated flow control valves [135], atomic force microscopes [136] and sophisticated
scanning electron microscope sample holders [137]. These are examples of very complex architectures
that cannot be readily approached in the averaged bioanalytical laboratory without 3D printers.
This illustrates again the significance of incorporating 3D printing in bioanalytical and diagnostic
testing research providing a platform for achieving what was believed to be imaginary in the pre-3D
printing era.
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