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Abstract: Coronary artery ectasia (CAE) is a rare finding and is associated with poor clinical outcomes.
However, prognostic factors are not well studied and no prognostication tool is available. In a
derivation set comprising 729 consecutive CAE patients between January 2009 and June 2014, a
nomogram was developed using Cox regression. Total of 399 patients from July 2014 to December
2015 formed the validation set. The primary outcome was 5-year major adverse cardiovascular
events (MACE), a component of cardiovascular death and nonfatal myocardial infarction. Besides the
clinical factors, we used quantitative coronary angiography (QCA) and defined QCA classification of
four types, according to max diameter (< or ≥5 mm) and max length ratio (ratio of lesion length to
vessel length, < or ≥1/3) of the dilated lesion. A total of 27 cardiovascular deaths and 41 nonfatal
myocardial infarctions occurred at 5-year follow-up. The nomogram effectively predicted 5-year
MACE risk using predictors including age, prior PCI, high sensitivity C-reactive protein, N-terminal
pro-brain natriuretic peptide, and QCA classification (area under curve [AUC] 0.75, 95% CI 0.68–0.82
in the derivation set; AUC 0.71, 95% CI 0.56–0.86 in the validation set). Patients were classified as
high-risk if prognostic scores were ≥155 and the Kaplan–Meier curves were well separated (log-rank
p < 0.001 in both sets). Calibration curve and Hosmer–Lemeshow test indicated similarity between
predicted and actual 5-year MACE survival (p = 0.90 in the derivation and p = 0.47 in the validation
set). This study developed and validated a simple-to-use method for assessing 5-year MACE risk in
patients with CAE.

Keywords: coronary artery ectasia; cardiovascular death; myocardial infarction; prediction model

1. Introduction

Coronary artery ectasia (CAE) is defined as coronary artery dilation of at least 1.5 times
the adjacent normal segment [1]. It is a rare finding in coronary angiography with reported
incidence ranging from 0.3% to 5% [2]. CAE was reported to be associated with poor
clinical outcomes. A retrospective study in 2017 indicated CAE was associated with an
increased risk of cardiac death, nonfatal myocardial infarction (MI) in patients with acute
myocardial infarction [3]. Another study demonstrated that CAE was an independent
predictor of mortality [4]. However, prognostic factors of adverse cardiovascular events in
patients with CAE were not well studied.

J. Cardiovasc. Dev. Dis. 2021, 8, 186. https://doi.org/10.3390/jcdd8120186 https://www.mdpi.com/journal/jcdd

https://www.mdpi.com/journal/jcdd
https://www.mdpi.com
https://doi.org/10.3390/jcdd8120186
https://doi.org/10.3390/jcdd8120186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcdd8120186
https://www.mdpi.com/journal/jcdd
https://www.mdpi.com/article/10.3390/jcdd8120186?type=check_update&version=1


J. Cardiovasc. Dev. Dis. 2021, 8, 186 2 of 15

In the past years, risk prediction models were widely used in coronary diseases for
risk stratification. For example, the SYNTAX score focused on the anatomy of coronary
vasculature and is currently recommended to guide revascularization therapy in coronary
artery disease (CAD) [5,6]. A combination of angiographical and clinical factors achieved
better prediction [7]. However, no risk prediction model for CAE has been published by
far. Previously our cohort study demonstrated that diffuse dilation is associated with poor
long-term outcomes in patients with CAE [8], indicating that angiographical characteristics
of dilated vessels might be important for risk prediction in these patients.

The study aimed to develop and validate a prognostic nomogram for patients with
coronary artery ectasia, based on baseline angiographical characteristics and clinical factors,
to help high-risk patient identification and clinical decision-making.

2. Materials and Methods
2.1. Study Population

A total of 1128 patients were included and the flowchart of the study objects is shown
in Figure 1. The derivation set comprised 729 consecutive CAE patients identified by
coronary angiography from January 2009 to June 2014 in Fuwai hospital, Beijing. The
validation set comprised 399 consecutive patients from July 2014 to December 2015. The
angiographic criteria of CAE were defined as: (1) Abnormal dilation of more than 1.5-fold
the diameter of adjacent normal segments; or (2) if there was no adjacent normal segment
found, normal values of the corresponding segment from data in age-sex matched patients
with normal coronary angiography were used as reference diameters [3,9] (Table S1 in the
Supplementary Materials). The angiogram of each patient was screened by two experienced
interventional cardiologists. The exclusion criteria were (1) Insignificant dilated vessel
diameter which was less than 1.5 times the reference diameter; (2) coronary artery fistula;
(3) stent-related coronary artery aneurysms; (4) known autoimmune disease; (5) missing
DICOM format imaging files; (6) valvular heart disease; or (7) history of CABG. This study
was approved by the Ethics Committee of Fuwai hospital. The study was performed
in accordance with the Declaration of Helsinki. All eligible patients provided informed
consent for long-term follow-up by telephone or clinic visit.
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2.2. Clinical Data Collection

Medical records including medical history, laboratory tests, and echocardiography
results were obtained from the hospital’s electronic medical records system. CAD risk
factors queried included age, sex, current smoker, hypertension, diabetes, dyslipidemia,
peripheral arterial disease, and family history of CAD. Details of the collected information
are shown in Table S2 in the Supplementary Materials. The modified Modification of Diet
in Renal Disease (MDRD) equations based on Chinese patients were applied to calculate
the estimated glomerular filtration rate(eGFR) [10]. All laboratory tests were at baseline
and before coronary angiography.

2.3. Angiographic Evaluation and Quantitative Coronary Angiography (QCA)

The DICOM format files of baseline coronary angiography were analyzed with Qangio
XA version 7.3 (Medis, Leiden, The Netherlands) by an independent catheterization core
laboratory. The definition of the coronary tree segments is as same as the SYNTAX score
system [5]. Each dilated lesion was measured for its involved segment, max diameter,
reference diameter, lesion length, and vessel length (Figure 2A,B). Angiographic features of
the dilated coronary segments including contrast agent stasis, calcification, and thrombus
were documented. Based on the above measurement, the maximum diameter of the
dilated lesion (MAXD), maximum diameter dilation ratio (i.e., the ratio of max diameter
to reference diameter, MAXD ratio), maximum length of the dilated lesion (MAXL), and
maximum length ratio (i.e., the ratio of lesion length to vessel length, MAXL ratio) were
calculated at patient level. Patients with MAXL ratio ≥ 1/3 were classified as diffuse
dilation group and MAXL ratio < 1/3 was focal [11,12]. CAE with MAXD ≥ 5 mm was
classified as large and MAXD < 5 mm was small [13]. To handle the correlation between
MAXL ratio and MAXD (Table S3 in the Supplementary Materials), a new categorical
variable “QCA characteristic classification” was generated: Type 1, MAXD < 5 mm &
MAXL ratio < 1/3; Type2, MAXD < 5 mm & MAXL ratio ≥ 1/3; Type3, MAXD ≥ 5 mm &
MAXL ratio < 1/3; Type4, MAXD ≥ 5 mm & MAXL ratio ≥ 1/3. The widely used Markis
classification of CAE was also assessed [14]. Baseline SYNTAX scores of each patient were
calculated to quantify the severity of combined coronary heart disease [5].
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2.4. Outcomes and Follow-Up

Follow-up was conducted annually by telephone interviewers using standardized
questionnaires. The primary outcome was 5-year major adverse cardiovascular events (MACE),
which was a component of cardiovascular death and nonfatal MI. 1-year and 3-year MACE
were also assessed. Notably, perioperative myocardial infarction was not included.

2.5. Statistical Analysis

Normally distributed continuous variables were expressed as mean ± standard devia-
tion and compared using the t-test. Continuous data with non-normal distribution were
summarized as median (interquartile range, IQR) and compared using the Mann–Whitney
test. Categorical variables were expressed as counts (composition ratio), and compared
using the Chi-square test or Fisher exact test as appropriate.

The overall survival nomogram was developed from a multivariable Cox regression
model in a derivation set. For variable selection, we performed univariable Cox regression
at first and variables with p-value < 0.15 were reserved as candidate variables. Spearman’s
rank correlation coefficient was used to evaluate the correlation of candidate variables. Then
all-subset Cox regression based on Akaike Information Criterion (AIC) was applied and the
model with minimum AIC value was selected as the prediction model. The proportional
hazards assumption of this model was tested by Schoenfeld residual. A prognostic score
was calculated by summing the number of risk points corresponding to each weighted
covariate. Individuals were subsequently classified for risk of MACE by prognostic scores
using cut-off value optimized by X-tile version 3.6.1 (Rimm Lab, Yale School of Medicine,
New Haven, CT, USA) [15]. The nomogram was assessed by discrimination and calibration
in both derivation set and validation set. Receiver operating characteristic curve was
performed and area under curve (AUC) was measured. Model performance was further
examined through survival analysis using Kaplan Meier curves, and a wider separation in
the curves indicated better discrimination. Calibration plots compared the actual Kaplan
Meier survival estimates with predicted MACE survival probabilities. Further calibration of
the nomogram was evaluated using the Hosmer-Lemeshow goodness-of-fit test according
to 10 risk groups. All analyses were performed with R version 4.1.0 (R Foundation for
Statistical Computing, Vienna, Austria).

3. Results
3.1. Clinical Features and Characteristics

The reported incidence of CAE ranged from 0.83% to 1.36% from 2009 to 2015
(Figure S1 in the Supplementary Materials). Baseline characteristics of the derivation
set and validation set were listed in Table 1. The 5-year follow-up rate was 95.34% and
95.49% respectively. Total of 51 MACE occurred in the derivation set, including 20 car-
diovascular death and 31 nonfatal MI. In the validation set, 7 cardiovascular death and
10 nonfatal MI were observed. The incidences of dyslipidemia and family history of CAD
were higher in the 399 individuals of the validation set.

Table 1. Baseline characteristics of the derivation dataset and validation dataset.

Derivation Set Validation Set p-Value

No. of patients 729 399
Male 618 (84.77) 333 (83.46) 0.621
Age, yrs 57.30 ± 10.86 56.96 ± 11.25 0.627
BMI, kg/m2 26.42 [24.22, 28.70] 26.63 [24.44, 29.39] 0.272
Clinical presentation 0.175

Asymptomatic 13 (1.78) 11 (2.76)
Stable angina 240 (32.92) 128 (32.08)
Unstable angina 333 (45.68) 176 (44.11)
NSTEMI 35 (4.80) 32 (8.02)

STEMI 98 (13.44) 43 (10.78)
Dyspnea 3 (0.41) 4 (1.00)
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Table 1. Cont.

Derivation Set Validation Set p-Value

Palpitation 7 (0.96) 5 (1.25)
Prior MI 201 (27.52) 109 (27.32) 0.983
Prior PCI 177 (24.28) 97 (24.31) 1.000
Diabetes 168 (23.05) 95 (23.80) 0.829
Hypertension 483 (66.26) 267 (66.92) 0.873
Dyslipidemia 457 (62.69) 280 (70.18) 0.014
Peripheral arterial disease 12 (1.65) 10 (2.51) 0.439
Family history of CAD 103 (14.13) 92 (23.06) <0.001
Current smoker 248 (34.02) 146 (36.59) 0.423

Values are mean ± SD, n (%), or median [interquartile range] unless otherwise stated. BMI = body mass index; CAD = coronary artery
disease; MI = myocardial infarction; NSTEMI = non–ST-segment elevation myocardial infarction; PCI = percutaneous coronary intervention;
QCA = quantitative coronary angiography; STEMI = ST-segment elevation myocardial infarction

3.2. Coronary Angiography Evaluation

Most patients with CAE were combined with CAD (90.53% in derivation set and
87.97% in validation set). The right coronary artery was the most common dilated vessel,
followed by the left anterior descending and left circumflex artery. In the derivation set,
there was a higher prevalence of diffuse dilation and a slightly lower incidence of left main
dilation. In QCA measurement, individuals in the validation set were with slightly greater
MAXD. Detailed coronary angiography evaluation is shown in Table 2.

Table 2. Coronary angiography evaluation of the derivation dataset and validation dataset.

Derivation Set Validation Set p-Value

No. of patients 729 399
Combined CAD 0.584

None 69 (9.47) 48 (12.03)
1-vessel disease 134 (18.38) 82 (20.55)
2-vessels disease 197 (27.02) 103 (25.81)
3-vessels disease 260 (35.67) 134 (33.58)
LM disease 3 (0.41) 0 (0.00)
LM + 1-vessel disease 5 (0.69) 3 (0.75)
LM + 2-vessels disease 11 (1.51) 3 (0.75)

LM + 3-vessels disease 50 (6.86) 26 (6.52)
SYNTAX score 14.50 [7.00, 21.50] 14.00 [7.00, 21.25] 0.674
LM ectasia 73 (10.01) 58 (14.54) 0.030
LAD ectasia 299 (41.02) 174 (43.61) 0.435
LCX ectasia 266 (36.49) 164 (41.10) 0.144
RCA ectasia 454 (62.28) 232 (58.15) 0.195
diffuse dilation 401 (55.01) 194 (48.62) 0.046
Markis classification 0.040
Type I 42 (5.76) 30 (7.52)
Type II 161 (22.09) 83 (20.80)
Type III 197 (27.02) 81 (20.30)
Type IV 329 (45.13) 205 (51.38)
MAXD 5.39 [4.59, 6.16] 5.54 [4.69, 6.30] 0.038
MAXD ratio 1.74 [1.59, 1.95] 1.74 [1.58, 2.01] 0.535
MAXL 31.07 [12.66, 62.39] 28.68 [12.15, 56.15] 0.190
MAXL ratio 0.36 [0.14, 0.69] 0.31 [0.13, 0.61] 0.090
contrast agent stasis 192 (26.34) 100 (25.06) 0.692
thrombus in dilated segment 14 (1.92) 6 (1.50) 0.786
calcification in dilated segment 47 (6.45) 28 (7.02) 0.808

Values are mean ± SD, n (%), or median [interquartile range] unless otherwise stated. CAD = coronary artery disease; LAD = left anterior
descending artery; LCX = Left circumflex artery; LM = left main; MAXD = maximum diameter of dilated lesion; MAXD ratio = maximum
diameter dilation ratio (ratio of max diameter to reference diameter); MAXL = maximum length of dilated lesion; MAXL ratio = maximum length
ratio (ratio of lesion length to vessel length); RCA = right coronary artery; SYNTAX = Synergy Between PCI With Taxus and Cardiac Surgery.
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3.3. Nomogram Prediction of MACE

Continuous variables including age, left ventricular ejection fraction (LVEF), left ven-
tricular internal dimension (LVID), N-terminal pro-brain natriuretic peptide (NT-proBNP),
MAXL ratio, and categorical variable including prior PCI, high sensitivity C-reactive protein
(hsCRP) > 3 mg/L, diffuse dilation (MAXL ratio > 1/3), MAXD > 5 mm, D-dimer > 0.5 mg/L,
and QCA characteristic classification were selected as candidate variables according to
univariable cox regression (Appendix A Table A1).

All subset Cox regression was carried out and the model with the lowest AIC was
selected as the final prediction model, which contained five predictors including age,
NT-proBNP, prior PCI, hsCRP > 3 mg/L, and QCA characteristic (Table 3). The distribution
of hsCRP and NT-proBNP is shown in Figure A1 in the Appendix A. The proportional
hazards assumption was tested by Schoenfeld residual (Figure S2 in the Supplementary
Materials). Figure 3 displays the nomogram to predict the risk of MACE at 1-year, 3-year,
and 5-year.

Table 3. The prediction model based on multivariable Cox regression.

Variables Hazard Ratio (95% CI) p-Value

Age 1.037 (1.010, 1.065) 0.007
History of prior PCI 1.980 (1.091, 3.595) 0.025

NT-proBNP (Each increase of 500 ng/L) 1.528 (1.031, 2.264) 0.035
Increased hsCRP (>3 mg/L) 2.335 (1.325, 4.114) 0.003

QCA characteristic classification - 0.011
Type 1 - -
Type 2 1.745 (0.520, 5.854) 0.368
Type 3 1.829 (0.632, 5.294) 0.261
Type 4 3.703 (1.543, 8.888) 0.003

CI = confidence interval; HR = hazard ratio; hsCRP = high sensitivity C-reactive protein; NT-proBNP = N-terminal
pro-brain natriuretic peptide; PCI = percutaneous coronary intervention; QCA = quantitative coronary angiography.
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of each risk factor until it reaches the top line labeled “Points”. Sum up the points of all risk factors
then draw a line descending from the axis labeled “Total Points” until it intercepts each of the risk
axes to determine 1-, 3-, and 5-year MACE probabilities.

3.4. Validation of the Nomogram

AUC for prediction of 5-year MACE was 0.75 (95% CI 0.68–0.82) in derivation set and
0.71 (95% CI 0.56–0.86) in the validation set (Figure 4A,B). Additionally, the nomogram
yielded AUC of 0.78, 0.77, 0.75, 0.75 for predicting 1-year to 4-year MACE risk in derivation
set and 0.62, 0.72, 0.67, 0.71 in validation set (Figure 4C,D). Patients were divided into
low-risk and high-risk groups using a cut-off prognostic score of 155. Kaplan–Meier curves
for both datasets were reported in Figure 4E,F. The curves of the high-risk and the low-risk
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group appeared well separated, indicating reasonable discrimination. Figure 5 displayed
calibration plots comparing predicted survival probabilities with actual Kaplan–Meier
estimates in both sets. Hosmer–Lemeshow tests yielded chi-squares of 3.52 (p = 0.90) and
7.64 (p = 0.47) for the derivation and validation sets, respectively, indicating no significant
difference between observed and predicted MACE survival in both datasets.
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3.5. Severity of Coronary Stenosis and 5-Year MACE

Considering the potential prognostic role of coronary artery stenosis, we added the
SYNTAX score directly to the final prediction model to assess if it was an independent
predictor of the primary endpoint. However, in the multivariable Cox regression, the
SYNTAX score was still not a predictive factor (HR = 1.008, 95% CI 0.98–1.037, p = 0.332)
and had little effect on the model. Similarly, severe CAD, defined as the 3-vessel or LM
disease, was also not a significant predictor (HR 1.228, 95% CI 0.69–2.19, p = 0.485).
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4. Discussion

In this cohort of 1128 patients with CAE, we developed and validated a nomogram-
illustrated prediction model for predicting 5-year MACE risk. This nomogram encom-
passed an extensive set of clinical risk factors that were easy to obtain, while also taking
advantage of angiographically anatomical characteristics of coronary arteries measured by
QCA. To our knowledge, this is the first risk prediction model for patients with CAE in a
large cohort of this rare disease. It might be a valuable tool for clinical practice.

The definition of CAE in the current study was clearer than the classical definition,
which simply defined CAE as coronary abnormal dilation of at least 1.5 times the adjacent
normal segment. This classical definition might be confusing when there was no adjacent
normal segment found due to extremely diffuse dilation or severe stenosis. Consistent
with previous studies [3,9], we used corresponding segment diameter from data in age-sex
matched patients with normal coronary angiography as a reference for such cases.

Nomograms have frequently been used in cancer prognosis in earlier times [16] and
cardiovascular disease recently [17]. A nomogram is a visual and easy-to- use prognostic
tool. In the current study, we considered cardiovascular death and nonfatal MI as primary
outcomes. Previous studies indicated that coronary artery ectasia might be a systemic
vascular disease, as it was associated with higher incidences of varicose veins [18] and
increased risk of non-coronary adverse vascular events [19]. Consistently, there was a
high incidence of CAE in patients with aortic aneurysms [20,21]. Therefore, death of
cardiovascular disease, which included not only cardiac death but also other causes such
as aortic aneurysm, was a reasonable outcome.

The validity of our nomogram was assessed by discrimination and calibration in two
data sets. The AUC was more than 0.7 for predicting 5-year MACE risk in both derivation
and validation set. The calibration curve showed great calibration for predicting 3-year
and 5-year MACE in both sets. Hosmer–Lemeshow test was further performed and both
sets were not significant, indicating suitable calibration of the prediction model. For 1-year
and 3-year MACE prediction, AUC was 0.78 and 0.75 in derivation set but 0.62 and 0.67
in validation set, and the calibration curve showed the model might overestimate MACE
risk in one subgroup in validation set. This might be a result of the limited sample size of
the validation set and low cumulative event rate (<5% in all subgroups in the calibration
curve) at 1 year.

Except for age, four additional variables including NT-proBNP, hsCRP ≥ 3 mg/L, his-
tory of prior PCI, and QCA characteristic classification were incorporated in the nomogram
and provided new perspectives for us to understand this rare disease.

NT-proBNP is secreted from the cardiomyocytes into the circulation in response to
cardiac stress [22]. It is closely related to cardiac function and regarded as a marker for the
diagnosis and prognosis of heart failure [23]. In Kawasaki disease, which is a common cause
of coronary aneurysms in teenagers, NT-proBNP is found to be a biomarker for diagnosis
and cardiac systolic function [24,25]. However, less is known about its relationship with
adverse cardiovascular events in patients with CAE. This study indicated that higher
NT-proBNP levels were associated with a higher risk of MACE. Natriuretic peptides
were also reported to be a marker to identify early cardiac target organ damage, such as
asymptomatic myocardial ischemia, left ventricular diastolic, and systolic insufficiency [26],
which might result in increased MACE risk.

HsCRP is an index of systemic inflammation. Our previous study demonstrated that
a higher level of hsCRP > 3 mg/L was independently associated with cardiac death and
nonfatal myocardial infarction in patients with CAE [27]. This time the association was
confirmed in a larger population. About 3 mg/L was the upper limit of normal in our
hospital’s laboratory, which was also the predictor of increased risk of coronary events and
all-cause mortality in the general population [28]. Furthermore, the restricted cubic splines
curve also indicated 3 mg/L was a reasonable cut-off value (Figure S3 in the Supplementary
Materials). HsCRP was a known biomarker of worse clinical outcomes in patients with
acute MI and a biomarker of residual inflammatory risk in cardiovascular disease [29–31].
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This study suggested that inflammatory risk might be one of the pathophysiological
mechanisms of CAE and played a role in the progression of this disease.

History of prior PCI was another predictor in the current study. Ectatic coronary
artery with a large diameter was challenging for PCI [32]. One possible reason is that
stent implantation in dilated coronary arteries might be more likely to result in stent
malapposition. However, few optical coherence tomography or intravascular ultrasound
study of CAE cohort has been reported, thus the incidence and clinical outcomes of acute
and late stent malapposition in patients with CAE remained unknown. From another point,
this factor contained information about coronary artery stenosis and atherosclerotic burden,
as most prior PCIs were stenting indicated for coronary stenosis. Notably, we accessed
SYNTAX score and severe CAD in both univariable Cox regression and multivariable
regression but neither of them was a predictive factor in the current study. This is not to
say that stenosis is not associated with prognosis, but to suggest that these variables such
as the SYNTAX score may not be appropriate for assessing prognosis in patients with CAE.

The last predictor in the nomogram was QCA classification, a variable to access the
severity and extent of the dilated lesion. Coronary artery ectasia was categorized as diffuse
if the lesion involved more than a third of the artery length [11,12]. Our prior study
indicated that diffuse coronary artery dilation was a predictor of poor long-term outcomes
in patients with CAE [8]. The current QCA study further suggested that diameter ≥ 5 mm
was associated with MACE in univariable Cox regression. Coronary aneurysms were
classified as small empirically if diameter < 5 mm [13]. This study showed that 5 mm is
not only a morphological cut-off value but also a potential predictor for clinical outcomes.
However, due to the correlation between lesion length and diameter of the dilated vessel,
that is, diffuse lesion tends to be larger in diameter, these two variables are not able to
enter a multi-variable Cox regression model together. As noted earlier, we generated the
predictor “QCA characteristic classification”, which combined the variable “diffuse” and
“diameter ≥ 5 mm” to solve this problem. So both the factors were considered in the
prediction model. This QCA study demonstrated again that coronary artery anatomy
characteristic of dilated vessels was an important predictor of MACE in patients with CAE.
In previous studies [33,34], empirical Markis classification of CAE was widely used but
no association with mortality had been found. Consistently, it was not a significant risk
factor in the current study and we proposed a new classification based on QCA which was
shown to be a predictive factor of MACE.

Further still, we used Xtile [15] to generate optimal prognostic score cut-off value to
stratify patients into low-risk and high-risk groups. A prognostic score < 155 was classified
as low risk and ≥155 as high risk. The Kaplan–Meier curves were well separated according
to the risk stratification. In addition to informing patients about their future MACE risk, the
results may be used as guidance for intensive treatment strategies, such as anticoagulation
therapy and strict risk factor control, for patients at high risks of MACE. Until now, the
optimal medical therapy of CAE remained unknown, and high-risk subset patients might
benefit from anticoagulation rather than antiplatelet [3]. However, comparative studies
must be performed to assess the effect of intensive therapeutic strategies based on the
current model.

Study Limitations

First, although this model was assessed in derivation set and validation set, all par-
ticipants were from a single-center and the limitation of a single-center cohort must be
recognized. Second, the relatively small sample size might affect the effectiveness and
evaluation of the model. Potential predictive variables might not be detected due to weak-
ened statistical efficiency of the limited sample size. However, it must be emphasized that
CAE was a rare finding and this current study comprising 1128 patients was the largest
cohort in contemporary studies. Third, just like all other prediction models, the overall
event rate might change as time goes by and treatment improves, thus a model might
become inexact gradually. In the present study, patients in the validation set were from
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a later period and the MACE rate seemed to be relatively lower, but the nomogram still
achieved good discrimination and calibration, indicating the reasonable clinical value of
this model. Fourth, model performance is not extremely perfect, and there is room for
improvement. Notably, intravascular imaging and coronary artery functional methods
were not available in this study and they could provide more coronary artery physiological
information, which might be important for risk prediction. Moreover, the primary end
point of this study was at patient level, and studies aiming at vessel-oriented cardiac events
(VOCEs) would provide more information. In the future, data from other centers are also
required to access the current model in more external validation sets.

5. Conclusions

In the present analysis from a large consecutive cohort of patients with angiograph-
ically confirmed CAE, we proposed a nomogram for risk prediction. This nomogram,
which consisted of QCA characteristic classification and four clinical variables including
age, NT-proBNP, history of prior PCI, and increased hsCRP (>3 mg/L), offered clinicians a
simple-to-use method for assessing 5-year MACE risk in patients with coronary artery ectasia.
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Appendix A

Table A1. Univariable Cox regression in derivation set.

Variables p Value Hazard Ratio (95% CI)

Continuous Variable

Age 0.011 1.04 (1.01–1.06)

BMI 0.981 1.00 (0.97–1.03)

LVEF 0.107 0.98 (0.95–1.01)

LVID 0.143 1.03 (0.99–1.08)

D-dimer 0.616 1.09 (0.77–1.54)

https://www.mdpi.com/article/10.3390/jcdd8120186/s1
https://www.mdpi.com/article/10.3390/jcdd8120186/s1
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Table A1. Cont.

Variables p Value Hazard Ratio (95% CI)

Serum creatinine 0.512 1.00 (0.99–1.02)

eGFR 0.966 1.00 (0.99–1.01)

TC 0.847 1.02 (0.81–1.29)

TG 0.578 0.92 (0.68–1.24)

LDL-C 0.867 0.98 (0.73–1.30)

HDL-C 0.750 1.18 (0.43–3.27)

NT-proBNP (increase of 500 ng/mL) 0.001 1.77 (1.25–2.52)

hsCRP 0.007 1.08 (1.02–1.15)

ESR 0.608 1.00 (0.99–1.02)

SYNTAX score 0.399 1.01 (0.99–1.04)

MAXD 0.736 1.01 (0.95–1.08)

MAXD ratio 0.833 1.03 (0.81–1.30)

MAXL 0.165 1.01 (1.00–1.01)

MAXL ratio 0.061 2.14 (0.97–4.74)

Categorical Variable

Male 0.263 1.69 (0.67–4.26)

MI at enrollment 0.815 1.09 (0.54–2.17)

Prior MI 0.188 1.47 (0.83–2.61)

Prior PCI 0.116 1.59 (0.89–2.85)

Diabetes 0.668 1.15 (0.61–2.15)

Hypertension 0.951 1.02 (0.57–1.82)

Dyslipidemia 0.964 0.99 (0.56–1.74)

Peripheral arterial disease 0.795 1.30 (0.18–9.41)

Family history of CAD 0.513 1.27 (0.62–2.61)

Current smoker 0.828 1.07 (0.60–1.89)

SYNTAX Score Level - -

low (≤22) - -

mid (>22 and ≤32) 0.211 0.58 (0.25–1.36)

high (>32) 0.788 1.17 (0.36–3.79)

Severe CAD (LM or 3-vessels disease) 0.332 1.31 (0.76–2.27)

LM ectasia 0.621 1.24 (0.53–2.91)

LAD ectasia 0.982 1.01 (0.58–1.76)

LCX ectasia 0.628 0.87 (0.48–1.55)

RCA ectasia 0.697 1.12 (0.63–1.99)

Diffuse dilation (MAXL ratio ≥ 1/3) 0.022 2.02 (1.11–3.69)

Markis Classification - -

Type I - -

Type II 0.179 4.00 (0.53–30.29)

Type III 0.160 4.22 (0.57–31.53)

Type IV 0.485 2.05 (0.27–15.48)
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Table A1. Cont.

Variables p Value Hazard Ratio (95% CI)

Contrast agent stasis 0.267 1.39 (0.78–2.49)

Thrombus in dilated segment 0.996 0.00 (0.00–Inf)

Calcification in dilated segment 0.500 0.61 (0.15–2.53)

LVEF < 50% 0.155 1.78 (0.80–3.96)

LVID > 55 mm 0.342 1.40 (0.70–2.79)

HsCRP > 3 mg/L 0.002 2.36 (1.36–4.09)

D-dimer > 0.5 mg/L 0.145 1.67 (0.84–3.34)

MAXD ≥ 5 mm 0.016 2.27 (1.16–4.42)

QCA Characteristic Classification - -

Type 1 - -

Type 2 0.341 1.78 (0.54–5.83)

Type 3 0.278 1.80 (0.62–5.18)

Type 4 0.007 3.31 (1.38–7.92)
BMI = body mass index; CAD = coronary artery disease; CI = confidence interval; eGFR = estimated glomeru-
lar filtration rate; ESR = erythrocyte sedimentation rate; HDL-C = high density lipoprotein cholesterol;
hsCRP = high sensitivity C-reactive protein; LAD = left anterior descending artery; LCX = Left circum-
flex artery; LDL-C = low density lipoprotein cholesterol; LM = left main artery; LVEF = left ventricular
ejection fraction; LVID = left ventricular internal dimension; MAXD = maximum diameter of dilated lesion;
MAXD ratio = maximum diameter dilation ratio (ratio of max diameter to reference diameter); MAXL = max-
imum length of dilated lesion; MAXL ratio = maximum length ratio (ratio of lesion length to vessel length);
MI = myocardial infarction; PCI = percutaneous coronary intervention; NT-proBNP = N-terminal pro-brain na-
triuretic peptide; TC = serum total cholesterol; TG = serum total triglycerides; RCA = right coronary artery;
SYNTAX = Synergy Between PCI With Taxus and Cardiac Surgery.
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