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Abstract

The clinical condition COVID-19, caused by SARS-CoV-2, was declared a pandemic by the
WHO in March 2020. Currently, there are more than 5 million cases worldwide, and the pan-
demic has increased exponentially in many countries, with different incidences and death
rates among regions/ethnicities and, intriguingly, between sexes. In addition to the many
factors that can influence these discrepancies, we suggest a biological aspect, the genetic
variation at the viral S protein receptor in human cells, ACE2 (angiotensin I-converting
enzyme 2), which may contribute to the worse clinical outcome in males and in some regions
worldwide. We performed exomics analysis in native and admixed South American popula-
tions, and we also conducted in silico genomics databank investigations in populations from
other continents. Interestingly, at least ten polymorphisms in coding, noncoding and regula-
tory sites were found that can shed light on this issue and offer a plausible biological expla-
nation for these epidemiological differences. In conclusion, there are ACE2 polymorphisms
that could influence epidemiological discrepancies observed among ancestry and, more-
over, between sexes.

Introduction

At the end 0f 2019, a new outbreak caused by SARS-CoV-2 (a coronavirus) started in Hubei
Province, China. The clinical condition, COVID-19, probably arose from natural selection in
bat reservoirs [1]. There are currently more than five million cases worldwide, and the pan-
demic has been increasing exponentially in many countries since the disease was deemed a
pandemic by WHO in March 2020 [2].

The lethality rate is influenced by the speed of contagion, idiosyncrasies of the affected pop-
ulations according to the containment policies adopted, socioeconomic conditions and the
absorption limit of the health system [3]. Due to the high rate of transmission of the virus by
air and the novelty of the infection to humans, the disease has become a global emergency
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problem, forcing periods of social confinement to contain the pandemic, in addition to
hygiene habits [4].

Although mortality in men is significantly higher [5], representing an increase from 20% to
70% in European countries, approximately 65% in some Asian countries, and, even more
peculiarly, Dominican Republic citizens showed three times more deaths in men than women
[2,6,7]. It is unknown whether this is due to biological differences between genders, differences
in behavioral habits, or comorbidities rates [8].

Studies indicate that cell-virus interaction is mediated by the connection of the transmem-
brane glycoprotein spike (S), present in the form of trimers on the viral surface, to angiotensin
I-converting enzyme 2 (ACE2, also called hACE2) [9].

The level and expression pattern of ACE2 in different tissues and cells can be critical to the
susceptibility and symptoms resulting from SARS-CoV-2 infection [10]. Zhou and collabora-
tors [11], using scRNA-seq datasets, classified organs vulnerable to infection as high and low
risk based on their expression levels of ACE2. At the clinical level, the symptoms of COVID-19
may be related to the entry and affinity of the virus in these organs, as observed in heart failure
disease and increased ACE2 expression, in which viral infection is related to a higher risk of
heart attack and worse ill condition [12]. For Li and collaborators [13], ACE2 genetic varia-
tions could be crucial to the susceptibility in different cohorts and to clinical outcomes of
COVID-19.

Currently, investigations of potential genetic variations that may favor or hinder interac-
tions between the virus and the host have been conducted [14-16], showing a high number of
codons that can, if altered, interfere with the complexity of the virus-cell interaction, as experi-
mentally demonstrated [17]. It is noteworthy that the ACE2 is located on the X chromosome,
causing the impossibility of heterozygosity in men. Therefore, polymorphisms in their single
copy could be related to the worst outcomes observed in males [18].

Considering the above, we sought explanations for an intrinsic factor that differed between
sexes and populations that may justify the differences observed in the incidence and lethality
of SARS-CoV-2 infection among the different regions of the world, as well as between sexes.
We analyzed global data in the 1000 Genomes Database and, in addition, we conducted studies
of exomes in two population groups in the Brazilian Amazon (Indians and miscegenated),
without description in public genomic banks, and we compared this information with a public
databank from a population in southeastern Brazil. These comparisons are important because
Brazil has a continental size and an admixed population in the North (more Amerindians
among all regions), Northeast (more Africans), and South and Southeast (more Europeans)
[19].

Materials and methods
Analyses in the 1000 Genomes project

The analysis was performed on data from the 1000 Genomes Phase 3 database (1000G), which
comprises 84,4 million variants in 2,504 individuals from 26 different populations [20]. These
populations were concentrated in five large groups: African (AFR), Ad Mixed American
(AMR), East Asian (EAS), European (EUR), and South Asian (SAS).

Through the complete sequence of the X chromosome, a region between nucleotides
15620281 and 15512643 was selected in revision GRCh37.p13 (15602158 and 15494520 in
GRCh38.p13) since the angiotensin I-converting enzyme 2 gene (ACE2, Gene ID: 59272,
updated on 22-Mar-2020) is located on the complementary strand, covering 107639 bp. Addi-
tionally, a region of ten thousand base pairs upstream to the gene was included in the analysis
so that the initial search site became 15630281 (GRCh37.p13) [20,21], aiming to search for
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modifications in noncanonical sites to locate minor allele frequency (MAF) and allelic differ-
ences that could be relevant. The index considered was the difference in allele frequency
among all polymorphisms (SNP, INDEL and SV) contained in the study region, regardless of
their global or populational frequency.

Analyses in Amazon natives and admixed population

For the allelic comparison between the populations cataloged in the 1000 Genomes database
and the population not described in the respective project, we investigated a population com-
posed of 64 Amerindians and 82 admixed individuals from the Amazon region of northern
Brazil (data available at S4 Table). This study was approved by the National Committee for
Ethics in Research (CONEP) and the Research Ethics Committee of the UFPA Tropical Medi-
cine Center under CAAE number 20654313.6.0000.5172. The participants signed an informed
consent form. The Amerindians represent 10 different Amazonian ethnic groups that were
grouped together as the Native American (NAM) group. Tribe names and geographic coordi-
nates of the Brazilian Amazon Indian populations are presented in S5 Table.

Compared with other Native Americans (from different countries and even different
regions of Brazil), the Amazonian indigenous groups are similar to each other. Commonly,
there are quite differences between distinct ethnic groups of native Americans. However, in
comparison to populations of other ancestry backgrounds (Europeans or Africans), the Native
Americans of the Brazilian Amazon may be grouped as a homogeneous population [22-24].

The 82 admixed individuals (Brazilian Admixed Population—BAP) live in Belém city,
located in northern Brazil, where, due to the colonization process, are characterized by three
ancestral genetic components: European, Native American and African. This sample group is
also enrolled in a broad project. Furthermore, we also compared our findings to a database of
variants analyzed in a Southeast Brazilian population, the Online Archive of Brazilian Muta-
tions (ABraOM, we represent here as ABM) [25].

The Brazilian population is one of the populations with the broadest genetic diversity in the
world due to the high degree of miscegenation in its formation [26-28]. Different regions of
Brazil have significant genetic variations in the contribution of their ancestry. The population
of southeastern Brazil, which forms the ABM database, has a high contribution from European
ancestors [29]. Our data (BAP) were generated based on the population of Northern Brazil of
formation with high Amerindian ancestry, resulting in relevant genetic differences between
regions [30].

DNA extraction and Exome library

The DNA was extracted as described by Sambrook and collaborators [31]. The genetic material
was quantified using a Nanodrop spectrophotometer (Thermo Fisher Scientific Inc., USA).
The libraries were prepared using the Nextera Rapid Capture Exome (Illumina) and SureSelect
Human All Exon V6 (Agilent) Kits. Sequencing reactions were run using the NextSeq 500
High-output v2 300 Cycle Kit (Illumina®), USA) on the NextSeq 500® platform (Illumina®),
USA).

Exomic bioinformatics

The quality of the FASTQ reads was analyzed (FastQC v.0.11- http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/), and the samples were filtered to eliminate low-quality read-
ings (fastx_tools v.0.13 - http://hannonlab.cshl.edu/fastx_toolkit/). The sequences were aligned
with the reference genome (GRCh37) using the BWA v.0.7 tool (http://bio-bwa.sourceforge.
net/). The file was indexed and sorted (SAMtools v.1.2 - http://sourceforge.net/projects/
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samtools/). Subsequently, the alignment was processed (duplicate PCR removal) (Picard Tools
v.1.129 - http://broadinstitute.github.io/picard/), and mapping quality recalibration and local
realignment (GATK v.3.2 - https://www.broadinstitute.org/gatk/) were performed. The results
were processed to determine the variants (GATK v.3.2) from the reference genome. SnpEff
v.4.3t, Ensembl Variant Effect Predictor (Ensembl release 99) and ClinVar (v.2018-10) were
used for variant annotations.

Databank analysis

Information from the databank and exomes were analyzed using descriptive statistics, consid-
ering the values of allele frequencies of populations and subpopulations as the data explored
comparatively. Genotypic differences between sexes in the homo/hemizygous state were calcu-
lated based on the premise that populations are in Hardy-Weinberg equilibrium.

Results

Analyzing the polymorphisms contained in the ACE2 locus, in addition to ten thousand base
pairs upstream, we found 2266 polymorphisms, of which 199 were contained in the region 5’
upstream of the gene, 85 were located in exonic regions, and the others were located in the
introns.

Polymorphisms in exonic regions that might influence ACE2 protein
structure

In the exonic region, 15 SNPs of the 85 polymorphisms found in 1000G present differences
greater than 1% between some of the populations (all between exons 17 to 21). Another three
polymorphisms (rs889263894, rs1027571965, rs147464721) appear mainly in the Brazilian
population. Nine of these exonic polymorphisms are present in the most common isomorphs
(vl and v2) and show important differences in populational frequency (Fig 1, additional data
on S1 Table).

As noted, some of these polymorphisms have very significant differences between MAFs
from different populations. rs35803318 is absent in Asians (virtually absent in AFR) and has
an average MAF of 0.05 in EUR and ABM, increased to 0.074 in BAP, and has the highest allele
frequency in the indigenous population among all populations (MAF = 0.121).

On the other hand, rs4646179 is absent in indigenous, miscegenated people from the Ama-
zon, Asians and Europeans and is found in the population of southeastern Brazil and Ameri-
cans, with a MAF = 0.023 and an even greater frequency in Africans (MAF = 0.074).

Interestingly, rs1027571965 and rs889263894 presented allele frequencies exclusively in
indigenous people and are not being found in any other world population of 1000G, neither in
BAP nor in the Brazilian ABM database, with MAF = 0.095 and 0.034, respectively.

rs147464721 has MAF = 0.014 in the miscegenated population of the Amazon (BAP); how-
ever, they did not present any allelic frequency among the indigenous population, as well as in
Asians and Europeans, presenting a slightly lower MAF difference when compared to AFR
and AMR.

Polymorphisms in upstream regions that might influence in ACE2
expression

Differences greater than 1% of MAF in the region 10,000 base pairs 5" upstream to the gene
were observed in 57 polymorphisms (Fig 2).
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Fig 1. MAF of the main polymorphisms in exons present in the most common isoforms (v1 and v2) of the ACE2
gene. RS: Reference SNP; Ref: reference allele; Alt: alternative allele; EUR: European; EAS: East Asian; SAS: South Asia;
AMR: Ad Mixed American; AFR: African; NAM: Native American; BAP: Brazilian Admixed Population; ABM: Online
Archive of Brazilian Mutations.

https://doi.org/10.1371/journal.pone.0243887.g001
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Fig 2. MAF of polymorphisms of the 10k 5’ upstream region of ACE 2, with MAF differences greater than 1%. Coordinate represents the frequency of
the allele (MAF).

https://doi.org/10.1371/journal.pone.0243887.9002
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Among the highlights, rs5934250, with a change from G to T at approximately 5700 bp
upstream to the gene, presented a difference of up to 0.47 in the AFR (0.10), AMR (0.29), EAS
(0.01), EUR (0.47) and SAS (0.22) populations for the T allele. This means that the T allele is
almost zero in the East Asian population, while it has a MAF in almost half of Europeans.

It is also worth mentioning that the rs2097723 SNP presents a very heterogeneous distribu-
tion, oscillating between 7% in Africans, 32% in Americans, 42% in East Asians, 28% in Euro-
peans and 22% in South Asians.

Polymorphisms in intronic regions that might modify ACE2 regulation

In intronic polymorphisms, many of them present a very relevant MAF interpopulational dif-
ference (up to 0.46). Two of them deserve to be highlighted, rs2285666 and rs4646140, because
they are near exons.

It is important to mention that rs2285666 has the highest frequency of the rarest allele
(MAF = 0.71) in the indigenous population, with very important MAF differences of 0.17
(EAS), 0.23 (SAS), 0.36 (BAP), and 0.37 (AMR) and an average difference of 0.48 for the others
(EUR, AFR and ABM). In contrast, rs4646140 has a MAF ranging from zero in Indians to 0.13
in Africans through EUR, AMR, BAP, EAS, ABM and SAS (Fig 3). Furthermore, considering
the possibility of influence in determining isoforms v2, it is worth noting rs190614788 on
intron 1 (with a difference of more than 0.11 between EUR and EAS).

The main findings of our study are concatenated in Table 1 (additional information in S3
Table), and they are discussed below.

Discussion

Polymorphisms of the ACE2 gene related to the protein binding region to
the viral particle

Considering the regions where the virus commonly binds to ACE2 [15,16], our results point to
the absence of relevant polymorphisms at these sites because many of those located in coding
regions have MAFs close to or less than 0.001, as well as a very low possibility of conferring
any global (or population) impact on the destination of the disease. Therefore, there does not
seem to be any direct mechanism (at the sites of interaction) that could confer some form of
resistance or greater propensity to contagion in humans. In view of this finding, other molecu-
lar modifications with potential functional repercussions were investigated, including 1)
changes in sites distant to the viral binding locus, but which may bring about some structural
protein change with the potential to influence the cell-virus interaction; 2) changes in transla-
tion regulation regions at 3" UTR sites, at points of interaction with miRNA; and 3) modifica-
tions in transcription regulation zones in 5" upstream regions and intragenic promoters.
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Table 1. ACE2 polymorphisms with the potential to influence gene structure or gene expression. Interpopulation and inter-sex differences.

Population* RS Site MAF* Others (MAF) Modification (score) Men risk | Women risk | M/W

BAP rs147464721 | codon | 0.014 absent Synonymous 1.4% 0.0% 71.4

351
ABM, AMR, rs4646179 codon | 0.074 absent Synonymous 7.4% 0.5% 13.5

AFR 690

NAM rs35803318 codon | 0.121 EAS, SAS, AFR (null) Synonymous 12.1% 1.5% 8.3
749

EUR rs41303171 codon 0.018 absent Asn > Asp (0.02) 1.8% 0.0% 55.6
720

AFR rs147311723 codon 0.017 EAS, SAS, AMR, ABM Leu > Phe (0.941) 1.7% 0.0% 58.8
731 (null)

NAM rs1027571965 codon 0.095 absent Ala > Gly (0.045) 9.5% 0.9% 10.5
673

NAM rs889263894 codon 0.034 absent Lys > Ile (0.958) 3.4% 0.1% 29.4
541

EAS rs182366225 | 3'UTR | 0.018 absent Upregulation 1.8% 0.0% 55.6

AFR rs142017934 | 3'UTR | 0.013 absent Upregulation 1.3% 0.0% 76.9

NAM 152285666 intron 0.71 | EAS (0.54) to AFR (0.17) Upregulation (Brain, Nerve) 71.0% 50.4% 1.4

AFR rs4646140 intron 0.13 | SAS (0.085) to NAM (0) No evidence 13.0% 1.7% 7.7

EAS rs2097723 upstream | 0.42 AMR (0.32) to AFR Upregulation (Brain/Nerve) 42.0% 17.6% 2.4

(0.07)
EUR rs5934250 upstream | 0.47 AMR (0.29) to EAS Downregulation (Brain, Nerve, Artery, Pituitary, 47.0% 22.1% 2.1
(0.01) Prostate)

Population®: Population with greater MAF; RS: Reference SNP; Site: Genic region; MAF*: Minor allele frequency of population®; Others (MAF): MAF of the other
populations (or populations without MAF = null); Modification (score): Type of molecular consequence and PolyPhen Score [32]; Men risk: Based on hemizygous
genotypic frequency (q); Women risk: Based at a homozygous genotypic frequency (q%); M/W: Risk ratio between sexes to be a carrier of the minor allele only.

https://doi.org/10.1371/journal.pone.0243887.t001

Polymorphisms with the potential to cause changes in the protein structure
of ACE2 that may impact virus-cell interactions

The ACE2 gene is mainly composed of two isoforms with 18 or 19 exons (v1 and v2) that
encode the same protein (805 amino acids) and three other smaller variants: x1, x2 and x3,
which have rarely been studied [21,33]. Thus, we searched for genotypic information in these
exons that could allow us to infer a disruption with the potential to culminate in impacts on
the disease process.

Fifteen SNPs showed MAF differences greater than 1% among the studied populations,
mainly belonging to exons 17, 18, 19, 20 and 21; the last two are terminal exons belonging only
to rare isoforms [21].

Among these, rs41303171 is a missense SNP, causing the replacement of an asparagine
(neutral amino acid) with aspartic acid (electronegative amino acid) at codon 720, which can
culminate in a conformational disorder of this protein that, directly or indirectly, can change
viral interactions. This polymorphic variant C is practically exclusive to Europeans
(MAF = 0.018), a fact corroborated by Cao and collaborators [10], mainly in British individu-
als (MAF = 0.03). Across Asia, this allele is not found, and is only present in a single Asian resi-
dent of the UK [20]. In Brazil, ABraOM data point to MAF<0.01. Thus, the possible biological
implications of this change may have some clinical-epidemiological consequences in a small
niche of European patients with COVID-19 when compared to other regions of the world.

The change from leucine to phenylalanine in codon 731 (rs147311723) results in the
exchange of two nonpolar amino acids that are structurally different (with the presence of an
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aromatic ring in this last), which may culminate in functional modifications in the ACE2 pro-
tein, with the prediction that this will occur equally to 0.941, according to the PolyPhen algo-
rithm [32]. This polymorphism is absent in Asians and Europeans, with low frequency in
Americans and Southeast Brazilians, and it has MAF = 0.017 in Africans, mainly in Nigerians,
with MAF = 0.043 of allele A. In a study by Cao and colleagues [10], this polymorphism was
described as a low frequency SNP in the 1000G database, but without any mention in the
China Metabolic Analysis Project (ChinaMAP) database, reinforcing its absence in this popu-
lation group.

In a context focused on the Brazilian Amazon, unprecedented data showed the presence of
two SNPs absent in all populations of the 1000G. One of them is rs1027571965, which is char-
acterized by an exchange of G>C in exon 16, leading to a substitution of alanine for glycine at
codon 673 (MAF = 0.095), and the other, rs889263894, an exchange of T>>A in exon 13
(MAF = 0.034), causing an alteration of lysine to isoleucine in codon 541; thus, this last SNP
should cause structural differences by the exchange of a polar and electropositive amino acid
with a hydrophobic amino acid, possibly resulting in functional changes in ACE2, with a prob-
ability of 0.958 that this event will occur [32]. Both SNPs had uncertain significance until now.

It is also noteworthy that in codons 351 (rs147464721), 690 (rs4646179) and 749
(rs35803318), there are just synonymous alterations, without any study of modifications of this
enzyme in a genotype-dependent manner.

Polymorphisms with the potential to accentuate ACE2 gene expression or
translation that may impact virus-cell interactions

Our data point to a series of polymorphisms in the region upstream of the ACE2 gene, which
oscillate markedly among populations and, therefore, in individuals, although some of them
may not have relevant frequency at a global level. Among them, there are rs2097723 and
rs5934250, with population allele differences of up to 0.35 and 0.47, respectively.

The lower frequency allele (C) of rs2097723 has a normalized effect size (NES) of up to 0.36
[34] for increased expression of the ACE gene in brain tissue. The T allele of rs5934250 has an
NES of 0.64 for lower ACE2 expression in this tissue, among others [34]. Thus, when looking
at population data, it can be inferred that, according to these two variants, populations in East
Asia would have the most related scenario regarding increased gene expression. Europeans or
Africans have a lower frequency of ACE2 higher-expression-related SNPs in the pre-genic
region.

Another interesting observation involves the exon 19 polymorphisms, which are contained
in the 3" UTR region of the two most important isoforms, the canonical miRNA binding site
for translation control dependent on this epigenetic mechanism [21,35]. In this regard, observ-
ing the regions of interaction between the miRNA and nucleotide exchange sites, it can be
noted that rs182366225 is included in the site of attachment to the seed region of miR-140-
3p.1 and miR-483-3p.2, both with a match of 7mer-1A and Context ++ score percentile of 90
and 74, respectively. Thus, the proportion of translation regulation that depends on these miR-
NAs will be upregulated in the East Asian population, especially in Vietnamese and Chinese
individuals, who have an average MAF of 0.032 of the C allele, which is not observed in any
other population in the world [36]. A reporter assay for miR-483-3p predicted targets by
Kemp and collaborators [37] showed that the regulation of ACE2 is dependent on this
microRNA.

The rs142017934 site includes the connection site for miR-610 and miR-3646, both with
8mer of match in ACE2 (context ++ score percentile of 98 and 77, respectively), in addition to
the seed regions of miR-3609 and miR-548ah-5p, both with a match of 7mer-m8 and scores of
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84 and 74, respectively [35]. This polymorphism occurs exclusively in the population of Afri-
can origin (MAF = 0.013), mainly in Nigerians and individuals from Barbados with African
ethnicity, with an average of MAF = 0.026. This higher frequency among people of African
ethnicity residing on different continents is probably due to the strong population ancestry of
Barbados being from West Africa, a region containing Nigeria [38].

Among the intronic polymorphisms, rs2285666 draws much attention because it presents
the highest frequency of the rarest allele (MAF = 0.71) in the indigenous population, with dif-
ferences ranging from 0.48 to 0.17 for the other populations, with the Asians being the most
similar to the Indians, mainly the Chinese. The high MAF observed in the Chinese population
in the present study corroborates the data of Cao and collaborators [10] using the ChinaMAP
database. The substitution of C for T in intron 4, to only four nucleotides of exon 3 (located in
the splicing region), influences the gene expression in brain tissues and tibial nerve in some
way so that the T allele is related to a significant increase in the expression of ACE2 [34], thus
may be a determinant in clinical differences in this naturally more vulnerable population.

Another intronic polymorphism, rs4646140, has no MAF in the indigenous population,
reaching 0.13 in Africans, mainly in Nigerians (0.17). Some studies show the influence of these
two intronic SNPs with hypertension [39,40], since there is a possibility that they will interfere
in the ACE2 protein product.

In conclusion, considering this genetic aspect involving ACE2 in the complex relationship
between SARS-CoV-2 and humans, we emphasize the following:

There are genetic markers that influence in ACE2 alterations and potentially to the unequal
rates of aggravation and death observed between men and women. If considering some of the
polymorphisms as harmful when in homozygosity (genotypic frequency equal to allelic fre-
quency squared) or hemizygosity (genotypic frequency equal to allelic frequency), men would
have this conditions from 1-4 to 77 times more (uniallelic) than women (Table 1). Thus, a rele-
vant contribution to the understanding of higher mortality in males is presented, as reported
in the various populations affected by COVID-19.

The rates of contagion and death fluctuate greatly; in this sense, ACE2 polymorphisms
could contribute to these differences. The rs182366225 and rs2097723 polymorphisms that
potentially may increase the expression of the ACE2 are more frequent in the East Asian popu-
lation. These allele frequencies are even higher in Chinese and Vietnamese populations. Such
markers are on the order of 30% to 180% more frequently in East Asians than in other
populations.

Indigenous populations from Amazon have exclusive genetic polymorphisms
(rs1027571965 and rs889263894) or with higher frequencies (rs2285666 and rs35803318) than
other populations. These polymorphisms are related to increased expression of the ACE2 gene
in brain tissues, among others. As supported previously [10-12], this is a relevant finding
because they can input some influence on the outcome in these populations, whose involve-
ment by COVID-19 was recently reported. This population group, due to its genetic peculiar-
ity and less previous exposure to viral infections, represents a major challenge in
understanding and handling this pandemic.

Africans have higher rates of three relevant polymorphisms (rs147311723, rs142017934 and
rs4646140). Polymorphism in rs142017934 is exclusive to this population and can influence
the translation regulation of the ACE2 gene, thus enhancing the expression of this gene in
individuals who carry this variant. However, Europeans and some Africans have a higher fre-
quency of an allele (rs5934250) that seems to reduce the expression of ACE2 in some tissues.

Therefore, the study highlights the importance of considering this genetic factor as facilitat-
ing or restricting infection and, especially, in potential clinical manifestations and outcomes.
Investigation of these polymorphisms in patients affected by COVID-19, with different clinical
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conditions and outcomes, could potentially advance our understanding of this pandemic
disease.
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