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Abstract

Motor behavior results in complex exchanges of motor and sensory information across cortical regions. Therefore, fully
understanding the cerebral cortex’s role in motor behavior requires a mesoscopic-level description of the cortical regions
engaged, their functional interactions, and how these functional interactions change with behavioral state. Mesoscopic
Ca2+ imaging through transparent polymer skulls in mice reveals elevated activation of the dorsal cerebral cortex during
locomotion. Using the correlations between the time series of Ca2+ fluorescence from 28 regions (nodes) obtained using
spatial independent component analysis (sICA), we examined the changes in functional connectivity of the cortex from rest
to locomotion with a goal of understanding the changes to the cortical functional state that facilitate locomotion. Both the
transitions from rest to locomotion and from locomotion to rest show marked increases in correlation among most nodes.
However, once a steady state of continued locomotion is reached, many nodes, including primary motor and somatosensory
nodes, show decreases in correlations, while retrosplenial and the most anterior nodes of the secondary motor cortex show
increases. These results highlight the changes in functional connectivity in the cerebral cortex, representing a series of
changes in the cortical state from rest to locomotion and on return to rest.
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Introduction
Locomotion is one of the most fundamental classes of behavior
in the animal kingdom. While much of the cyclic pattern of
locomotion is generated by the central pattern generators in the
spinal cord, the cerebral cortex plays a critical role in monitor-
ing the constantly changing external world and adjusting the
output of central pattern generators accordingly (for reviews,
see Rossignol et al. 2006; Grillner and El Marina 2020). Motor
and parietal cortical areas adjust locomotion in response to

obstacles and sensory stimuli (Drew and Marigold 2015), while
primary sensory cortical computations are altered, presumably
to interpret relevant stimuli more effectively during locomotion
(Schneider 2020). This suggests that the exchange of information
between cortical regions is altered during locomotion, creating
a distinct cortical functional state from rest. Indeed, new wide-
field Ca2+ imaging techniques show that discrete movements
cause widespread activation across the cerebral cortex, includ-
ing regions not directly involved in motor control (Musall et al.
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2019; Steinmetz et al. 2019), and this widespread activity con-
tains mixed representations of sensory, motor, and behavioral
states (Li 2015; Kauvar et al. 2020). This activation occurs in a
wide range of contexts, including in instructed and uninstructed
discrete movements, in locomotion, and across measurement
modalities (Makino et al. 2017; Clancy et al. 2019; Musall et al.
2019; Kauvar et al. 2020). Clearly, no cerebral cortical region
functions independently during movement (Harris 2005; Buzsaki
2010; Carrillo-Reid et al. 2016; Allen et al. 2017; Steinmetz et al.
2019; Musall et al. 2019).

As noted above, primary motor cortex (M1) plays a crucial
role in the accurate placement of limbs during locomotion.
M1 acts as the motor output for the cerebral cortex’s sensory
and navigational computations by enacting required changes in
gait. Lesioning M1 or the corticospinal tract produces locomotor
deficits, including hypermetria and abnormalities in limb tra-
jectory and intralimb coordination (Liddell and Phillips 1944).
Pyramidal neuronal firing in M1 correlates with individual mus-
cle activity during visually guiding locomotion (Drew, Andujar,
et al. 2008a; Drew, Kalaska, et al. 2008b; Drew and Marigold
2015) and modulates when the subject maneuvers around an
obstacle (Stout et al. 2015; Yakovenko and Drew 2015). Moreover,
M1 layer V pyramidal neuron firing is modulated by the level
of visual information available (Armer et al. 2013), emphasiz-
ing the importance of incoming sensory information in even
motor output calculations. Much of this sensory information is
integrated and relayed to M1 by the posterior parietal cortex
(PPC). During locomotion, PPC is thought to integrate sensory
information from multiple modalities (Beloozerova and Sirota
2003), aid in navigation (Shelley and Nitz 2021), and engage in
movement planning (Mao et al. 2020). PPC is necessary for stor-
ing information of an upcoming obstacle (Marigold et al. 2011;
Drew and Marigold 2015; Takakusaki 2017), and in the mouse, the
homologous retrosplenial cortex shows increased correlation
with sensory cortical regions during locomotion (Clancy et al.
2019). In discrete movements, PPC transforms both movement
to sensory information and sensory to movement information
(Buneo and Andersen 2006). PPC therefore appears to be a nec-
essary player in the exchange of information in the cortex during
locomotion.

Locomotion also involves the delivery of motor informa-
tion to primary sensory regions to inform sensory neural
processing. Spontaneous activity in somatosensory cortex
increases during locomotion (Chapin and Woodward 1982;
Favorov et al. 2015; Ayaz et al. 2019), while primary visual
cortex increases in both spontaneous activity and in response
to stimuli (Niell and Stryker 2010; Saleem et al. 2013; Lee
et al. 2014; Dadarlat and Stryker 2017; Dipoppa et al. 2018).
In contrast, primary auditory cortex decreases in activity
(Schneider et al. 2014; Zhou et al. 2014; McGinley et al. 2015;
Schneider and Mooney 2018). Notably, these changes in activity
occur even in absence of a change in sensory stimuli (see
Schneider 2020), and are independent of arousal level (Vinck
et al. 2015), suggesting they are internally driven by the motor
state (see Schneider 2020). It is likely these modulations reflect
the brain’s reprioritizing of incoming stimuli to emphasize
sensory modes that provide the most useful information to an
animal in motion, since performance on visual and auditory
discrimination tasks increases and decreases, respectively
(Schneider et al. 2018; Tang and Higley 2020). Supporting
this, pyramidal neurons in visual cortex that are driven by
locomotion do so most strongly by unexpected stimuli (Keller
et al. 2012). In the rodent, these modulations may come via direct

connections from M1 (Zagha et al. 2013) and from upstream
motor regions, including the secondary motor cortex (M2)
(Schneider et al. 2014; Nelson and Mooney 2016; Leinweber et al.
2017).

In contrast to M1, PPC, and the primary sensory cortices,
comparatively little is known about the functions of upstream
motor cortical regions in locomotion (Drew and Marigold 2015).
Activity in the human supplementary motor cortex is associ-
ated with postural changes that precede gait initiation, con-
sistent with a role in locomotion initiation (Jacobs et al. 2009;
Richard et al. 2017; Tsuru et al. 2020). In the cat, neurons in
the premotor cortex discharge in response to an upcoming
obstacle several steps before the obstacle is reached, indica-
tive of planning gait modifications during locomotion (Naka-
jima et al. 2019). More is known about upstream motor cortical
regions during discrete movements. Multimodal neurons in the
nonhuman primate premotor cortex encode sensory stimuli
occurring close to the body, which is then used to plan dis-
crete movement trajectories executed by the primary motor
cortex (Serino et al. 2011; Avenanti et al. 2012; Di Pellegrino
and Ladavas 2015). This suggests upstream motor regions play
an important role in utilizing sensory information to augment
motor control, perhaps as an intermediate step between PPC
and M1. In addition, since sensory regions may receive modu-
lation from M2 (see above), upstream motor regions may also
contribute to the reverse phenomenon, in which motor activity
augments sensory processing. Interestingly, it has been found
that M2 develops causal influence over activity in much of
the cortex after a mouse learns a discrete motor task (Makino
et al. 2017), and inactivation of M2 reduces cortical responses
to sensory stimuli (Allen et al. 2017). This suggests M2 may
have influence over nonmotor areas across the cerebral cortex.
In rodents, M2 encompasses several subregions, such as the
anterior lateral motor area, rostral forelimb area, and medial
secondary motor cortex (Neafsey and Sievert 1982; Hira et al.
2013; Inagaki et al. 2018; Yang and Kwan 2020). The functions
and boundaries of these subregions in locomotion are not well
established.

Therefore, complex exchanges of information occur across
the cerebral cortex during locomotion, both from sensory to
motor regions and from motor to sensory regions. Fully catego-
rizing the nature and organization of these information flows
requires simultaneous monitoring of neuronal activity across
the cortex. While developed only in the last decade, mesoscopic
Ca2+ imaging is a powerful tool to simultaneously investigate
the interactions among brain regions (for reviews, see Cardin
et al. 2020; Ren and Komiyama 2021). Here, we examine the
interactions among different cortical areas during the transition
from rest to continued, steady-state locomotion using meso-
scopic Ca2+ imaging across the entire dorsal cerebral cortex in
head-fixed mice during spontaneous locomotion on a treadmill.
We found that global increases in activity occur at initiation and
then stabilize to a lower, but still elevated, level when the mouse
reaches steady-state (continued) locomotion. Treadmill veloc-
ity accounts for up to 50% of the fluorescence modulation in
individual regions. Analysis of the fluorescence activity between
regions at different time periods, from rest to locomotion and
back to rest, reveals an evolution in the patterns of cortical func-
tional connectivity, as measured by correlation, centrality, and
Granger causality. While not a measure of anatomical connec-
tivity, functional connectivity is used widely to understand how
brain regions interact during different behaviors (for reviews,
see Bullmore and Sporns 2009; Damoiseaux and Greicius 2009;
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Hutchison et al. 2013; Bastos and Schoffelen 2015; Lurie et al.
2020). We found that steady-state locomotion is characterized
by region-specific changes in region-to-region functional con-
nectivity as compared with rest. In this state, premotor and
retrosplenial regions increase in correlation and centrality, while
primary motor, somatosensory, and parietal regions decrease.
This steady-state pattern is bracketed by a distinct transition
state at the start and termination of locomotion, in which most
regions increase in functional connectivity before readjusting to
the lower connectivity levels of the ongoing locomotion or rest
state. During locomotion, the anterior regions in M2 alone show
increases in outward Granger causality to many other regions,
indicating they may play a role in facilitating motor and sensory
computations across the cerebral cortex.

Materials and Methods
All animal studies were approved by and conducted in confor-
mity with the Institutional Animal Care and Use Committee of
the University of Minnesota.

Animals and Surgical Procedures

Eight (five male, three female) transgenic mice expressing
GCaMP6f primarily in layers II/III and V excitatory pyramidal
neurons of the cerebral cortex (C57BL/6J, Thy1-GCaMP6f Jackson
Laboratories JAX 024339) were used (Dana et al. 2014). To obtain
optical access to a large region of the dorsal cerebral cortex, we
implanted morphologically conformant windows made from
transparent polymer (Ghanbari et al. 2019). Prior to surgery, ani-
mals were administered slow-release buprenorphine (2 mg/kg,
subcutaneous injection) and then anesthetized with isoflurane
(5% induction, 0.5–3% maintenance). The head was shaved
and mounted in a stereotaxic frame that did not damage the
auditory meatus. Depth of anesthesia was monitored by toe
pinch response every 15 min. Isoflurane levels were adjusted
with respiration rate or if a response to pain was registered.
Body temperature was maintained (37◦C) using a feedback-
controlled heating pad, and the corneas were protected with
eye ointment. The surgical procedure began with excision
of the scalp, followed by removal of the fascia so that the
positions of lambda and bregma could be recorded. High-
resolution images with a reference scale were captured both
before and after securing the implant to the skull using a
digital microscope camera (S01-0801A, Science Supply) attached
to the surgical microscope to identify bregma after removing
the skull. A manual craniotomy removed a flap of skull that
matched the geometry of the implant window, leaving the dura
intact. The implant was aligned to the craniotomy and fixed
to the skull using a bone screw (F000CE094, Morris Precision
Screws and Parts) placed 2–3 mm posterior to lambda. The
implant periphery was glued to the skull (Vetbond, 3M) and
cemented in place with dental cement (S380 S&B Metabond,
Parkell Inc.). Following the cure of the cement, a custom, head-
fixing titanium frame was fastened to the implant using three
screws (3/32′′ flat head 0–80). A second application of dental
cement enclosed the fastening screws. After surgery, the mice
recovered to an ambulatory state on a heating pad and then
were returned to a clean home cage. Mice were administered
meloxicam (2 mg/kg, s.c.) for three days and allowed a minimum
of seven days to recover before any experimental procedures
were initiated.

Behavioral Setup

Mice were housed in a reversed light–dark (12 h–12 h) room with
experiments performed during the dark period, which is the
normal waking and high activity phase of the circadian cycle in
mice. After recovery from surgery, polymer window-implanted
mice were habituated to the behavioral setup in increasing time
increments (5 min, 15 min, 40 min, 1 h) before experiments
began. For the behavioral setup, mice were head-fixed on a low-
friction, horizontal disk treadmill that allowed for natural move-
ments such as walking and grooming (Fig. 1A). Once habituated,
animals alternated between periods of awake quiescence (i.e.,
rest) and spontaneous walking, which were used for sponta-
neous locomotion analysis. To offset any potential effects cre-
ated by the mildly curved path of the disk treadmill, a subset (22
of 62) of experimental sessions were recorded with the mouse
head-fixed to the disk pointing in the opposite direction. A high-
speed, IR-sensitive CMOS camera (Flea3, Point Grey) recorded
the limb and body movements at 40 Hz throughout a session,
under diffuse infrared light that did not interfere with the Ca2+
imaging. Behavioral videos were recorded using Spinnaker SDK
software (FLIR Systems).

Locomotion kinematics were calculated from the treadmill
angular displacement as measured by a high-resolution rotary
encoder and recorded by an Arduino Uno microcontroller
(Arduino) at 1 kHz. Velocity was determined and smoothed using
a sliding average (100 ms window, 1-ms step size). Locomotion
was defined as periods of movement in which the wheel reached
a velocity of 0.25 cm/s or greater. Working back from 0.25 cm/s,
movement onset was then defined as the time wheel velocity
first exceeded 0 cm/s, and movement offset was defined as
the time velocity returned to 0 cm/s. Periods in which velocity
remained between −0.25 and 0.05 cm/s were labeled as rest,
while all remaining periods were discarded as “fidgeting” or
backwards walking. During rest, visual observation confirmed
that the mice were awake but quiet. The horizontal and vertical
positions of all four paws were tracked and extracted from
the behavioral camera recordings using DeepLabCut behavior
tracking software (Mathis et al. 2018). The position of the left
forepaw was chosen for further analysis as it was the most
visible in the behavioral camera’s field of view and most
accurately tracked. The other paws were not included in the final
results because of lower quality tracking data and because their
movements are highly correlated to the left forepaw, therefore
not providing additional information to the regression analysis
of the fluorescence data with forepaw velocity (see below). Paw
position was only included in further analysis if the DeepLabCut
tracking was of high quality (confidence >70%). The horizontal
and vertical velocities were calculated as the absolute change
in pixels over time and down sampled to 20 fps to align with
fluorescence data. Total paw velocity was calculated as the
magnitude of the vector sum of the horizontal and vertical
velocities. Note that as the view of the infrared camera was not
perfectly parallel to the main axis of paw motion, this measure of
velocity will not be exact and should be considered an estimate
of paw velocity.

Fluorescence Imaging

Head-fixed mice were placed on the treadmill beneath a Nikon
AZ-100 microscope (Fig. 1A). Single-photon fluorescence imag-
ing was performed using a high-speed, electron multiplying CCD
(Andor, iXon3) controlled with MetaMorph (Molecular Devices
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Figure 1. Mesoscopic cortical recording setup and activity during locomotion. (A) Experimental setup for behavioral and Ca2+ fluorescence imaging of head-fixed
mice. (B) Approximate cortical regions, as defined by the Allen Brain Atlas Common Coordinate Framework (Allen Institute for Brain Science 2015), observable through the
polymer skull (inset) by epifluorescence microscopy. Scale bar = 1 mm. Common Framework colors correspond to cortical regions defined in key. (C) Treadmill velocity
(bottom, blue line) is plotted for an example of spontaneous locomotion in a single mouse. Preprocessed maps of cortical activity (top) shown as mean subtracted %

change in fluorescence (�F/F). For visualization only, frames were spatially filtered with a 3 × 3 moving mean and averaged across five frames. Gray dashed lines link
maps of cortical Ca2+ fluorescence with time points prior to, during, and after locomotion. (D) Markers used to track paw positions during periods of rest and locomotion
for this example data. Blue, front left paw (FL); red, front right paw (FR); orange, hind left paw (HL). (E) Horizontal (top) and vertical (bottom) paw displacements versus
time during rest. (F) Horizontal (top) and vertical (bottom) paw displacements versus time during locomotion. Maximum displacement of each paw (inset, arrows)

shows stereotypic, repeating step-cycles.
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Inc.). A filter set with 480/20 nm excitation, 505 nm dichroic,
and 535/25 nm emission filters was used (Chroma). Using the
variable magnification function, the field-of-view was adjusted
to image the exposed dorsal cortical surface (6.2 mm × 6.2 mm)
with a spatial resolution of 256 × 256 pixels (pixel size of
∼24.2 μm × 24.2 μm). Images were acquired at 20 Hz, 20 ms
exposure, for 5 min (6000 frames), and 12 imaging trials were
obtained in a session (i.e., the number of trials obtained in 1 day).
Time between imaging trials ranged between 1 and 5 min. As
the imaging modality was single-photon, the Ca2+ fluorescence
signals are primarily from the excitatory neuronal activity in
layers II/III (Yizhar et al. 2011; Ma et al. 2016; Waters 2020).

Fluorescence Imaging Analysis

The Ca2+ fluorescence data from each imaging session was spa-
tially registered using affine transformations. Consistent points
on the visible blood vessels in the brain were manually selected
and aligned using the built-in MATLAB function, fitgeotrans, with
the “affine” method selected. All sessions were registered to the
same representative session for a mouse. To remove motion
artifacts within trials, all frames were registered to subpixel
precision using the dftregistration MATLAB function (Guizar-Si-
cairos et al. 2008). To remove artifacts potentially introduced
through increased overall fluorescence or through blood flow
and blood vessel constriction or dilation, masks were drawn
over representative sections of background and blood vessels.
The mean activity was taken from each of these masks, and the
activity of each pixel was regressed against these traces. Only
the residuals from these regressions were kept for further anal-
ysis, thus removing from the fluorescence signals contributions
of background fluorescence and blood flow.

To reduce the dimensions of the data to a manageable level
and decrease noise, we performed spatial independent compo-
nent analysis (sICA) to identify a catalog of functionally relevant
cortical regions. For each mouse, images from all trials were
concatenated and compressed using singular value decompo-
sition (SVD). Only the first 200 singular values were used to
recreate the spatial dimension of the data (Musall et al. 2019).
We computed the first 50 spatial independent components (ICs)
using the Joint Approximation Diagonalization of Eigenmatrices
(JADE) algorithm that decomposes mixed signals into ICs by
minimizing the mutual information with a series of Givens
rotations (Cardoso 1999; Makino et al. 2017; Sahonero-Alvarez
and Calderon 2017). This method provides a blind segmenta-
tion of the cerebral cortex based only on statistical properties
of the Ca2+ activity and does not use any prior assumptions
regarding cerebral function or architecture. Masks of ICs were
made by setting intensity values below 3.5 equal to 0. Masks
covering less than 150 contiguous pixels or that, upon visual
inspection, corresponded to artifacts not associated with corti-
cal activity were discarded. This included vascular artifacts that
survived the regression step above. An IC that included multiple
discontinuous areas, such as homotopic cortical regions, was
separated into individual ICs, and these individual ICs were used
in subsequent analyses. All remaining IC masks were visually
inspected, and any remaining area corresponding to blood ves-
sels that were not separated from cortical activity were manually
identified and removed. To group data across animals, ICs in
each mouse catalog were manually assigned to 1 of 28 nodes of
interest (14 per hemisphere) that were present in the majority
of mice and corresponded, approximately, to known cortical

regions based on the Common Coordinate Framework (Fig. 2)
(Allen Institute for Brain Science 2015).

Behavior Periods

Recordings were divided into six behavior periods, each 3 s
in duration, as defined by treadmill velocity (see Figs 3B and
4A): 1) rest (see definition above); 2) prelocomotion (rest just
prior to locomotion onset; “prep.”); 3) initiation of locomotion
(locomotion just after locomotion onset; “init.”); 4) continued
locomotion (periods of steady-state, continued locomotion out-
side of transition periods; “cont.”); 5) termination of locomotion
(locomotion just prior to locomotion offset; “term.”); and 6) post-
locomotion (rest just after locomotion offset; “after”). Periods of
rest or continued locomotion that lasted longer than 3 s were
divided into multiple 3-s segments, and remainder data at the
end of the period was removed. Periods less than 3 s were also
removed. We chose 3-s periods (60 time points) because this
provides sufficient data to calculate robust Pearson correlations
on the associated fluorescence time series for the functional
connectivity analysis (see below). For the subsequent analyses
(linear regression, functional connectivity, and Granger causal-
ity) of the fluorescence signals, all computations are based on
the data from the individual 3-s periods, followed by averaging
of the results for each behavior period.

Regression of Fluorescence Activity against Treadmill
and Paw Velocity

The masks from the IC catalog for each mouse were used to
extract mean fluorescence time series (based on the prepro-
cessed series of image data) for each 5-min trials. The resulting
time series were linearly detrended and divided into individual
3-s behavior periods. To determine how fluorescence activity
in each node modulated with the parameters of locomotion,
linear models were used to regress the fluorescence activity
of each node to the treadmill velocity and to the velocity of
the left forepaw. Because brain activity and behavior are not
necessarily aligned in time, the velocity of the treadmill and left
paw were shifted in time relative to the fluorescence activity and
included in the regression models as independent predictors
(see Fig. 4). Shifts in time (“lags”) extended from 500 ms before
fluorescence activity to 1.0 s after, in intervals of 100 ms, for a
total of 16 predictors in a regression, plus an intercept predictor.
Note that, since the fluorescence activity is assigned to a specific
3-s behavior period and does not vary in time, velocity from
before or after the behavior period is included in the regression
(i.e., the preparation period fluorescence will be regressed to
treadmill velocity from up to 1.0 s of the initiation period).
Separate regressions were also performed for each lag individ-
ually (Supplementary Fig. 1) to clarify how fluorescence activity
and behavior are related in time. The R2 values and statistical
significance (F-test, α < 0.05) were calculated for each instance
of a behavior. The R2 values were averaged for each behavior
period over all trials and then across animals. All regressions
were calculated using the MATLAB built-in regress function.

Functional Connectivity Analysis

For each 3-s period, the correlation coefficients (ρ) were calcu-
lated between the time series from all catalog ICs to generate
a correlation (i.e., adjacency) matrix, and the matrices obtained
from each 3-s period were averaged to create mean adjacency
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Figure 2. Spatial segmentation of the dorsal cerebral cortex using sICA. (A) Fifteen ICs representing cortical activity from mouse 1 calculated using JADE ICA, before

thresholding and manual artifact removal. (B) IC catalogs of each mouse after thresholding and manual artifact removal. Color corresponds to the node identity
assigned to each one of the 28 common ICs found across mice as shown in C. (C) Locations of the 28 common ICs that define the network nodes observed across mice
mapped onto the Common Coordinate Framework (Allen Institute for Brain Science 2015).

matrices for each behavior period per mouse. To combine data
across animals, the averaged correlations were assigned to the
appropriate corresponding node. If more than one catalog IC had
been assigned to a node, then the correlation values of those
catalog ICs were averaged. The mean adjacency matrices were
then averaged across the subjects. For each pair of regions, the
significant change in correlation of activity between behavior
periods was calculated using custom MATLAB code. The dif-
ference in correlation was compared with a null distribution
of differences from 500 reshufflings of the correlations across
behavior. Significance was determined by α < 0.05 corrected with
the false discovery rate (Genovese et al. 2002).

To further quantify the functional relationships between
brain regions during locomotion, the network centrality of
ICs was calculated on 3-s correlation matrices using MATLAB
code from the Brain Connectivity Toolbox (Rubinov and
Sporns 2010). The eigenvector centrality was calculated from
the correlation adjacency matrices for each 3-s period and
averaged within each mouse before being averaged across
mice. Similar to the comparisons among the correlations
between regions, the difference in eigenvector centrality
for each region from one period to another was compared
with a null distribution of differences from 500 reshufflings
of the centralities across behavior. Again, significance was
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Figure 3. Fluorescence activity (�F/F) within ICs across behavior periods. (A) IC catalog of mouse 3, as shown in Figure 2B. (B) Top: Example fluorescence time series
from each IC for a single bout of locomotion in mouse 3, with the timeline of five of the six behavior periods on top. Bottom: corresponding treadmill activity. (C) Top:

Fluorescence activity from the common set of 28 nodes averaged over all mice and across all instances of each 3-s behavior period (n = number of periods averaged).
Abbreviations: pre., prelocomotion; initiate., initiation of locomotion; continued, continued locomotion; term., termination of locomotion; after, after locomotion.
Bottom: Mean (black lines) and SD (red lines) of treadmill velocity across each behavior time period for all mice.

determined by α < 0.05 corrected with the false discov-
ery rate.

Since it is possible that large, global increases or decreases
in fluorescence activity could increase correlation coefficients
between nodes and obscure more subtle changes in connec-
tivity, an additional analysis was performed in which low-
frequency changes in fluorescence activity were removed using
a 5th order high-pass Butterworth filter with a cutoff filter of
2 Hz. The filter was applied to the mean fluorescence time
series extracted from the IC masks for each mouse. Correlation
and eigenvector centrality calculations were repeated on the
filtered data as described above.

Granger Causality Analysis

Granger causality among the nodes was determined as a mea-
sure of the directional influence between cortical regions during
different behavior periods. We used the Multivariate Granger
Causality MATLAB Toolbox (Barnett and Seth 2014), with the
ordinary least squares model estimation and regression infor-
mation criteria and the Akaike information criterion (AIC) model
order. The model was limited to a maximum of 20 lags. For
each animal, the time series from all instances of a 3-s behavior

period were inputted to the algorithm as separate trials to
generate a single, multivariate causality adjacency matrix for
each mouse. These individual adjacency matrices were aver-
aged across mice as described above. Granger causality esti-
mates the causality between time series in both directions.
In order to have a single directional value representing the
net relationship between two regions, a “total causality” value
was calculated based on the difference in magnitude of the
corresponding causalities. In adjacency matrices, total causal-
ity direction is indicated as a positive or negative value. Sig-
nificant changes in causality between behavior periods were
determined similar to the approach used for significant changes
in correlation and centrality. The difference in causality and
total causality from one period to another between each pair
of ICs was compared with a null distribution of differences
from 500 reshufflings of the causalities across behavior. Sig-
nificance was determined by α < 0.05 corrected with the false
discovery rate.

Hemodynamic Correction

Blood flow increases with neuronal activation, and oxygenated
blood absorbs light with peak absorption at ∼530 nm, decreasing
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Figure 4. Average results of node fluorescence activity regressions against treadmill velocity (A and B) and velocity of the left front paw (C and D). (A) Average R2

of regressions of fluorescence activity against treadmill velocity for each behavior period. (B) Percent of regressions preformed for each 3-s period in A that reach
significance. (C) Average R2 of fluorescence regressions activity against the velocity of the front left paw in each behavior period. (D) Percent of regressions in C that

reach significance.

the duration of the increased GCaMP fluorescence (Ma et al.
2016). Therefore, additional experiments were performed
to evaluate the effects of hemodynamics and other Ca2+-
independent fluorescence changes such as flavoprotein aut-
ofluorescence (Vanni and Murphy 2014; Jacobs et al. 2020), using
three mice (one from the original cohort and two additional).
Data were collected in 5-min stacks, similar to the primary
dataset. Data were collected in 36 stacks across 3 recording
days for mouse #8, 35 stacks across 8 days for mouse #9, and 68
stacks across 12 days for mouse #10, for a total of 11.58 hours of
data. We used dual-wavelength illumination to capture both
Ca2+-dependent (470 nm, blue light) and Ca2+-independent
(405 nm, violet light) GCaMP6f signals on consecutive frames
using a Cairn OptoLED driver (Cairn OptoLED, P1110/002/000;
P1105/405/LED, P1105/470/LED) (Ma et al. 2016; Allen et al. 2017;
Jacobs et al. 2020; Musall et al. 2019; MacDowell and Buschman
2020). An excitation filter (ET480/40, Chroma) was placed in front
of the 470 nm LED and then both light sources were combined
into the parallel light path of a Nikon AZ100M macroscope
through a dichroic mirror (425 nm, Chroma T425lpxr), which was
reflected off a second dichroic (505 nm, Chroma T505pxl) to the
brain. Cortical GCaMP6f emissions then passed back through the

second dichroic into an sCMOS camera (Andor Zyla 4.2 Oxford
Instruments). Exposure times for each frame were 18 ms, synced
via TTL pulses from a Cambridge Electronics 1401 (Cambridge
Electronic Design Limited) acquisition system that controlled
both LEDs and the external trigger of the Andor Zyla 4.2. Frames
were captured at 40 Hz (20 Hz per channel) at 256 × 256 pixels
per image.

Using a previously described correction method (Ma et al.
2016; Jacobs et al. 2020; MacDowell and Buschman 2020), the
Ca2+-independent signals were removed by first calculating the
per-pixel average intensity in both channels and then scaling
the 405-nm channel to a similar level of the 470-nm channel by
multiplying by the ratio of the per-pixel averages. The scaled
405-nm signal was then subtracted from the 470-nm signal
and the resulting signal was then normalized by dividing by
the scaled 405-nm signal. All subsequent processing, including
sICA, functional connectivity, and network measures, was iden-
tical to that preformed on the mono-wavelength, uncorrected
data.

All MATLAB analysis codes for sICA segmentation of
mesoscale Ca2+ imaging, eigenvector centrality, and hemody-
namic correction are available upon request.
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Results
Database

We collected imaging data from eight Thy1-GCaMP6f transgenic
mice. Eight imaging sessions were performed on seven of the
animals, while six imaging sessions were performed on the
remaining animal, resulting in a total of 62 sessions. During each
imaging session, we obtained 60 min of data (12 trials × 5 min
each), resulting in 480 min of imaging in seven mice and 360 min
in one mouse. Mice spent an average of 75.7 ± 10.5% of recording
time at rest, 21.3 ± 10.4% locomoting, 2.2 ± 0.9% fidgeting, and
0.9 ± 0.4% of recording time moving backwards. Across the eight
mice, we fully analyzed a total of 2743 min of rest and 776 min
of spontaneous locomotion.

Changes in Ca2+ Fluorescence during Behavior

Mice were head-fixed over a disk treadmill that allowed for
spontaneous locomotion (Fig. 1A), and wide-field Ca2+ imaging
was performed through an implanted polymer skull (Ghanbari
et al. 2019) (Fig. 1B). Regions across the dorsal cerebral cortex
show dynamic changes activity as the mouse transitions from
rest to locomotion and back to rest (Fig. 1C). For each animal,
spontaneous locomotion exhibits an alternating and rhythmic
step-cycle typical of coordinated walking (Fig. 1D–F).

Functional Segmentation of the Cortex

We segmented cortical activity into functionally distinct regions
based on changes in Ca2+ fluorescence using sICA, a blind source
separation tool commonly used in fMRI studies (Cardoso 1999;
Makino et al. 2017; Sahonero-Alvarez and Calderon 2017). By
minimizing the mutual information between regions to segment
the cortex, sICA does not make assumptions about the under-
lying neuroanatomy of individual animals. The processed fluo-
rescence datasets yield 22–31 spatial ICs per mouse, with 28 ICs
in common across mice. As an example, 15 individual ICs from
a single mouse are shown in Figure 2B. The entire, thresholded
IC catalogs for each animal are shown in Figure 2C. Across the
IC catalogs, 28 ICs were the most consistent and approximately
equivalent across the majority of the 8 mice (Fig. 2B,C). These
28 common ICs were mapped onto the Common Coordinate
Framework (Fig. 2C) and are the nodes in the following cortical
network analyses. Though there are considerable similarities in
the IC catalogs across the eight mice, individual differences in
functional anatomy are preserved with this method.

Fluorescence Activity during Behavioral Transitions

To analyze the functional connectivity of the cortex during
the transitions between rest and locomotion, we extracted the
average of the fluorescence time series from each IC in relation
to the six behavioral periods (see Materials and Methods), as
shown for an individual bout of walking in a mouse (Fig. 3A, B)
and for the average data across all animals (Fig. 3C). At the tran-
sition from rest to walking, most nodes exhibit an increase in
activity prior to locomotion that peaks around locomotion onset
(Fig. 3C). The increases in fluorescence include nodes in primary
motor regions, primary sensory areas (including somatosensory
and visual cortices), and throughout posterior parietal and ret-
rosplenial areas. This agrees with previous reports of motor,
somatosensory, parietal, auditory, retrosplenial, and visual corti-
cal engagement during locomotion (Drew, Kalaska, et al. 2008b;

Niell and Stryker 2010; Petersen et al. 2012; Saleem et al. 2013;
Favorov et al. 2015; Drew and Marigold 2015; Schneider and
Mooney 2018; Clancy et al. 2019) and highlights the involvement
of multiple cerebral cortical regions in processing and integrat-
ing information related to locomotion. In all regions except the
most anterior nodes, this increase begins 784 ± 201 ms before the
onset of locomotion by an increase greater than the mean + 2.5
SD of the fluorescence at rest. Nodes 1 and 2, in contrast,
decrease in mean fluorescence. Throughout locomotion, aver-
age neural activity remains elevated compared with rest and
decreases to baseline levels on return to rest (Fig. 3C). This
pattern of fluorescence changes was present in all mice.

Regressions of Fluorescence Activity to Parameters of
Locomotion

To quantify the degree to which the parameters of locomotion
are represented in the Ca2+ signals, the fluorescence activity of
each node was regressed to treadmill velocity and to the velocity
of the left forepaw, revealing widespread encoding of these
parameters across the cerebral cortex (Fig. 4). Treadmill velocity
explains a large amount of the variability in fluorescence activ-
ity in all nodes during the preparation, initiation, continued, and
termination periods (Fig. 4A). The strongest correlations occur
during the initiation and termination periods, with somewhat
smaller average R2 values during the continued period. Nodes 5
and 6 (in approximately the lateral primary motor cortex) have
the strongest relationship to treadmill velocity (reaching average
R2 > 0.60 during initiation and termination), while the average
R2 of secondary motor cortical nodes 1 and 2 remain somewhat
lower than most other nodes (average R2 < 0.50 during initia-
tion, continued, and termination periods). The percent of the
total number of regressions that reached significance was high-
est for the initiation, continued, and termination periods (F(16,
58) > 1.82, α < 0.05, Fig. 4B). Regressions against individual time
lags of treadmill velocity confirm these findings (F(1, 58) > 4.01,
α < 0.05, Supplementary Fig. 1A,B). In the preparation period,
fluorescence activity in most nodes is significantly correlated
with treadmill velocity, leading by 300–600 ms (reflecting the
large increase in fluorescence 200–300 ms before the increase
in treadmill velocity shown in Fig. 3C). This continues through
the initiation period before, interestingly, decreasing during the
continued period.

The R2 again rises across the cortex in the termination period,
with fluorescence leading the treadmill velocity by 200–500 ms.
Nodes 1 and 2 as well as nodes 17 and 18 have somewhat lower
R2 than others.

The velocity of the left forepaw explains some of the
variability of the fluorescence activity during walking, but less
than the overall treadmill velocity, with a smaller percentage of
the regressions reaching significance (F(16, 58) > 1.82, α < 0.05;
Fig. 4C,D; note the different color axis range compared with A
and B). Like treadmill velocity, there is significant correlation in
the preparation, initiation, and termination periods, with less
during continued locomotion. As expected, nodes 5 and 6 show
some of the strongest correlation to paw velocity. Regressions
against individual time lags show only weak relationships
between fluorescence activity and paw velocity, with the
strongest R2 occurring during the preparation and termination
periods (F(1, 58) > 4.01, α < 0.05; Supplementary Fig. 1C,D).
Regressions were also performed with the addition of the right
forepaw velocity, but there was no notable improvement over the
left paw only in average R2 or in percent significant regressions
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(data not shown). While the low R2 values and fraction of
periods with significant modulation in relation to forepaw
velocity are not unexpected, given the slow time course of Ca2+
signal relative to the step-cycle, the results provide evidence
for widespread step-cycle modulation. We acknowledge that
parameters potentially correlated with locomotion, for example,
effort, are not disambiguated in these analyses and could
contribute to the regression results. Still, these regression
findings highlight that across much of the dorsal cerebral cortex
Ca2+ fluorescence activity modulates with specific aspects of
locomotion.

Correlations between Nodes

To understand the functional coupling among the ICs during
these transitions, we defined six behavioral periods related to
locomotion, each 3 s in length: 1) rest, 2) prelocomotion, 3)
initiation of locomotion, 4) continued locomotion, 5) locomotion
prior to termination, and 6) rest after termination of locomotion
(see Materials and Methods and Fig. 3B,C). As stated earlier,
functional connectivity is a widely used approach across neu-
ral recording modalities to understand the interactions among
regions within the nervous system but does not directly imply
structural connectivity (Bullmore and Sporns 2009; Damoiseaux
and Greicius 2009; Greicius et al. 2009; Hutchison et al. 2013;
Bastos and Schoffelen 2015; Lurie et al. 2020). Within each 3-
s behavior period for a mouse, the Pearson correlation (ρ), as
commonly used in determining functional connectivity, was cal-
culated between the fluorescence time series for each possible
pair of ICs. The resulting correlation coefficients were aver-
aged across all instances of the behavior period in that mouse
and then averaged across mice using the 28 common nodes.
Each node’s mapping to the Common Coordinate Framework is
shown again in Figure 5A. The average correlation coefficients
between nodes were plotted as both correlation matrices and
network graphs (Fig. 5B). Across behavior periods, there is a
prominent intrahemispheric effect, in which nodes of the same
hemisphere are more strongly correlated with each other than
with nodes in the opposite hemisphere (note the “checkerboard”
pattern of the correlation matrices). In addition, nodes that are
anatomically adjacent tend to show high correlation. For exam-
ple, nodes located in the parietal cortex (9–22) exhibit especially
high connectivity, except for nodes 17 and 18 in the lateral
parietal area that are approximately equivalent to the barrel
fields. Similarly, the nodes in the premotor, primary motor,
and visual cortices have high internal functional connectivity
within and across hemispheres. Qualitatively, there is a general
decrease in functional connectivity during movement initiation
that persists through the termination of locomotion, followed by
an increase in correlations after movement.

We used a permutation test with false discovery rate cor-
rection to evaluate the significant changes in mean correla-
tions between nodes, both increases and decreases, between
behavior periods (Fig. 6). Compared with rest, continued loco-
motion exhibits general decreases in correlation with impor-
tant exceptions (Fig. 6A,B). Unexpectedly, nodes within M1 (5–
10) decrease in correlation with most other regions including
with homologous nodes in the contralateral hemisphere (82 of
a possible 162 connections). However, there are some increases
in correlation among nodes within M1 (12 of a possible 30 con-
nections) between intrahemispheric nodes. Also, nodes within
the primary somatosensory cortex exhibit decreases in corre-
lations widely. There are two prominent patterns of increased

functional connectivity. First, nodes (1–4) in M2 show increases
in connectivity with visual and retrosplenial regions as well as
increases with other parietal regions (49 of 108 possible con-
nections). Second, retrosplenial nodes 27 and 28 exhibit large
increases with regions across the cortex (35 of 54 possible con-
nections). Other than for nodes in M1, the changes in correlation
tend to be similar both within and across hemispheres.

Next, we evaluated the significant changes in correlations
across sequential behavior periods. From rest to the prelo-
comotion period, functional connectivity increases between
many nodes, with large increases in the nodes located in visual
and somatosensory regions to those in other regions, with the
strongest increases involving the retrosplenial nodes (Fig. 6Ci).
In contrast, correlations between the anterior M2 nodes and
many other nodes significantly decrease (18 of 54 possible
connections). Nodes within M1 (5 and 6) show decreases in
correlation with somatosensory nodes (9, 10, and 13–16; 8
of 12 possible connections). During initiation of locomotion
compared with prelocomotion, correlations increase between
the two most anterior nodes (1 and 2) in the M2 region and
nodes in nearly all other regions (Fig. 6Cii; 32 of 54 possible
connections). However, the correlations between anterior M2
nodes (1 and 2) and primary motor nodes (5–10) significantly
decrease (8 of 12 possible connections). Correlations decrease
between nodes in most other regions, with primary motor,
somatosensory, and parietal nodes exhibiting large decreases.
As the animal transitions from the initiation of locomotion to
continued locomotion, correlations across much of the dorsal
cortex continue to decrease (Fig. 6Ciii). These patterns reverse as
the animal progresses through the termination of locomotion
and postlocomotion periods to rest (Fig. 6Civ–vi), with striking
increases in functional connectivity across the dorsal cortex
with the termination of locomotion and a widespread decrease
as the animal returns to rest. A similar pattern of significant
changes in network correlations across behavior periods was
observed in individual animals, as shown for two example
mice in Supplementary Figure 2. Again, except for M1 nodes,
the changes in correlation tend to be similar both within and
across hemispheres.

It is possible that the large shift in overall fluorescence
activity occurring during different behavior periods (Fig. 3C, top)
may be the main contributor to the changes in correlations
between nodes and may obscure more subtle changes in
connectivity. To investigate this possibility, we removed these
low-frequency fluorescence shifts by applying a high-pass
filter with a 2Hz cutoff frequency to the average IC time
series extracted from the fluorescence images from each
individual trial (Supplementary Fig. 3). Filtering eliminates
the large magnitude changes in fluorescence at the start
and the termination of locomotion, as shown for a single
instance of walking (Supplementary Fig. 3A; the same instance
of walking shown unfiltered in Fig. 3B) and in the aver-
aged fluorescence time series across all instances of each
behavior period (Supplementary Fig. 3B). Notably, the patterns
of changes in correlations across behavior periods remain
intact, as observed in the adjacency matrices and network
diagrams (Supplementary Fig. 3C–F), both for the comparison
of rest versus continued locomotion (Supplementary Fig. 3C,E)
and for comparisons between adjacent behavior periods
(Supplementary Fig. 3D,F). Therefore, global changes in fluo-
rescence amplitude do not dictate the dynamic patterns of
functional connectivity that occur from rest to locomotion and
with return to rest.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab373#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab373#supplementary-data
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Figure 5. Functional connectivity among the common cortical nodes during behavior periods across all mice. (A) Diagram of nodes common to the catalog ICs across
mice mapped onto the Common Coordinate Framework (Allen Institute for Brain Science 2015). (B) Top: Averaged correlation matrices between nodes across all mice.

Bottom: Graphical representation of the correlation matrices shown above superimposed on the dorsal cortical surface. Width of connecting edges indicates the
Pearson correlation coefficient (ρ ≥ 0.25). The size of the node reflects the strength; that is, the sum of all correlations with that node. n = number of 3-s time periods
included in each behavior period across animals.

Figure 6. Significant changes in correlations between nodes across behavior periods. (A) Matrix of significant changes in correlation between nodes comparing rest
to continued locomotion (α < 0.05, permutation test with false discovery rate correction). (B) Significant increases (left) and decreases (right) from rest to continued

locomotion shown in graph representations, superimposed on the cortical surface. The size of each node reflects the magnitude of significant increases or decreases,
respectively, for that region. (C) Significant changes in correlations across sequential behavior periods, calculated and displayed as in A and B. Directly above each
correlation matrix, the gray bracket indicates the adjacent behavior periods being compared (i–vi).
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Figure 7. Eigenvector centrality across behavior periods. (A) Average eigenvector centrality for each node during the behavior periods, across mice. (B) Significant
change in centrality comparing rest to continued locomotion across all mice. Size of circles indicate magnitude of the change, while circle color depicts the direction
of significant change (red = increase, blue = decrease, black = not significant; α < 0.05, permutation distribution with false discovery rate). (C) Significant change in

centrality across sequential behavior periods (shaded timeline on top). As in Figure 6, gray bracket indicates the adjacent behavior periods being compared (i–vi). Color
and size of circles as described in B.

Eigenvector Centrality during Behavioral Transitions

To further characterize the changes in network structure, we
calculated the mean eigenvector centrality of nodes within each
behavior period and compared how centrality changed across
periods. Eigenvector centrality provides a measure of how tightly
connected the behavior of a node is to all other nodes in the
network (Rubinov and Sporns 2010). The average eigenvector
centrality across all mice, for each node and behavioral period
(Fig. 7A), shows the overall importance of different nodes. For
example, somatosensory and parietal nodes show high central-
ity during rest, preparation, and after periods. During locomo-
tion periods, the centrality of these regions generally decreases
with other nodes increasing in importance. Therefore, we deter-
mined the significant changes in centrality from rest to contin-
ued locomotion and between adjacent period by calculating a
permutation distribution with false discovery rate correction.

Comparing rest with continued locomotion (Fig. 7B) reveals
robust changes in centrality that confirm the changes observed
in the correlations (Fig. 6B). In M2, nodes 1–4, 11, and 12 increase
in eigenvector centrality, with the largest in nodes 1–4. Nodes
5–8 in M1 exhibit a mixture of smaller increases and larger
decreases. Centrality decreases in somatosensory and more
posterior parietal nodes (9–22), with the largest decreases
occurring in somatosensory cortex nodes (9, 15, 10, and 16).
Nodes 23–25 in the visual areas and 27–28 in retrosplenial

areas increase in centrality when comparing rest to continued
locomotion.

Comparing adjacent behavior periods, there are significant
increases in centrality of visual and retrosplenial nodes as
the animal transitions from rest to prelocomotion (Fig. 7Ci).
Meanwhile, increases in premotor nodes (1–4) and decreases
in somatosensory and middle parietal nodes (9–22) do not
occur until the initiation of locomotion (Fig. 7Cii). The centrality
changes reverse during the transition from the termination
of locomotion to postlocomotion with large increases in
somatosensory and parietal nodes and decreases in premotor,
retrosplenial, and visual nodes (Fig. 7Cv). This is followed by
more general decreases in centrality as the animal returns to
rest (Fig. 7Cvi). As observed for significant changes in correlation,
the changes in eigenvector centrality are also preserved
following high-pass filtering (Supplementary Fig. 3F,G) and
demonstrate centrality is independent of the large fluorescence
shifts that occur during locomotion. These changes in network
centrality highlight the dynamic roles played by different func-
tional regions and their interactions between behavior periods.

Granger Causality

The Granger causalities between all nodes were calculated to
estimate the directionality of the functional connectivity during
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Figure 8. Granger causality between nodes during the behavior periods. In these plots, rows represent the TO node Granger causality, and columns represent the FROM

node causality. (A) Average Grainger causality between nodes in both directions for each period, across all mice. (B) Total Granger causality between nodes determined
by subtracting the upper triangle of the matrix from the lower triangle. Red arrows highlight the outward causality of anterior M2 nodes (nodes 1–2) during locomotion.

different behavior periods (Fig. 8A). Granger causality was cal-
culated for each direction of every possible pair of nodes (i.e.,
time series X Granger causing time series Y as well as time
series Y Granger causing time series X), plotting the resultant
causality in both directions (Fig. 8A). There is a tendency for
certain nodes, for example, 1 and 4 in the premotor region
and 26 in the visual region, to causally impact several other
nodes in the cortex. Conversely, some nodes receive input from
many others. Qualitatively, causality increases from rest to pre-
locomotion, continues to increase during continued locomotion
and increases even further at the termination of locomotion
(Fig. 8A).

To simplify, we determined a single total causality vector
between pairs by summing the causalities between each pair
of nodes. The magnitude and direction (positive or negative)
of the total Granger causality “to” and “from” each node is
shown in Figure 8B. During all behavior periods, visual nodes
(23–26) exert greater Granger causality (positive values) on other
nodes than others exert back on visual nodes (Fig. 8Bi–vi). A
similar pattern is observed for nodes 17 and 18, which corre-
spond approximately to the barrel fields, suggesting these two
sensory systems exert net positive Granger causality on many
other cortical areas. Most notably, however, nodes 1 and 2 in
the anterior M2 area exert Granger causality on many other
nodes beginning at the initiation of locomotion (Fig. 8Biii, 44 of 54
possible connections) and persisting through continued (44 of 54
possible connections) and termination (47 of 54 possible connec-
tions, Fig. 8Biv,v), suggesting the premotor cortices play causal
roles from the start to end of locomotion (see red arrows in
Fig. 8Biii–v).

We calculated the significant change in Granger causality
between adjacent behavior periods for both directed (Fig. 9A)
and total causality (Fig. 9B). Comparing rest to locomotion, the
changes include scattered increased influence among nodes
located in premotor, primary motor, and somatosensory regions
(Fig. 9A,C). Most of the significant changes between behavior
periods occur across locomotion onset and across locomotion

offset. The most prominent changes in Granger causality are
increases from the anterior M2 nodes, from preparation to ini-
tiation of locomotion (Fig. 9C,D; 10 of 54 possible connections
in C, 19 of 54 in D; see red arrows). This finding supports the
average causalities (Fig. 8A) as well as the increases in correla-
tion (Fig. 6Cii) and centrality (Fig. 7Cii) and suggests that anterior
M2 nodes begin exerting a causal influence on other cerebral
cortical regions at the start of locomotion and continue to do so
until locomotion ends.

Hemodynamic Contributions

We imaged three mice using dual-wavelength imaging to
correct for Ca2+-independent changes in fluorescence to
remove the hemodynamic component from the GCaMP signal
(see Materials and Methods). The IC catalogs were similar to
those in the uncorrected dataset and were grouped into the
same 28 common nodes (Supplementary Fig. 4A,B). The overall
patterns of changes in fluorescence across the behavior periods
(Supplementary Fig. 4C) were similar to those observed in the
original eight mice (see Fig. 3C). Because less data were used,
these catalogs included fewer ICs than were found in the
primary dataset, although all but node 11 were represented
in the three mice at least once. As in the primary dataset,
anterior M2 nodes increased in correlation with the majority of
more posterior nodes comparing rest to continued locomotion
(Supplementary Fig. 4D,F, left). These increases occurred at
the onset of locomotion, from the preparation to initiation
periods (Supplementary Fig. 4Eii,Gii), and then the correlations
decreased to rest levels at the offset of locomotion, from
termination to after periods (Supplementary Fig. 4Ev). These
changes in correlation were confirmed in the changes in
centrality (Supplementary Fig. 4G). These data demonstrate that
the blood flow had minimal effects on the sICA segmentation
and network connectivity during the transitions between rest
and locomotion.
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Figure 9. Significant changes in Granger causality between nodes across behavior periods. In these plots, rows represent the TO node Granger causality, and columns
represent the FROM node causality. (A) Significant change in Granger causality in both possible directions from rest to continued locomotion. (B) Significant change in
total Granger causality, as shown in Figure 8B, from rest to continued locomotion. (C) Significant change in Granger causality across sequential behavior periods. (D)
Significant change in total Granger causality across sequential behavior periods. (Significance based on α < 0.05 using permutation distribution with false discovery

rate). Red arrows highlight the significant increase in outward causality of anterior M2 nodes (nodes 1–2) at the onset of locomotion. Gray bracket indicates the adjacent
behavior periods being compared (i–vi) in C and D.

Discussion
We performed wide-field Ca2+ imaging of the mouse cerebral
cortex during locomotion and studied the functional connectiv-
ity between cortical regions. The results confirm previous stud-
ies demonstrating that locomotion activates many regions in
the cerebral cortex (Niell and Stryker 2010; Ghose 2015; Dadarlat
and Stryker 2017). Four key findings resulted from this study.
First, the cerebral cortex enters a new state during locomotion
characterized by a distinct pattern of interregional functional
correlations and elevated activity compared with rest. This loco-
motion state is bracketed by transition states that occur at both
locomotion onset and offset. Second, correlations and centrality
of nodes in the primary motor and somatosensory cortices
decrease during locomotion compared with rest. Third, there is
an increase in correlations and centrality of the retrosplenial
cortex during locomotion. Fourth, the correlations, centrality,
and the outward causality of nodes in the anterior M2 region
increase at the onset of locomotion. Notably these changes occur
in this relatively simple locomotion task that does not overtly

require the specialized functions of the motor or retrosplenial
cortices, such as spatial navigation, precise limb placement, or
obstacle avoidance. However, others have also reported activa-
tion changes in primary sensory cortices in similarly simple
walking tasks (Niell and Stryker 2010; Dadarlat and Stryker 2017;
Tang and Higley 2020).

Results Are Limited to Layers II/III

As the recordings are based on single-photon, mesoscopic imag-
ing in this line of transgenic GCaMP6f mice, the functional con-
nectivity patterns primarily reflect excitatory neuronal activity
in cortical layers II/III. Cortical layers II/III provide intrahemi-
spheric projections throughout the cortex and interhemispheric
projection via callosal axons to equivalent locations in the con-
tralateral cortex (Wahl et al. 2007; Wahl et al. 2009). Therefore,
the Ca2+ signals recorded are excellent candidates to assess
cortico-cortical interactions. However, the results do not provide
insights into the pattern of connectivity or cortical state present
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in deeper layer V. Studies suggest layer-specific modulation, for
example, locomotion-induced firing in V1 occurs in all cortical
layers, while retrosplenial locomotion-induced firing may be
limited to more superficial layers (Clancy et al. 2019). In M1,
layer II/III may show distinct activation patterns from layer V
during visually guided locomotion (Heindorf et al. 2018). Addi-
tional work is needed to fully understand how connectivity and
cortical state vary with cortical layers.

Cortical Segmentation with sICA

We assumed that the cerebral cortex is composed of modules
or clusters of functionally similar neurons, that these modules
are functionally connected in an ordered manner to other mod-
ules, and that they have a relatively specific role in behavior.
In the present study, sICA uncovered 22–31 independent spa-
tial regions per mouse that we used to functionally segment
the cerebral cortex into independent functional modules and
characterize the changes in Ca2+ epifluorescence. A previous
implementation of sICA using JADE (Makino et al. 2017) obtained
16 ICs of approximately similar size and locations across the
dorsal cerebral cortex. Our greater number of ICs can likely be
attributed to the higher sensitivity of imaging through transpar-
ent polymer windows as opposed to thinned bone, as well as
differences in data collection and analyses. The minimization of
mutual information between regions by sICA provides a comple-
mentary approach to that provided by the Common Coordinate
Framework (Allen Institute for Brain Science 2015). Here, we elected
to determine the ICs independently and then align the ICs
with the major cortical divisions in the mouse. Our implemen-
tation of sICA was performed over all available data from a
given mouse, which allowed for determination of the ICs over
a large data base (432 000–576 000 images). Other segmentation
approaches used with wide-field Ca2+ imaging include seed-
based correlation (Vanni et al. 2017), seed-correlation colocal-
ized with tract-tracing (Mohajerani et al. 2013), spike-triggered
mapping (Xiao et al. 2017), and nonnegative matrix factorization
(MacDowell and Buschman 2020). While there have been few
direct comparisons of these methods in Ca2+ imaging, differ-
ent analytical approaches will likely provide complementary
information.

Hemodynamic Correction

While the analysis removed as much blood flow contribution to
the signal as possible by regressing out fluorescence activity cor-
related with blood vessels, some fluorescence changes resulting
from hemodynamic activity may have remained. In a group of
three animals, we determined the influence of increased blood
flow on the spatial ICs and the functional connectivity network,
using dual-wavelength imaging (470 and 405 nm) to remove
Ca2+-independent changes (Vanni and Murphy 2014; Jacobs et al.
2020). Removing the Ca2+-independent signal produced IC cat-
alogs similar to the catalogs produced from the uncorrected
signal. Furthermore, the functional connectivity analyses on
hemodynamic corrected signals revealed connectivity changes
across behavior periods similar to those found with uncorrected
signals. Therefore, the additional dual-wavelength results agree
with previous reports that the hemodynamic contribution to
GCaMP6 Ca2+ response is limited (Vanni and Murphy 2014;
Makino et al. 2017; Allen et al. 2017; Jacobs et al. 2020; Musall
et al. 2019).

Modulation with Treadmill Velocity and Step-Cycle

The fluorescence activity is significantly modulated with tread-
mill velocity, with the strongest modulation during the initiation
and termination of locomotion. While nodes in the primary
motor cortex exhibit the highest R2 values, we would empha-
size that treadmill velocity is widely represented across the
dorsal cerebral cortex. The regression results reveal similar,
although less robust, modulation with paw velocity. The mod-
ulation with treadmill velocity and forepaw step-cycle demon-
strates locomotion-specific cerebral cortical neuronal activity.
That locomotion speed contributes more to the variation in Ca2+
fluorescence signal than the movement of individual limbs is
due, in part, to the slow temporal dynamics of the Ca2+ signal,
which will not be able to reflect the faster dynamics of the step-
cycle. However, our results match well with studies showing
strong correlation between overall locomotion speed and the
firing rate of individual V1 neurons (Vinck et al. 2015; Clancy
et al. 2019).

Continued Locomotion Is Characterized by a Distinct
Cortical State

Continued locomotion shows elevated fluorescence activity and
a distinct state of cerebral cortical activity and functional con-
nectivity as compared with rest. In addition, there exists a tran-
sition state from rest to locomotion as well as from locomotion
back to rest that shows a generalized increase in cortical activity
and functional connectivity. This pattern of overall activation
is similar to the pattern shown by the firing rate of V1 and
retrosplenial neurons in locomotion (Vinck et al. 2015; Clancy
et al. 2019). The intracortical functional connectivity features of
these states as compared with rest are discussed below. While
our techniques do not differentiate between individual aspects
of locomotor behavior, such as step-cycle, whisking, and arousal,
we suggest that all these aspects are components of the natural
locomotor state.

These results have implications for how locomotion can be
disrupted in disease. Freezing of gait is a disabling symptom
of severe Parkinson’s disease, in which patients are suddenly
and briefly unable to take a step during walking (for review,
see Nutt et al. 2011). Freezing most often occurs when a patient
initiates walking or when gait must be altered in response to
an external cue and is less likely when the patient is walking
continuously. The transient nature of these episodes suggests
a temporary disruption to the communication dynamics of the
locomotion circuitry (Nutt et al. 2011) that is specific to adjusting
gait but not continued locomotion. In Parkinson patients, freez-
ing may be precipitated by sudden disruptions to locomotion
network connectivity, including between cortical motor areas
and subcortical regions (Fling et al. 2014; Pozzi et al. 2019). In the
context of the present results, the human studies reinforce that
the transition states observed at locomotion onset and offset
are distinct from the continued locomotion cortical state and
suggest that disruption of these transition states manifests as
freezing of gait.

Decrease in Connectivity of Primary Motor and
Somatosensory Regions

Primary motor and somatosensory nodes decrease in Pearson
correlation (ρ) with nodes in other regions, both at the onset
and throughout locomotion. These nodes show increased con-
nectivity to other M1 nodes in the same hemisphere, but not to
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those in the contralateral M1. These M1 nodes show somewhat
higher correlation with treadmill and paw velocity than other
nodes (Fig. 4), suggesting some of the decrease in functional
connectivity is due to limb –movement–related activity. It would
have been reasonable to expect an increased connectivity in
M1 nodes to other regions, since gait modulation inherently
requires receiving upstream sensory inputs of those obstacles
(Drew and Marigold 2015). Further complicating this finding, the
results of two-photon Ca2+ imaging of M1 layers II/III suggest
these neurons integrate sensory information from other cortical
regions to send to layer V (Heindorf et al. 2018), which does
not agree with the decrease in correlation with sensory regions
found here. Additional investigation into the role of layers II/III
of M1 in locomotion is needed to clarify these seemingly con-
flicting findings.

Lesioning the corticospinal tract or M1 produces locomotor
deficits, including hypermetria and abnormalities in limb
trajectory and intralimb coordination (Liddell and Phillips 1944).
Pyramidal neuronal firing in M1 correlates with individual
muscle activity during locomotion (Drew, Andujar, et al. 2008a;
Drew, Kalaska, et al. 2008b; Drew and Marigold 2015) and
modulates when the subject maneuvers around an obstacle,
suggesting M1 directly controls locomotion and influences the
central motor pattern. Interestingly, the decrease in connectivity
seen here begins before the onset of locomotion, which agrees
with the long-known finding that M1 is activated during
movement preparation (Tanji and Evarts 1976; Georgopoulos
et al. 1989; Churchland et al. 2010).

Increase in Connectivity of Retrosplenial Regions

In contrast to primary motor cortical nodes, retrosplenial nodes
display increased functional connectivity with the majority
of the dorsal cerebral cortex and across both hemispheres.
These increases in connectivity occur when comparing rest
with preparation and rest with continued locomotion and
agree with previous findings showing increased retrosplenial
connectivity during locomotion (Clancy et al. 2019). This
corroborates previous evidence that the retrosplenial region is
approximately equivalent to PPC in carnivores and primates and
is engaged in integrating the sensory and spatial information
needed to accurately and safely navigate the environment
during locomotion (Drew and Marigold 2015; Takakusaki 2017).
For example, animals with lesioned PPCs are unable to retain
information of obstacles once the obstacle passes out of the
visual field (Lajoie et al. 2010). The largest increase occurs
before the onset of locomotion, as would be expected if the
retrosplenial region is tasked with assessing the environment
for navigational routes or potential obstacles at the start of
locomotion. As there was no change in the magnitude or
direction of Granger causality, the ratio of information being
sent and received by retrosplenial nodes does not change from
rest to locomotion.

Increase in Connectivity and Outward Causality of
Anterior M2 Regions

Our final and perhaps most notable finding is the increase in
functional connectivity of the most anterior nodes of M2. The
increase first occurs at the onset of locomotion and remains
elevated through the offset. These anterior M2 nodes increase in
correlation with somatosensory, parietal, visual, and retrosple-
nial regions of both hemispheres during locomotion and show

a significant increase in outward Granger causality to these
regions. While we acknowledge that Granger causality is not a
direct measure of cause-and-effect, it is a valuable tool for esti-
mating directed connectivity between brain regions (Seth et al.
2015; Barnett et al. 2018). Our results corroborate the observed
increases in correlation between V1 and M2 during locomotion
in the mouse (Clancy et al. 2019) and suggest the more rostral
regions of the premotor cortex provide an organizing signal to
the rest of the cerebral cortex during locomotion. This agrees
with previous studies that show the premotor cortex modulates
individual primary sensory regions (Schneider et al. 2014; Nelson
and Mooney 2016; Leinweber et al. 2017).

The function of the premotor cortex in locomotion is not
well understood (Drew and Marigold 2015), but it is known to
be essential in several discrete motor behaviors. In mice, these
behaviors include licking (Allen et al. 2017; Chen et al. 2017;
Inagaki et al. 2018) and lever pressing (Makino et al. 2017). In
such tasks, M2 activity can be used to causally predict activity
in other dorsal cortical regions during movement (Makino et al.
2017), and inactivation of M2 represses cortex-wide responses to
sensory stimuli (Allen et al. 2017), suggesting M2 has widespread
influence over the activity of the cerebral cortex. Furthermore,
premotor cortex is widely anatomically connected, receiving
inputs from the somatosensory, auditory, posterior parietal, and
orbital cortices, and projecting to primary motor, somatosen-
sory, parietal, and retrosplenial areas (Yamawaki et al. 2016;
Zhang et al. 2016; Leinweber et al. 2017; Lin et al. 2018). During
locomotion, M2 may provide cortical sensory regions signals
needed for proper processing of sensory inputs. While subcorti-
cal structures, such as the basal forebrain, contribute activating
inputs to sensory regions via cholinergic projections (Fu et al.
2014; Lee et al. 2014; Nelson and Mooney 2016), modulation in
visual and auditory cortices occurs most strongly in pyramidal
neurons of layers II/III, suggesting a cortical origin of motor-
driven changes (Polack et al. 2013; Zhou et al. 2014). In rodents,
this modulation may come directly from M2 efferents (Schneider
et al. 2014; Nelson and Mooney 2016; Leinweber et al. 2017).

In the primate, the premotor cortex is involved in trans-
forming sensory information for movement planning in discrete
movements (Di Pellegrino and Ladavas 2015). Multimodal neu-
rons in the ventral premotor cortex map visual and auditory
stimuli in spatial relation to the space immediately surround-
ing the body, or “peripersonal space” (Rizzolatti et al. 1981a,
1981b; Graziano et al. 1994; Fogassi et al. 1996). Peripersonal
space is important for both motor and cognitive computations
(Serino 2019), and inhibiting the premotor cortex impairs reac-
tion times to stimuli in peripersonal space (Serino et al. 2011).
Stimuli within peripersonal space modulate the motor system,
including decreasing the excitability of M1 (Makin et al. 2009;
Serino et al. 2009), and the premotor cortex is necessary for this
modulation (Avenanti et al. 2012). During locomotion, the rep-
resentation of physical distance from the body expands during
walking, even when other sensory cues are stationary (Noel et al.
2015). Moreover, locomotive behavior is facilitated when salient
stimuli appear far away rather than up close (Di Marco et al.
2019). These effects likely improve obstacle avoidance during
locomotion (Noel et al. 2015) and/or promote movement toward
a salient stimulus (Di Marco et al. 2019).
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Supplementary material can be found at Cerebral Cortex online.
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