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Abstract

The revolution in fluorescence microscopy enables sub-diffraction-limit (“superresolution”) localization of hundreds
or thousands of copies of two differently labeled proteins in the same live cell. In typical experiments, fluorescence
from the entire three-dimensional (3D) cell body is projected along the z-axis of the microscope to form a 2D image at
the camera plane. For imaging of two different species, here denoted “red” and “green”, a significant biological
question is the extent to which the red and green spatial distributions are positively correlated, anti-correlated, or
uncorrelated. A commonly used statistic for assessing the degree of linear correlation between two image matrices R
and G is the Pearson Correlation Coefficient (PCC). PCC should vary from − 1 (perfect anti-correlation) to 0 (no linear
correlation) to + 1 (perfect positive correlation). However, in the special case of spherocylindrical bacterial cells such as
E. coli or B. subtilis, we show that the PCC fails both qualitatively and quantitatively. PCC returns the same + 1 value for
2D projections of distributions that are either perfectly correlated in 3D or completely uncorrelated in 3D. The PCC also
systematically underestimates the degree of anti-correlation between the projections of two perfectly anti-correlated
3D distributions. The problem is that the projection of a random spatial distribution within the 3D spherocylinder is
non-random in 2D, whereas PCC compares every matrix element of R or G with the constant mean value R or G. We
propose a modified Pearson Correlation Coefficient (MPCC) that corrects this problem for spherocylindrical cell
geometry by using the proper reference matrix for comparison with R and G. Correct behavior of MPCC is confirmed
for a variety of numerical simulations and on experimental distributions of HU and RNA polymerase in live E. coli cells.
The MPCC concept should be generalizable to other cell shapes.

Keywords: Pearson correlation coefficient, Two color imaging, Fluorescence microscopy, Superresolution imaging,
Bacterial imaging

Background
In widefield and superresolution fluorescence microscopy of
eukaryotic and prokaryotic cells, the fluorescent species oc-
cupy a three-dimensional (3D) volume. In typical usage, the
laser illuminates the entire thickness of the cell (“epi illumin-
ation”). The microscope then projects fluorescence from a
3D source along the z axis to form a two-dimensional (2D)
image at the xy camera plane. For two-color imaging of two
different species, herein called the “red species” and the
“green species”, an important biological question is the de-
gree to which the red and green spatial distributions are posi-
tively correlated, anti-correlated, or uncorrelated with each
other. Positive correlation may suggest binding to each other

or to a common cytoplasmic element such as a membrane
or the chromosomal DNA. It may also suggest common sites
of production, action, or degradation. Negative correlation
may suggest a physical or biochemical mechanism that
sequesters red and green species from each other [1, 2]. A
number of different procedures for assessing co-localization
between two images are described in a recent review [3].
For super-resolution images, a family of point pattern

analysis methods evaluates the spatial co-distribution of
points on very short (sub-100 nm) length scales. These in-
clude Ripley’s K test [4–6] and a variety of cross-correlation
methods [7–10]. These procedures provide a function of r
(the inter-particle separation distance) that describes the
spatial distribution of red and green molecules with respect
to each other. Such methods take advantage of the
sub-pixel accuracy and allow determination of whether the
red and green proteins are dispersed, clustered, or

* Correspondence: smohapa2@jhmi.edu
1Department of Chemistry, University of Wisconsin-Madison, Madison, WI
53706, USA
2Present Address: Department of Biophysics and Biophysical Chemistry,
Johns Hopkins School of Medicine, Baltimore 21205, USA

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Mohapatra and Weisshaar BMC Bioinformatics          (2018) 19:428 
https://doi.org/10.1186/s12859-018-2444-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2444-3&domain=pdf
mailto:smohapa2@jhmi.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


randomly distributed within the region of interest. The data
density must be commensurate with the length scale of
interest, i.e., high data density is required to obtain informa-
tion on the sub-100 nm scale.
For some time now, we have been interested in the de-

gree to which ribosomes and the chromosomal DNA are
spatially segregated from each other on a length scale of
~ 200 nm and longer in E. coli bacterial cells growing ex-
ponentially under different conditions [11, 12]. The cells
are spherocylindrical, typically of length 3–5 μm and
diameter ~ 1 μm or smaller. In rapidly growing cells, the
chromosomal DNA has segregated into two nucleoid
lobes that interleave three ribosome-rich regions [11],
each of whose size is of the order of 0.5–1.0 μm. For this
problem, sub-pixel resolution is not needed. In small
bacterial cells, the coordinate based cross-correlation
methods provide readily interpretable information only
for r substantially smaller than the shortest cell dimen-
sion. Accordingly, we have chosen to use superresolu-
tion imaging to minimize the blurring inherent in
widefield microscopy. We subsequently pixelate the red
and green images and calculate a modification of the
Pearson correlation coefficient (PCC) that returns a sin-
gle number in the range + 1.0 to − 1.0 that measures the
degree of linear correlation or anti-correlation between
red and green images, averaged over the entire cell.
As described in detail below, all correlation quantifica-

tion methods have limitations in the common case of
2D images projected from the 3D spatial distributions of
fluorophores emitting from small bacterial cells. A refer-
ence distribution that is random in 3D within the cell
boundaries produces a non-uniform 2D spatial distribu-
tion when projected onto the camera plane. Moerner
and co-workers have recently applied Ripley’s K to
characterize the clustering of HU proteins in the
crescent-shaped bacteria C. crescentus and corrected the
reference random distribution by methods similar to
those we employ here [13]. Here we describe a detailed
procedure for handling the same problem in estimates
of the Pearson correlation coefficient in the case of
spherocylindrical cells like E. coli and B. subtilis.
The Pearson correlation coefficient (PCC) [14, 15] is

one of the most commonly used statistical tools to
measure the degree of linear correlation in pixel-by-pixel
intensity between two data sets X and Y:

PCC ¼
Pn

i¼1 xi−xð Þ yi−yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi−xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi−yð Þ2

q : ð1Þ

Here (xi, yi) are individual paired samples from the
data sets X and Y and n is the total number of pairs; x
and y are the mean values of the samples in data sets X
and Y. With the advent of two-color superresolution
fluorescence microscopy, the PCC is increasingly used as

a statistic for quantifying the degree of correlation be-
tween the subcellular distributions of two distinguishable
species. For image matrices R (red channel) and G
(green channel), the formula for PCC becomes:

PCC ¼
Pm

i¼1

Pn
j¼1 Rij−R

� �
Gij−G
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

Pn
j¼1 Rij−R

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

Pn
j¼1 Gij−G

� �2q :

ð2Þ
Here m and n are the number of rows and columns in

the image matrices; there are m x n total pixels in each
image. The Rij and Gij are the corresponding intensities
of pixel ij in R and G; for superresolution images these
are integers (counts/pixel). R and G are the mean pixel
intensities of R and G. In the PCC formula, all elements
of the reference matrix with which R or G is compared
have the same value. The value R (or G ) is subtracted
from each individual pixel intensity Rij (or Gij), yielding
both positive and negative difference intensities ðRij−RÞ
and ðGij−GÞ . Thus, the product in the PCC numerator
provides information about the correlation between de-
viations of Rij from R and deviations of Gij from G. The
denominator normalizes PCC so that it always lies in the
range − 1 to + 1. Ideally, PCC = 1 indicates two perfectly
linearly correlated images for which each red pixel ij de-
viates from the red mean in direct proportion to the de-
viation of the corresponding green pixel ij from the
green mean. PCC = 0 indicates two linearly uncorrelated
images. PCC = − 1 indicates two perfectly anti-correlated
images (red and green deviations of equal magnitude but
of opposite sign). A PCC value significantly different
from zero is a measure of the degree to which two distri-
butions are correlated or anti-correlated as compared
with the null hypothesis of PCC = 0, corresponding to
two uncorrelated, random distributions.
The ImageJ software [16] extensively used for image ana-

lysis in the field of fluorescence microscopy provides
Coloc2 and JaCoP plugins [17] that enable the user to cal-
culate PCC between two images. In the recent literature,
PCC has been used to characterize the correlation in 2D
spatial distributions of two fluorescently labeled proteins in
both bacterial cells [18–20] and eukaryotic cells [21–27].
McDonald and co-workers recently catalogued some com-
mon pitfalls in the use of PCC on eukaryotic cells [23].
For the most common shapes of bacteria (spherical,

rod-shaped and spiral), the standard PCC procedure
applied to 2D projected images fails both qualitatively
and quantitatively. We specialize to small, rod-shaped,
approximately spherocylindrical bacterial cells such as
E. coli and B. subtilis, whose typical length is Lcell ~
4 μm and whose diameter is 2r ~ 1 μm. Spherocylin-
ders have strong curvature at the two endcaps and in
the cylindrical region. As a result, the projection of
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molecules randomly distributed in a 3D spherocylind-
rical volume does not form a random distribution in
2D. In Fig. 1, we illustrate the 2D projection of 5000
molecules that are distributed randomly in a 3D
spherocylinder with dimensions similar to that of an
E. coli cell in good growth conditions. The endcap
regions and the edges of the spherocylinder project a
smaller volume onto the camera plane, and thus have
fewer counts/pixel in the 2D image than the central
cylindrical region. This effect is clear in the pixelated
2D localization density maps shown in Fig. 1c-e.
Pixels in the 2D projection of a random 3D distribu-
tion vary in intensity by a factor of five or more,
depending on the chosen pixel size. The variations
are highly systematic.

Consequently, the PCC reference matrix used for com-
parison with R and G is inappropriate. The PCC differ-
ence intensities ðRij−RÞ and ðGij−GÞ for pixels at the
edges and end caps are systematically negative, i.e.,
strongly biased towards having fewer molecules/pixel
than the mean value in a 2D projection of a 3D random
distribution. In those regions, the products ðRij−RÞðGij−
GÞ are systematically positive. Similarly, the difference
intensities of the pixels in the central region of the
spherocylinder are systematically positive, strongly
biased towards having more molecules/pixel than the
mean of a projection of a 3D random distribution. In
that region, the products ðRij−RÞðGij−GÞ are again
systematically positive. For two uncorrelated, random
distributions in 3D, this causes the traditional PCC of
the 2D projection to incorrectly approach + 1, not the
desired result of zero. The same systematic positive bias
causes the traditional PCC to underestimate the degree
of anti-correlation between two perfectly anti-correlated
images, as we will show.

In the following sections, we describe a procedure
for calculating what we call the modified Pearson
correlation coefficient (MPCC) in the special case of
interest, spherocylindrical bacterial cells. The proced-
ure could prove useful for both widefield and
superresolution images, and in principle it could be
adapted to other cell shapes [3]. We use numerical
simulations to show that MPCC properly approaches
zero for random sampling from two uncorrelated,
random distributions, approaches − 1 for sampling
from two perfectly anti-correlated distributions, and
approaches + 1 for sampling from two perfectly
correlated distributions. We also provide guidance for
pixelation of superresolution images and show how to
determine the probability p that a measured non-zero
MPCC did not arise from two uncorrelated, random
3D distributions. We conclude with an experimental
example of a significantly positive MPCC between

Fig. 1 Schematic of method for obtaining a 2D pixelated image
from 3D distribution of molecules within a spherocylinder. a
Uniformly filled spherocylinder representing a bacterial cell
cytoplasm. b 2D projection of 5000 molecules distributed randomly
in the 3D spherocylinder obtained by superresolution fluorescence
imaging. c–e 2D localization probability density heat maps of
imaged molecules with individual pixel sizes of 200 nm, 105 nm,
and 50 nm

Mohapatra and Weisshaar BMC Bioinformatics          (2018) 19:428 Page 3 of 14



superresolution images of RNA polymerase and of the
DNA-binding protein HU in live E. coli. The package
of MATLAB codes required for calculating MPCC be-
tween two different molecules imaged in rod shaped
cells such as E. coli and B. subtilis is available on
GitHub: https://github.com/SoniMohapatra/MPCC.

Results
The modified Pearson correlation coefficient MPCC
The MPCC of two images R and G is evaluated as
follows:

MPCC ¼
Pm

i¼1

Pn
j¼1 Rij− ~U

R
ij

� �
Gij− ~U

G
ij

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1

Pn
j¼1 Rij− ~U

R
ij

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1

Pn
j¼1 Gij− ~U

G
ij

� �2
r :

ð3Þ

Here we have replaced R and G in Eq. 2 with the

modified reference matrices ~U
R
ij and ~U

G
ij , respectively.

~U
R
ij and ~U

G
ij denote the intensity of pixel ij in the 2D

projection of a large set of molecules distributed ran-
domly in a 3D spherocylinder. The total number of mol-

ecules in ~U
R
and ~U

G
has been scaled to be the same as

the total number of molecules in R and G, respectively.
In favorable conditions, superresolution imaging pro-

vides (x,y) spatial localization of hundreds or thousands
of molecules per cell with spatial resolution of σx,y ~ 20–
50 nm. Conversion of these single molecule locations
into 2D probability density maps requires selection of a
pixel size; several examples are shown in Fig. 1c-e. The
intensity in each pixel equals the total number of mole-
cules assigned to it. The dependence of the calculated
MPCC on the chosen pixel size and the number of im-
aged molecules is described later. These pixelated 2D
maps for the red and green channels are denoted by R
and G, the image matrices in Eq. 3.

To form the numerator of Eq. 3, we then subtract ~U
R

and ~U
G
from the corresponding image matrix in the red

and green channels (R and G, respectively) to obtain the
(unnormalized) difference matrices ΔR and ΔG. The re-
sultant difference matrices have pixels with positive and
negative values. Finally, to constrain MPCC to lie in the
range + 1 to − 1, we normalize ΔR and ΔG so that the
sum of the squares of individual pixel values in the dif-
ference matrix is 1. The resultant normalized 2D differ-

ence matrices are called Δ̂
R
and Δ̂

G
respectively. MPCC

is obtained by taking the Frobenius inner product of the

two normalized matrices Δ̂
R
and Δ̂

G
(Eq. 6 in Methods).

A detailed step-by-step description of the methodology
for obtaining MPCC is presented in the Methods
section.

The MPCC ranges from + 1 to − 1, as does standard
PCC. The MPCC for two images is + 1 when the nor-
malized difference matrices are perfectly linearly related,

i.e., when Δ̂
R
ij ¼ Δ̂

G
ij for every pixel ij. As a result, MPCC

¼ Pm
i¼1

Pn
j¼1Δ̂

R
ijΔ̂

G
ij ¼

Pm
i¼1

Pn
j¼1Δ̂

R
ij

2 ¼ þ1: The MPCC

is − 1 when the normalized difference matrices are per-

fectly inversely related to each other, i.e., Δ̂
R
ij ¼ −Δ̂

G
ij for

every pixel. As a result, MPCC ¼ Pm
i¼1

Pn
j¼1Δ̂

R
ijΔ̂

G
ij ¼ −

Pm
i¼1

Pn
j¼1Δ̂

R
ij

2 ¼ −1 . When the normalized difference

matrices of two images are uncorrelated with each other,
the MPCC is 0.
Next, we carry out numerical simulations comparing

MPCC with PCC for sampling from 2D projections of
three model distributions in 3D spherocylinders: perfect
3D correlation that projects into perfect 2D correlation,
perfect 3D anti-correlation that projects into perfect 2D
anti-correlation, and uncorrelated, random 3D distribu-
tions. For all these examples, the R and G image matri-
ces have 10,000 molecules each. The spherocylinder has
tip-to-tip length Lcell = 3.5 μm and diameter 2r =
0.82 μm. The 2D pixel size in the image matrices R and
G is chosen to be 200 nm in both dimensions, so that 75
pixels cover the 2D projection.

Perfect anti-correlation in 3D
To examine the case of two perfectly anti-correlated dis-
tributions, we have simulated 3D random distributions of
20,000 molecules confined to the spherocylindrical vol-
ume. The ~ 10,000 molecules located in the left half of the
spherocylinder are designated red; the ~ 10,000 molecules
located in the right half are designated green. This ensures
that there is no spatial overlap of molecules in the red and
green channels. We call this anti-correlation Case I. For
such strong spatial anti-correlation, we should expect
MPCC = − 1. An example of the corresponding 2D image
matrices R and G is shown in Fig. 2a. In Fig. 2b, c, we have
compared the reference matrices and the key normalized
difference matrices the products of whose corresponding
elements enter the traditional PCC (Eq. 2) and the new
MPCC (Eq. 3).
For the traditional PCC (Fig. 2b), there are ~ 10,000

molecules of each color distributed in a cell area covering
75 pixels. As in Eq. 2, we subtract the mean pixel intensity
R = 133.3 and G = 133.3 from each individual pixel inten-
sities Rij and Gij. The resulting normalized difference

matrices, Rij−RffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1

Pn

j¼1
ðRij−RÞ2

q and Gij−GffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1

Pn

j¼1
ðGij−GÞ2

q , are

depicted as heat maps labeled ~(R−�R ) and ~(G−G ) in

Fig. 2b. These are the PCC analogues of Δ̂
R
ij and Δ̂

G
ij in the
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MPCC equation. In the left half of the spherocylinder, the
red difference matrix has a thin shell of systematically
negative values (endcap and edge pixels) and a central
core of systematically positive values. When multiplied by
the corresponding elements of the left half of the green
difference matrix, which contains all equal negative ele-
ments, the contributions to PCC will be positive and nega-
tive, respectively. The same type of systematically positive
and negative contributions will arise from the right half of
the spherocylinder. The resulting red and green contribu-
tions to PCC are not linearly anti-correlated. This is seen
clearly in Fig. 2d, where we show a scatter plot of the indi-
vidual red normalized differences vs the corresponding
green normalized differences. The net result is PCC = −
0.47, suggesting only partial anti-correlation of the two
spatial distributions even though they are completely
anti-correlated in both 3D and 2D.
In contrast, the MPCC formula of Eq. 3 subtracts from

each pixel the proper 2D contribution of the projection of a
smooth 3D random distribution (Fig. 2c). The resulting

normalized difference matrices Δ̂
R
and Δ̂

G
are also depicted

in Fig. 2c. The scatter plot of individual difference matrix

elements Δ̂
R
ij vs. Δ̂

G
ij in Fig. 2d shows the expected strong

linear anti-correlation for all pixels. The resulting MPCC is
− 0.99, very close to the expected value of − 1.
In Additional file 1: SI Text S1, we examine two add-

itional examples of anti-correlation. In anti-correlation
Case II shown in Additional file 1: Figure S1, the two
endcap regions are occupied by ~ 10,000 red molecules
and the central region is occupied by ~ 10,000 green
molecules. Again, the normalized difference matrix ele-
ments are linearly anti-correlated and the calculated
MPCC is − 0.99. In anti-correlation Case III

Fig. 2 Scheme for calculating PCC and MPCC for two representative
images R and G sampled from distributions that are perfectly anti-
correlated in both 3D and 2D. a Heat maps of R and G with 200 nm
pixels. Each image comprises ~ 10,000 molecules. Color scale
indicates the number of molecules in each pixel. b Standard PCC
calculation. Top: The 2D uniform reference distribution R or G that is
subtracted from images R or G. Bottom: Normalized difference
matrices ∼ðR−�RÞ and ∼ðG−�GÞ obtained after subtraction. The
Frobenius inner product of these two difference matrices gives the

PCC. c Modified PCC calculation. Top: Reference distribution ~U
R
and

~U
G
, which are 2D projections of 3D random distributions of 100,000

molecules within the spherocylinder and normalized to have a total
of 10,000 molecules. These are subtracted from images R and G,

respectively. Bottom: Normalized difference matrices Δ̂
R
and Δ̂

G

obtained after subtraction. The Frobenius inner product of these
two difference matrices gives the MPCC. d Scatter plot of individual
normalized difference matrix elements for PCC (Red) and for MPCC
(Black). The MPCC elements are negatively correlated within the
noise level, while the PCC elements are not. The resulting MPCC and
PCC values are − 0.99 and − 0.47, respectively
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(Additional file 1: Figure S1), the ~ 10,000 red molecules
occupy the leftmost 2/3 of the spherocylinder volume
while the ~ 10,000 green molecules occupy the right-
most 1/3. The result is the same. The advantages of
MPCC vs traditional PCC are apparent.

Perfect positive correlation in 3D and 2D
When the red and green 3D spatial distributions are per-
fectly positively correlated, so will be their 2D projec-
tions. As described before, an MPCC value of + 1 is
expected for a case of perfect correlation in the 2D pro-
jections. The same is true of the traditional PCC. To
examine the case of two perfectly correlated distribu-
tions, we have simulated 3D random distributions of
20,000 molecules confined to the spherocylindrical vol-
ume. The ~ 10,000 molecules located in the left half of
the spherocylinder are designated red; the molecules in
the right half are deleted. We then independently simu-
lated another 20,000 molecules distributed randomly in
a 3D spherocylinder. The ~ 10,000 molecules located in
the left half of the spherocylinder are designated green;
the molecules in the right half are again deleted. The
resulting 3D distributions are projected into 2D and
pixelated to yield the image matrices depicted in Add-
itional file 1: Figure S2A. We calculate the MPCC = +
0.99 between these two distributions, very close to the
anticipated value of + 1. The resulting normalized differ-

ence matrices Δ̂
R
and Δ̂

G
obtained during evaluation of

MPCC are depicted in Additional file 1: Figure S2C. The

scatter plot of individual matrix elements Δ̂
R
ij vs. Δ̂

G
ij in

Additional file 1: Figure S2D shows the expected strong
linear correlation for all pixels. Similarly, the scatter plot
of individual normalized difference matrix elements

analogous to Δ̂
R
ij vs. Δ̂

G
ij for PCC in Additional file 1: Fig-

ure S2D shows the expected strong linear correlation for
all pixels. If Rij =Gij and R ¼ G, then PCC = 1. Therefore,
for two spatial distributions that are perfectly correlated
in 3D and in the 2D projection, both the MPCC and the
PCC will approach + 1 within the statistical noise.

Random distributions in 3D
Two independent, uncorrelated, random distributions
should have a Pearson correlation coefficient of 0 within
the statistical noise. In the numerical tests, we have ran-
domly distributed 10,000 red molecules and 10,000
green molecules in 3D within the spherocylinder. The
two random distributions are generated independently,
so we expect them to be uncorrelated with each other.
We add appropriate localization errors σR = 50 nm and
σG = 50 nm and then project the “measured” positions
into the xy-plane. PCC and MPCC between the two 2D
projection matrices (Fig. 3a) will be compared.

The resulting reference matrices and normalized dif-
ference matrices for PCC and for MPCC are depicted in

Fig. 3b and c respectively. The scatter plots of Δ̂
R
ij vs Δ̂

G
ij

for MPCC and of their analogues for PCC are shown in
Fig. 3d. The data indeed appear uncorrelated for MPCC,
but they are strongly positively correlated for PCC. The
resulting calculated coefficients are MPCC = + 0.10 and
PCC = + 0.98. The cause of the large, positive PCC value
between two random 3D distributions was described in
the Introduction. The 2D projections have matching re-
gions of systematically positive and systematically nega-
tive deviations from the 2D mean values.
Finally, we tested whether the distribution of calcu-

lated MPCC outcomes for two independent random dis-
tributions is appropriately centered at zero and unbiased
towards positive or negative values. For 200 trials, we
calculated MPCC values between two 2D projections of
3D independent, random distributions of 10,000 red and
10,000 green molecules using the same 200 nm pixel
size. We fit the resulting distribution (Additional file 1:
Figure S3) to a Gaussian function. The mean of the
best-fit Gaussian distribution is <MPCC> = + 0.0041 and
the standard error is σMPCC = 0.13. The mean is close to
zero and the distribution is symmetric about zero, as
hoped for. The probability that a particular trial would
yield an MPCC of magnitude 0.10 or larger on either
side of the Gaussian distribution is p = 0.44. The “mea-
sured” example MPCC of + 0.10 (Fig. 3d) lies within 1σ
of the mean; it was not a particularly unusual event.

Dependence of MPCC and its uncertainty on pixel size and
total number of imaged molecules
Before evaluating MPCC between two superresolution
images, the pixel size in the 2D localization density maps
must be chosen. For a fixed cell size and number of de-
tected molecules, the smaller the pixel size, the greater
will be the total number of pixels Np, the better the
spatial resolution, and the smaller the mean occupancy
per pixel. We have shown in SI (Additional file 1: Figure
S4) that for a fixed number of localizations NR =NG =
10,000 distributed randomly in 3D, as the pixel size de-
creases (and Np increases) the width of the distribution
of MPCC values becomes narrower. All the MPCC dis-
tributions for uncorrelated images are symmetric and
centered about 0 and well fit by a Gaussian function. For
these random, uncorrelated 3D distributions, the stand-
ard deviation of the Gaussian MPCC distributions scales
as Np

-1/2. This scaling holds even for NR and NG as small
as 500.
Narrower widths of the MPCC distribution from ran-

dom 3D distributions generally provide greater statistical
confidence that a non-zero measured value of MPCC is
significantly different from zero. This argues for fine
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pixelation. In practice, we suggest simulating the distri-
bution of MPCC values between the 2D projections of
3D random distributions using the same number of mol-
ecules as were imaged in the red and green channels
and the same pixel size chosen for R and G. This en-
ables assignment of a probability p that the measured
MPCC arose from two random 3D distributions. If p is
unacceptably large, finer pixelation of both experimental
and simulated locations may decrease p. Finer pixelation
also enables detection of correlation or anti-correlation
on smaller length scales.
However, for non-random 3D distributions such as the

completely anti-correlated distribution of Fig. 2 or the posi-
tively correlated distribution of Additional file 1: Figure S2,
it is important not to pixelate so finely that the matrices R
and G become too sparse. In the case of the anti-correlated
model matrices R and G, this leads to false positive linear

correlations between Δ̂
R
ij and Δ̂

G
ij . One way to think about

this is that the zeroes and small-integer occupancies
appearing in the left-hand region of R begin to positively
correlate with the zeroes that fill the empty half of G. Simi-
larly, the zeroes and small-integer occupancies arising due
to sparseness in the right-hand region of G positively cor-
relate with the zeroes in the empty half of R. These system-
atically bias the MPCC for truly anti-correlated
distributions towards more positive values, underestimating
the degree of linear anti-correlation. We explore this effect
numerically in Additional file 1: Figure S5. For a given pixel
size, the mean MPCC moves closer to the expected value
of − 1 for two anti-correlated images as the number of im-
aged molecules increases. The key controlling parameter
seems to be the mean occupancy per pixel.
In practice, we suggest carrying out numerical simula-

tions of perfectly anti-correlated distributions using values
of NR and NG that match experiment. The pixel size

Fig. 3 Scheme for calculating PCC and MPCC for two representative
projected images R and G arising from two random and
independent distributions in 3D. a Heat maps of R and G with
200 nm pixels. Each image comprises ~ 10,000 molecules. Color
scale indicates the number of molecules in each pixel. b Standard
PCC calculation. Top: The 2D uniform reference distribution R or G
that is subtracted from images R or G. Bottom: Normalized
difference matrices ∼ðR−�RÞ and ∼ðG−�GÞ obtained after subtraction. c

Modified PCC calculation. Top: Reference distribution ~U
R
and ~U

G
,

which are 2D projections of 3D random distributions of 100,000
molecules within the spherocylinder and normalized to have a total
of 10,000 molecules. These are subtracted from images R and G,

respectively. Bottom: Normalized difference matrices Δ̂
R
and Δ̂

G

obtained after subtraction. d Scatter plot of individual normalized
difference matrix elements for PCC (Red) and for MPCC (Black). The
MPCC elements are randomly distributed, while the PCC elements
are positively correlated. The resulting MPCC and PCC values are +
0.10 and + 0.98, respectively
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chosen for analysis of the experimental data should be the
smallest pixel size for which the mean MPCC for perfectly
anti-correlated distributions is acceptably close to − 1. In
the numerical example of Fig. 2, with 10,000 molecules
distributed over 75 pixels, the mean occupancy was 133
molecules/pixel, which yielded MPCC = − 0.99. For these
images sampled from perfectly anti-correlated model dis-
tributions, if the mean occupancy is ~ 7 copies/pixel (~ 14
copies per pixel in the occupied halves of the case in
Fig. 2), then the MPCC will be about − 0.9. MPCC ap-
proaches − 1 as the occupancy per pixel increases.
For similar reasons, for two perfectly positively corre-

lated distributions we expect that MPCC will systematic-
ally underestimate the degree of positive correlation as
the red and green matrices become sparse. In the case of
positively correlated R and G (Additional file 1: Figure
S2), the zeroes appearing in the images due to sparse-
ness are not positively correlated. The sparseness in
number of molecules due to finer pixelation leads to

false negative linear correlations between Δ̂
R
ij and Δ̂

G
ij .

This leads to systematic negative deviations of the calcu-
lated MPCC from the expected value of + 1. We investi-
gated the mean occupancy/pixel that is required for the
calculated MPCC between strongly positively correlated
images to be ~ 0.9, close to the expected value of + 1. As
shown in Fig. 4e and S5, a mean occupancy of ~ 7 cop-
ies/pixel (14 copies/pixel in the occupied regions) yields
MPCC values of about + 0.9.
While this rule of thumb seems to hold for the per-

fectly anti-correlated and perfectly correlated model dis-
tributions, the pixel occupancy requirement may be
more stringent for less strongly anti-correlated or corre-
lated cases. See the experimental example below. In the
next section we analyze experimental RNAP and HU
distributions and suggest a procedure for assessing the
reliability of MPCC values more generally.

Experimental example of MPCC from superresolution
images of RNAP and HU in E. coli
To test our MPCC concept on real experimental data,
we performed two-color superresolution fluorescence
imaging of RNA polymerase and HU in live E. coli cells.
RNAP is primarily located in the nucleoid region be-
cause of its frequent specific and non-specific interac-
tions with chromosomal DNA [28]. HU is a DNA
binding protein that should also localize within the nu-
cleoids [29, 30]. We expect significant positive correl-
ation between the spatial distributions of RNAP and HU
and therefore a positive value of MPCC.
For superresolution co-imaging of RNAP and HU in

live E. coli cells, we constructed a strain where the gene
coding for the fluorescent protein YFP (observed in the
green channel) [31] is fused to the C terminus of the

endogenous rpoC gene in E. coli VH1000. Single copies
are imaged using the reversible photobleaching method
described earlier [32]. An inducible plasmid that ex-
presses HU labeled with the photoactivatable fluorescent
protein PAmcherry [33] (observed in the red channel)
was introduced into the same strain. The cells were
grown in EZ rich defined medium at 30 °C, plated on a
glass coverslip, and imaged with 30 ms exposure time.
The details of strain construction, growth conditions,
and imaging conditions are described in Additional file 1:
SI Text S3.
To obtain a useful number of imaged copies without in-

ducing laser damage to the cells, we combine locations of
red HU and green RNAP molecules from different cells of
essentially the same length. The imaged cells were sorted
by tip-to-tip length based on phase contrast images in
order to avoid broadening of spatial distribution of mole-
cules due to the range of cell lengths. For the analysis, we
chose cells of length 3.6 to 3.8 μm, the bin with the high-
est number of imaged cells. The resulting composite dis-
tribution of spatial localizations of NG = 6570 RNAP-YFP
and NR = 8436 HU–PAmcherry molecules from 11 cells
pixelated to 105 nm (279 total pixels) is illustrated in
Fig. 4a. The mean number of molecules per pixel is ~ 25
and ~ 30 for the RNAP and HU channels respectively.
The corresponding 1D projected axial distributions are
compared in Fig. 4b. The raw data indeed suggest signifi-
cant positive correlation between the two distributions.
For evaluation of MPCC we simulated two random dis-

tributions of 100,000 molecules each, corresponding to the
RNAP (green) and HU (red) channels, using a spherocylin-
der whose dimensions match those of the chosen cells. The
resulting reference images are normalized to have same
number of molecules as imaged RNAP and HU. For accur-
ate estimation of the cytoplasmic radius r of the imaged
cells in the chosen length bin, we also imaged photoactiva-
ble Kaede molecules [34, 35], believed to distribute homo-
genously in the cytoplasmic volume [36]. The detailed
procedure is described in Additional file 1: SI Text S4. The
resulting cell length is Lcell = 3.74 μm; the diameter is 2r=
0.82 μm (Additional file 1: Figure S6). The two simulated
3D random distributions incorporated localization errors
σRNAP = 38 nm and σHU = 60 nm, determined by the inter-
cepts of MSD plots (Additional file 1: Figure S7). We
followed the procedure described above with pixel size of

105 nm to calculate MPCC=+ 0.39. The scatter plot of Δ̂
R
ij

vs Δ̂
G
ij (Fig. 4c) also indicates significant positive correlation.

The final step estimates the probability p that a
value of MPCC = + 0.39 or larger would be obtained
from two random 3D distributions with the same
number of imaged molecules and the same pixel size
used for the experimental data. In Fig. 4d, we show a
histogram of the outcomes of 200 such simulations.
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Fig. 4 a Experimental 2D localization probability density maps of 8436 HU–PAmcherry molecules (Top) and 6570 RNAP–YFP molecules (Bottom).
Composite of data from 11 cells of tip-to-tip length Lcell in the range 3.6 to 3.8 μm. The color scale indicates the number of molecules in each
pixel. b Axial probability density distributions of the imaged molecules. c Scatter plot of individual normalized difference matrix elements for

MPCC, Δ̂
HU
ij vs. Δ̂

RNAP
ij . Plot shows significant visual evidence of positive correlation; the calculated MPCC is + 0.39. d Histogram of 200 MPCC values

calculated for pairs of independent, random 3D distributions using the same number of HU and RNAP copies and the same pixelation as the
experimental data. Best fit to a Gaussian curve has <MPCC> = − 0.0030 and σ = 0.061 (Black curve). The experimental MPCC (arrow) lies at + 6.4σ,
making it highly improbable that two random distributions would produce such a large, positive result. e Convergence of MPCC values vs mean
occupancy/pixel for simulated positive correlation (top; expected MPCC = + 1) and for experimental RNAP/HU images (bottom). Three different
pixel sizes are shown: 50 nm (Np = 1178), 100 nm (Np = 279), and 200 nm (Np = 77). For the experimental data, occupancy/pixel at fixed pixel size
was varied by randomly deleting red and green molecules. See Additional file 1: text, Figure S8 and Table S1 for additional information
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The best-fit Gaussian distribution has a mean value
<MPCC> = − 0.0030 and standard error σMPCC = 0.061.
The measured MPCC value lies 6.4σMPCC away from zero.
Under the assumption that the statistics of the simulated
MPCC trials are Gaussian, the probability that two ran-
dom 3D distributions would produce an MPCC value of
magnitude 0.39 or larger on either side of the Gaussian
curve is p ~ 1.6 × 10− 10. Thus, we can reject the null
hypothesis that MPCC= + 0.39 arose from two random,
uncorrelated 3D distributions and assert significant posi-
tive correlation between the RNAP and HU distributions
with very high confidence.
The choice of pixel size does affect the calculated MPCC.

For 200 nm pixels (Np = 77 total pixels), the experimental
MPCC is + 0.51. The corresponding simulations of two
random distributions gave <MPCC>= 0.0082 and σMPCC =
0.12. In this case, the probability that two 3D random dis-
tributions would produce an MPCC value of magnitude
0.51 or higher on either side of the mean of the Gaussian
curve is p ~ 1.3 × 10− 4. For 50 nm pixels (Np = 1178 total
pixels), the experimental MPCC is + 0.25. The correspond-
ing simulations of two random distributions gave <MPCC>
= 0.0027 and σMPCC = 0.033. In this case, the probability
that two 3D random distributions would produce an
MPCC value of magnitude 0.25 or higher on either side of
mean of Gaussian curve is p ~ 3.6 × 10− 14. The estimated
experimental MPCC decreases systematically as Np

increases and the same data set is pixelated more finely, but
the simulated σMPCC decreases more rapidly.
The conclusion of significant positive correlation between

the RNAP and HU experimental distributions is robust, but
what is the best value of MPCC to report? In Fig. 4e and
Additional file 1: Figure S8, we explore how the calculated
value of MPCC varies with the mean occupancy per pixel.
Given a limited number of experimental localizations, there
are two ways to vary this parameter: we can keep all the ex-
perimental localizations and change the pixel size (50 nm,
105 nm, 200 nm), or we can fix the pixel size and randomly
delete red and green copies from each image. MPCC values
generated by both procedures fall on the same smooth curve
in plots of calculated MPCC vs occupancy per pixel (Fig. 4e,
Additional file 1: Figure S8 and Table S1). For the experi-
mental images, the MPCC values are approaching an
asymptote of ~ 0.5 as the mean occupancy/pixel approaches
100. Our best estimate is thus MPCC= 0.50 ± 0.05. Because
the features of interest in the images are large, 500 nm to
1 μm in size, we feel justified in including pixel sizes in the
range 50–200 nm in the analysis.
As suggested by the projected axial distribution of

RNAP and HU (Fig. 4b), the two species are not com-
pletely correlated in space. There are several factors that
may explain why the MPCC is significantly smaller than
1. We have averaged the data over 11 cells whose nucle-
oids have irregular shapes in 3D that are not axially

symmetric and that vary from cell to cell. In addition,
while RNAP and HU both bind to the DNA, they have
different biological functions and should not be expected
to have spatial distributions that correlate perfectly.
As a cautionary note, we observe that for the perfectly

correlated or anti-correlated model distributions, MPCC
converges towards its asymptotic value vs occupancy/pixel
substantially more rapidly than the experimental images
(Fig. 4e). In the model images, MPCC reached 90% of its
asymptote of ±1 when the occupied side of the image had
14 copies per pixel (7 copies/pixel averaged over the entire
cell, which is half empty for both colors). For the experi-
mental data, MPCC reaches 90% of the apparent asymp-
tote of 0.5 only when the occupancy/pixel approaches 30.
While mean occupancy/pixel appears to be the controlling
parameter, the magnitude required to achieve 10% accur-
acy evidently depends on the image shape.

Discussion
The Pearson correlation coefficient is one of the statistics
commonly used for quantifying the degree of linear correl-
ation in pixel-by-pixel intensity between two different im-
ages [14, 37–39]. Owing to simplicity of usage and
availability in most image analysis software packages (Ima-
geJ, Colocalizer Pro), PCC is used increasingly in the litera-
ture of two-color fluorescence microscopy. Because it is
pixel-based, PCC can in principle be applied to both wide-
field and superresolution images [3]. The fluorescence in-
tensity of individual pixels in widefield images is
proportional to the number of emitted photons incident
upon each pixel. The MPCC value can then be calculated
using fluorescence intensity per pixel rather than molecules
per pixel. Background subtraction to produce zero-based
images is important.
For two-color, three-dimensional fluorescence mi-

croscopy [40, 41], the standard PCC would provide
an accurate measure of linear correlation, assuming
the 3D image matrices are sufficiently populated.
However, by far the more common case of two-color
microscopy projects the 3D spatial distributions onto
the 2D camera plane. The central point of this work
is simple. For most cell shapes, random 3D spatial
distributions (no spatial correlations) do not make
random 2D projections. In the particular case of
spherocylindrical cells, projections of random 3D dis-
tributions are skewed to have more molecules/pixel in
the central region compared to the edges and the
endcap regions (Fig. 1). This renders the standard
PCC reference matrices (Eq. 2), whose elements are
the constant values R and G, highly inappropriate. As
a result, the standard PCC fails both qualitatively and
quantitatively to describe the nature and degree of
the spatial correlation. A calculated PCC value of + 1
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could equally well arise from perfectly correlated 3D
distributions (Additional file 1: Figure S2) or from
completely random 3D distributions (Fig. 3). For
strongly anti-correlated images, the degree of
anti-correlation will be systematically underestimated
(Fig. 2).

In the special case of spherocylindrical cells, we
have described a method for calculating a modified
Pearson correlation coefficient (MPCC) that uses the

2D projection matrices ~U
R
ij and ~U

G
ij derived from in-

dependent 3D random distributions as the reference
matrices with which the 2D image matrices R and G
are compared (Eq. 3). The resulting MPCC is normal-
ized to lie in the range − 1 to + 1. Within noise limi-
tations, MPCC approaches 0 for the projections of
two distributions that are independent and random in
3D, approaches − 1 for two distributions that are per-
fectly anti-correlated in both 3D and 2D, and ap-
proaches + 1 for two distributions that are perfectly
positively correlated in both 3D and 2D. Additionally,
we have used the new procedure to estimate a posi-
tive value MPCC = + 0.50 ± 0.05 between experimen-
tally obtained spatial localizations of individual RNAP
and HU molecules in live E. coli cells (Fig. 4). Both
RNAP and HU bind the chromosomal DNA, which
occupies a subset of the cytoplasmic volume called
the nucleoid. As expected, we obtain positive correl-
ation that is significantly outside the range of model
MPCC values computed for two uncorrelated
distributions using the same pixel and copy number
parameters as the experimental data.

While MPCC corrects a significant flaw in the stand-
ard PCC, it is important to note that for two images
that are correlated or anti-correlated in 3D (i.e., not
random), the MPCC applied to the 2D projections will
typically underestimate the degree of correlation or
anti-correlation in 3D. Projection from 3D to 2D always
involves a loss of information. If the two 3D distribu-
tions are correlated or anti-correlated, their 2D projec-
tions will typically be less so. Our model correlated
images (Additional file 1: Figure S2) and anti-correlated
images (Fig. 2 and Additional file 1: Figure S1) are
special cases in that they preserve perfect correlation or
anti-correlation when projected from 3D to 2D. More
irregular, less symmetric 3D distributions generally will
not. This means that a 2D MPCC value that is not
significantly different from zero does not imply the
absence of 3D spatial correlations.

We have also shown how a small average number of
molecules per pixel can cause systematic errors in
MPCC values (Fig. 4, Additional file 1: Figures S5 and
S8). For images sampled from both perfectly
anti-correlated and perfectly correlated distributions,

this effect diminishes the magnitude of MPCC (biasing
it towards zero). The minimum number of molecules
per pixel required to obtain a trustworthy MPCC was
~ 7 for our model images but increased to ~ 30 for our
experimental images. The MPCC user needs to meas-
ure a sufficient number of localizations and make a
knowledgeable choice of pixel size based on the ques-
tions being asked. In each situation, by altering the pix-
elation or by randomly deleting copies, the user can
determine how many copies per pixel is sufficient for
the desired accuracy. As pixel size increases, spatial
correlations on shorter length scales will be lost. It ap-
pears to us that MPCC will be most useful in exploring
correlations on a length scale of ~ 200 nm or larger, as
in our HU/RNAP example.
In earlier work applying PCC to eukaryotic cells,

Dunn, et al. [23] warned against inclusion of empty
extracellular regions in the image matrices R and G.
Such extra zeroes alter the mean value in the refer-
ences matrices and also artificially inflate the calcu-
lated PCC due to positive correlations between the
empty regions in both matrices. They suggested care-
fully outlining only the regions of space that are oc-
cupied by the cells of interest. However, the MPCC is
impervious to such extra zeroes. The mean pixel in-
tensity over the region of interest does not participate
in the calculation of MPCC. The empty regions of
the image outside the cell boundary cause corre-
sponding zeroes in the 2D projected reference matrix.
They affect neither the normalization condition (Eq. 4
in Methods) nor the calculated MPCC (Eq. 3). In the
MPCC procedure, one need not worry about empty
regions of the image matrices that lie outside the pro-
jected cell boundaries.
The caveats outlined here apply to essentially all types

of cells or organelles. In principle, the central concept of
MPCC can be generalized to other cell geometries, in-
cluding irregular eukaryotic shapes. However, the MPCC
will probably find its greatest use in bacterial cells,
whose shapes are often quite uniform for given growth
conditions. It is relatively straightforward to simulate ap-
propriate 2D reference distributions for rod-shaped bac-
teria like E. coli and B. subtilis, using a spherocylinder as
the simplified model. The problem becomes more diffi-
cult for other shapes, such as the spiral shaped H. pylori.
One possible purely experimental solution would be to

co-image a large population of freely diffusing fluoro-
phores that presumably map out the 2D projection of a
3D random distribution in the cell volume of interest.
To test this concept on E. coli, we have imaged Kaede
under the same growth conditions used to image the
RNAP and HU spatial distributions of Fig. 4. Kaede is a
non-native tetrameric fluorescent protein that diffuses
freely in E. coli and appears to fill the cytoplasm
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uniformly [36]. We imaged Kaede in 15 cells of length
3.6 to 3.8 μm, the same length bin used for RNAP and
HU. The composite distribution of 54,719 spatial locali-
zations from 8 of the 15 cells was pixelated to give an

experimental estimate of ~U
R
. An estimate of ~U

G
was

generated from the pixelated 2D projection of 66,301
Kaede copies from the other 7 cells. Using these experi-

mentally generated matrices ~U
R
and ~U

G
, we calculated

MPCC for the same RNAP and HU spatial distributions
to be 0.56, 0.42 and 0.32 for chosen pixel sizes of
200 nm, 105 nm and 50 nm respectively. These com-
pletely experimentally derived MPCC values are similar
to the MPCC values of 0.51, 0.39 and 0.25 obtained from

simulation of ~U
R
and ~U

G
for the same respective pixel

sizes. For cases in which it is difficult to simulate the 3D
cell geometry, the experimental approach to generation
of the reference matrices may prove useful.

Conclusions
In this work, we have described a method of calculating
a modified Pearson Correlation coefficient between two
2D fluorescence images of spherocylindrical cells. Calcu-
lation of traditional Pearson correlation coefficient uses
a constant mean value of the image as the reference dis-
tribution. This leads to incorrect estimation of correl-
ation coefficient both quantitatively and qualitatively.
We have proposed a modified Pearson Correlation Coef-
ficient (MPCC) that corrects this problem for spherocy-
lindrical cell geometry by employing the proper
reference matrices, 2D projection matrices derived from
independent 3D random distributions in spherocylin-
ders, for comparison with the images under analysis.
MPCC can be employed for 2D superresolution as well
as widefield images, conventionally acquired for wide
variety of studies. The application of MPCC to irregu-
larly shaped bacterial cells may be possible by imaging a
large population of freely diffusing fluorophores that
presumably serve as an experimental reference distribu-
tion. We demonstrated the applicability of MPCC to ex-
perimentally acquired superresolution images of RNAP
and HU in E. coli, using both simulated and experimen-
tal reference distributions. MPCC will prove most useful
in quantifying spatial correlation between two different
fluorophore-labeled molecules on length scales compar-
able to the shortest cell dimensions.

Methods

As a first step towards generation of the matrices ~U
R
and

~U
G

in Eq. 3, a large number of molecules (here 100,000)
are randomly distributed in a spherocylinder whose dimen-

sions match those of the cells being imaged. We want ~U
R

and ~U
G
to have high signal-to-noise in each pixel. For a cell

of length 3.5 μm and width of 0.82 μm, the choice of
200 nm for the pixel size results in 75 pixels in the cell.
100,000 molecules makes the mean occupancy 1333 mole-
cules/pixel. An appropriate localization error σ is applied
to each particle location in both x and y coordinates by
sampling a Gaussian distribution with standard deviation
σ, yielding the model “measured” location of each mol-
ecule, which is binned appropriately. For generating 3D
random distribution of molecules corresponding to the red
and green channels, the localization error applied is the
same as that measured upon imaging fluorescent mole-
cules in red (σR) and green channels (σG) respectively. The
2D projections along the z axis of these two 3D random
distributions give the matrices UR and UG. The elements
UR

ij and UG
ij are positive integers.

Next the counts in individual pixels of UR and UG are
normalized so that the total number of red and green
molecules is equal to NR and NG, the total number of
molecules imaged in each channel. This yields the nor-

malized matrix ~U
R
:

~U
R
ij ¼ UR

ij � NR=100; 000 ð4Þ
so that

Pm
i¼1

Pn
j¼1

~U
R
ij ¼ NR . Similarly, UG is normalized

so that the sum of all elements of ~U
G
is NG.

We then subtracted ~U
R
and ~U

G
from the corresponding

image matrix under analysis, R and G respectively to ob-
tain the unnormalized difference matrices ΔR and ΔG. We
normalized ΔR and ΔG so that the sum of the squares of
individual pixel values in the difference matrix is 1:

Δ̂
R
ij ¼

ΔR
ij

ΔR
�� �� ; ð5Þ

where kΔRk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1

Pn
j¼1 Δ

R
ij
2

q
. The resultant normal-

ized 2D difference matrix Δ̂
R
has kΔ̂Rk ¼ 1. The differ-

ence matrix ΔG in the green channel is similarly

normalized to obtain Δ̂
G
such that kΔ̂G k ¼ 1.

MPCC is obtained by taking the Frobenius inner prod-

uct of the two normalized matrices Δ̂
R
and Δ̂

G
:

MPCC ¼
Xm
i¼1

Xn

j¼1
Δ̂
R
ijΔ̂

G
ij : ð6Þ
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