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A multi-component classifier for 
nonalcoholic fatty liver disease 
(NAFLD) based on genomic, 
proteomic, and phenomic data 
domains
G. Craig Wood1, Xin Chu1, George Argyropoulos2, Peter Benotti1, David Rolston1, 
Tooraj Mirshahi1, Anthony Petrick1, John Gabrielson1, David J. Carey1, Johanna K. DiStefano3, 
Christopher D. Still1 & Glenn S. Gerhard1,2

Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of conditions that include 
steatohepatitis and fibrosis that are thought to emanate from hepatic steatosis. Few robust biomarkers 
or diagnostic tests have been developed for hepatic steatosis in the setting of obesity. We have 
developed a multi-component classifier for hepatic steatosis comprised of phenotypic, genomic, and 
proteomic variables using data from 576 adults with extreme obesity who underwent bariatric surgery 
and intra-operative liver biopsy. Using a 443 patient training set, protein biomarker discovery was 
performed using the highly multiplexed SOMAscan® proteomic assay, a set of 19 clinical variables, 
and the steatosis predisposing PNPLA3 rs738409 single nucleotide polymorphism genotype status. 
The most stable markers were selected using a stability selection algorithm with a L1-regularized 
logistic regression kernel and were then fitted with logistic regression models to classify steatosis, that 
were then tested against a 133 sample blinded verification set. The highest area under the ROC curve 
(AUC) for steatosis of PNPLA3 rs738409 genotype, 8 proteins, or 19 phenotypic variables was 0.913, 
whereas the final classifier that included variables from all three domains had an AUC of 0.935. These 
data indicate that multi-domain modeling has better predictive power than comprehensive analysis of 
variables from a single domain.

Obesity is associated with fat accumulation in the liver, which is commonly diagnosed as non-alcoholic fatty 
liver disease (NAFLD). NAFLD encompasses a wide range of conditions that are thought to arise from fatty liver 
(hepatic steatosis) to nonalcoholic steatohepatitis (NASH), which refers to findings on liver biopsy reflecting 
steatohepatitis (fat related inflammation) with or without fibrosis in the absence of significant alcohol consump-
tion1,2. NAFLD has become the major cause of chronic liver disease due to the progression of simple steatosis to 
hepatocyte injury, liver inflammation, fibrosis, and cirrhosis that worsen clinical outcomes3,4 and are associated 
with increased liver-related morbidity and mortality5. The prevalence of NAFLD is increasing in tandem with the 
rising rates of obesity, and is expected to double in the U.S. by 20306 with upwards of 100 million people in the 
U.S. at risk7. Despite the public health significance of NAFLD, most affected individuals remain undiagnosed8.

We9 and others10,11 have identified several clinical factors, including lipid and glucose levels, as well as param-
eters of iron metabolism, that are associated with the development of steatosis. However, neither clinical char-
acteristics nor laboratory values have yet proved useful for predicting disease development or course12–14. Liver 
biopsy is the primary method used to accurately assess NAFLD stage15–17, although histological evaluation has 
diagnostic limitations18. Percutaneous liver biopsy is an invasive and expensive procedure associated with major 
complications, including mortality19. While liver biopsy can be performed in the context of abdominal surgery, 
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particularly in patients with extreme obesity who are high risk for NAFLD undergoing bariatric procedures18, this 
population represents only a small fraction of patients at risk.

Given the substantial public health burden of NAFLD, robust methods are needed to identify those who have 
fatty liver who are at risk for inflammation and fibrosis. Because the common liver function tests, alanine ami-
notransferase (ALT) and aspartate aminotransferase (AST) lack sufficient sensitivity or specificity for NAFLD20–24 
other non-invasive biomarkers have been studied, including those associated with cell death, inflammation, and 
oxidative stress, as well as algorithms of multi-component panels25. Thus far, no biomarkers have proven to be 
clinically acceptable for diagnosis, prognosis, or risk stratification26. Imaging techniques have also been used to 
assess NAFLD, including liver ultrasound, a relatively inexpensive modality with relatively high sensitivity for 
moderate to severe steatosis, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy, both 
relatively expensive with limited availability, as well as computed tomography (CT) and transient ultrasound 
elastography27. However, none of the current imaging modalities are logistically or economically viable to broadly 
apply to the population at risk for NAFLD except as an adjunct to biopsy28.

We used a multivariate approach integrating “omics” derived variables from three data domains; genomic, 
phenomic, and proteomic. We selected the NAFLD susceptibility single nucleotide polymorphism (SNP) 
rs738409 in the patatin-like phospholipase domain containing 3 gene (PNPLA3)29 as the genomic variable, well 
characterized across diverse populations30–32. Phenomic variables were identified initially in a comprehensive 
analysis over 200 clinical variables9 and a set of serum proteins were identified using a novel unbiased high con-
tent multiplexed proteomic screen33 based on the SOMAmer® (Slow Off-rate Modified Aptamer) technology. 
This approach uses single stranded DNA-based protein affinity reagents21 that incorporate chemically modified 
nucleotides as structural mimetics of amino acid side chains increasing diversity, affinity, and specificity for native 
proteins22. A multicomponent panel for steatosis using data from all three domains resulted in an AUC for the 
receiver operating characteristic (ROC) curve of 0.935. Integration of variables from a diverse set of data sources 
provides a powerful approach for the development of non-invasive biomarker algorithms for NAFLD.

Materials and Methods
Study Participants. Blood for DNA isolation and fasting serum samples were collected within three months 
prior to surgery during pre-operative clinic visits from 577 patients who had been consented as part of a research 
program on NAFLD and obesity in the Geisinger Clinic Center for Nutrition and Weight Management Bariatric 
Surgery Program. Study participants were randomly divided into a discovery (n =  443) or validation (n =  134) 
cohort. Intra-operative wedge biopsies of the liver and clinical data were obtained as previously described23. 
Patients with any evidence of hepatitis B virus (HBV), hepatitis C virus (HCV), or human immunodeficiency 
virus (HIV) infection, or alcohol abuse were included in this study as previously described9. A required com-
prehensive behavioral evaluation performed by a clinical psychologist included inquiries about current and past 
substance and alcohol use. If a patient used alcohol, they were further evaluated using established criteria for 
alcohol use disorders24. Patients whose clinical criteria for alcohol use disorders were denied access to bariatric 
surgery. In addition, patients with diagnosis codes ICD9 303 or ICD9 305.0 indicating a clinical diagnosis of 
alcohol abuse were also excluded. Source data included patient demographics, clinical measures, ICD9 codes, 
medical history, medication codes, and lab results. The research protocol was approved by the Geisinger Clinic 
Institutional Review Board, all participants provided written informed consent, and all experiments were per-
formed in accordance with relevant guidelines and regulations.

SOMAscan Assay. Serum samples were analyzed using the SOMAscan assay (SomaLogic; Boulder, CO), 
which is a sensitive, and quantitative protein biomarker discovery platform. SOMAmers (Slow Off-rate Modified 
Aptamers), single-stranded DNA aptamers with modified nucleotides, bind to specific proteins in the serum that 
are then be quantified as DNA. The SOMAscan assay quantified a total of 1129 proteins in each sample. In our 
analysis, the median lower limit of quantitation for all measured proteins was 0.3 picomolar (pM), with a dynamic 
range of > 5 logs, and a median coefficient of variation (%CV) of 5%34.

PNPLA3 genotyping. We extracted DNA from blood samples using standard methods35 and genotype 
marker rs738409 in the PNPLA3 gene as described36.

Phenomic modeling. Previously, we conducted univariate logistic regression to determine which of more 
than 200 pre-operative clinical variables were independently associated with the presence of steatosis in ~2300 
individuals9. We identified 19 candidate variables associated with the presence of liver fat (Supplemental Table 1) 
and used logistic regression within the discovery cohort to identify the minimal subset of these variables that 
maintained the area under the curve (c-statistic) of the full model for steatosis. A backwards stepwise process 
was used for model variable selection. The initial model included all 19 variables. Subsequent models were eval-
uated by sequentially removing one variable at a time and assessing the resulting change in the c-statistic. When 
the removal of a variable resulted in a decrease in the c-statistic by < 0.01, the variable was excluded from the 
final model. The variables retained for the final model were combined into a single classifier score by calculating 
(Supplemental Table S4) the predicted probability of steatosis. This score was applied to the validation cohort and 
brought forward for multi-component modeling.

Derivation of Proteomic Panel. Candidate markers were selected using a stability selection algorithm 
with an L1-regularized logistic regression kernel. Stability selection takes many subsets of half the data and per-
forms biomarker selection using the lasso classifier, which is a regularized logistic regression model37. The selec-
tion path for a single biomarker is the proportion of these subsets for which that biomarker was selected by the 
lasso model over a range of lambda, a tuning parameter that determines how many biomarkers are selected by the 
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lasso. The maximum selection probability over a range of lambda values was the ultimate metric used to select a 
set of biomarkers.

Steatosis classifier models (steatosis vs. all other groups) were developed by inputting the most stable markers 
into the logistic regression classification algorithm. Once the models were fixed, bootstrap performance was done 
as verification of the developed models: the discovery set for steatosis as well as fibrosis were split randomly into 
80% training and 20% test set to verify by bootstrapping. This was repeated 2500 times with a different subset. 
Sensitivity and specificity and confidence interval for each comparison was noted. The model types were evalu-
ated using 10-fold cross-validation and inspecting plots of log-likelihood ratios and receiver operating charac-
teristic (ROC) curves. The proteins retained for the final model were combined into a single classifier score by 
calculating the predicted probability of steatosis. This score was applied to the validation cohort and was brought 
forward for multi-component modeling.

Multi-component modeling. The classifier scores from each domain were combined into logistic regres-
sion models. Performance of the combined classifiers was evaluated using area under the receiver operating char-
acteristic (ROC) curve based on a c-statistic and 95% bootstrap confidence intervals.

Results
Characteristics of the discovery and validation cohorts. The study population of 576 adult patients 
was randomly assigned to either a discovery (N =  443) or validation (N =  134) cohort. As shown in Table 1, 

Variable Measure
Discovery group 

N = 443
Validation group 

N = 134 p-value

Age, years Mean (SD) 46.2 (10.7) 46.3 (11.1) 0.9431

Sex Female, % (n) 82% (n =  363) 84% (n =  112) 0.6632

Male, % (n) 18% (n =  80) 16% (n =  22)

Race White, % (n) 99% (n =  439) 99% (n =  133) 0.9993

Black, % (n)  <  1% (n =  2) 1% (n =  1)

Other, % (n) < 1% (n =  2) 0% (n =  0)

BMI, kg/m2 Mean (SD) 49.2 (9.0) 49.2 (8.4) 0.9791

Diabetes Yes, % (n) 41% (n =  180) 41% (n =  55) 0.9322

Hypertension Yes, % (n) 47% (n =  209) 44% (n =  59) 0.5222

Dyslipidemia Yes, % (n) 37% (n =  163) 43% (n =  57) 0.2302

ALT, U/L Median [IQR] 27 [20, 39] 26 [19, 38] 0.4984

AST, U/L Median [IQR] 24 [19, 33] 24 [20, 30] 0.6474

Cholesterol, md/dL Mean (SD) 187.7 (40.3) 188.2 (39.5) 0.8971

HDL, md/dL Mean (SD) 47.2 (11.5) 46.2 (10.8) 0.3511

LDL, md/dL Mean (SD) 105.8 (33.6) 107.4 (36.1) 0.6301

Triglycerides, md/dL Median [IQR] 152 [104, 208] 180.6 (118.9) 0.9114

Platelet count, K/uL Mean (SD) 285.2 (72.3) 294.7 (64.2) 0.1751

Steatosis < 5%, % (n) 30% (n =  131) 32% (n =  43) 0.6122

5–33%, % (n) 20% (n =  89) 24% (n =  32)

33–66%, % (n) 26% (n =  117) 24% (n =  32)

> 66%, % (n) 24% (n =  106) 20% (n =  27)

Lobular inflammation No foci, % (n) 55% (n =  242) 62% (n =  83) 0.1572

< 2 foci*, % (n) 37% (n =  162) 34% (n =  45)

2–4 foci*, % (n) 9% (n =  39) 4% (n =  6)

> 4 foci*, % (n) 0% (n =  0) 0% (n =  0)

Fibrosis stage None, % (n) 59% (n =  262) 64% (n =  86) 0.0693

1, % (n) 25% (n =  111) 28% (n =  37)

2, % (n) 9% (n =  39) 7% (n =  10)

3, % (n) 5% (n =  20) 1% (n =  1)

4, % (n) 2% (n =  11) 0% (n =  0)

PNPLA3** CC, % (n) 54% (n =  219) 57% (n =  71) 0.4072

CG, % (n) 40% (n =  163) 35% (n =  43)

GG, % (n) 6% (n =  23) 8% (n =  10)

Table 1.  Characteristics of discovery and validation sets. Reference ranges: ALT (Male 5–52 U/L, Female 
10–60 U/L), AST (Male 13–39 U/L, Female 10–42 U/L), Cholesterol (< 200 mg/dL), HDL (>  =  40 mg/dL), LDL 
(< 130 mg/dL), Triglycerides (< 150 mg/dL), Platelet Count (140–400 K/uL). 1Two-sample t-test; 2Chi-square 
test; 3Fisher’s Exact Test; 4Wilcoxon Rank-Sum test. SD =  standard deviation, IQR =  Interquartile Range. *per 
200X field. **PNPLA3 unknown for 48 patients (38 in discovery group and 10 in the validation group). Hardy-
Weinberg test for equilibrium: p =  0.304 in discovery group and p =  0.344 in validation group.
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there were no significant differences in age, sex, body mass index (BMI), type 2 diabetes (T2D) status, measures 
of cholesterol metabolism, ALT and AST levels, platelet count, or PNPLA3 genotype distribution between the 
two groups. Approximately 30% of the patients had normal liver histology (< 5% steatosis), while 20–24% were 
classified as mildly or severely steatotic (5–33% and > 66% liver fat, respectively) and ~25% showed moderate 
steatosis (33–66% fat). In both the discovery and validation cohorts, most of the key variables were different 
between patients with steatosis compared to those with normal liver histology (Supplemental Tables S1 and S2).  
For example, the percentage of patients with T2D increased from 22% in individuals with normal histology to 
44% in those with steatosis, consistent with earlier findings reported by us9 and others37.

Steatosis genomic classifier. For the genomic model, the PNPLA3 rs738409 genotype was used as the 
sole variable, given the strength of its association with steatosis compared to other reported genetic variants39–41. 
Marker genotype was designated as homozygous wildtype, heterozygous, or homozygous NAFLD risk allele. As 
expected, the distribution of genotypes was significantly different between patients with steatosis compared to 
those with normal liver histology (Supplemental Tables S1 and S2).

Steatosis phenomic classifier. We previously analyzed a cohort of 2929 subjects9 from which 
the 576 individuals used for the current analyses were drawn. Of the 19 variables previously identified 
(Supplemental Table S3), 12 were included in the final steatosis phenomic classifier including glucose, serum 
insulin, triglycerides, HDL, ALT, ferritin, creatinine, chloride, zinc, use of metformin, use of estrogen/pro-
gestin, and a clinical diagnosis of sleep apnea. These were combined into a single classifier score and used for 
multi-component modeling.

Steatosis proteomic classifier. Univariate analysis of serum levels of the SOMAmer platform of 1129 
proteins using discovery and validation sets identified 30 proteins that met the Bonferroni-corrected level of sta-
tistical significance (Fig. 1). In multivariate analysis, eight proteins were associated with steatosis (Table 2). Serum 
levels of three of these proteins were associated with increased steatosis, while levels of five showed an inverse 
relationship with steatosis grade.

Steatosis multi-component classifier. The results from modeling within each of the three individual 
data domains were then used to create a multi-component classifier that included PNPLA3 genotype, steatosis 
clinical prediction score, and the proteomic classifier. We combined independently associated variables from each 
of the three data domains to generate a single logistic regression model and assessed performance of the com-
bined classifier using area under (AUC) the receiver operating characteristic (ROC) curve based on a c-statistic 
(Table 3, Fig. 2). The proteomic classifier by itself achieved the highest AUC of the three individual data domains 
with an AUC of 0.913 versus an AUC for the PNPLA3 genomic domain of only 0.596 and an AUC for the phe-
nomic domain of 0.886. Combining genomic and phenomic domains yielded little effect on the AUC (0.892), 
while combining the phenomic and proteomic domains resulted in an AUC of 0.932. The highest AUC was 
achieved with the combination of all three domains, yielding a value of 0.935. A similar analysis was conducted 
using the validation cohort (Table 3, Fig. 3). Although the AUC values were lower across all validation models, the 
AUC values improved with the inclusion of each addition domain.

Discussion
The central hallmark of NAFLD is the presence of increased fat in the liver, a condition that has several poten-
tially important pathophysiological implications. For example, steatosis has been associated with the meta-
bolic syndrome and insulin resistance, although the cause-effect relationship of this association is not clear42–44. 
Patients with steatosis are also at greater risk for the development of steatohepatitis and hepatic fibrosis, including 
cirrhosis45. The cause of NAFLD appears to be multifactorial46, although lifestyle (i.e., over-nutrition) plays a 
significant role by contributing to the development of obesity47. Both genetic variants28,39,48 and protein biomark-
ers49 have also been associated with NAFLD. Due to the underlying complexity of NAFLD pathogenesis, we 

Figure 1. Plot of unadjusted p-values for association between each protein expression and presence of any 
steatosis. The labeled proteins were those selected for inclusion in final model.
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sought to develop an algorithm based on the unbiased assessment of large groups of variables, i.e., using “omics” 
approaches, in several data domains that could differentiate NAFLD in a population with extreme obesity. A sim-
ilar type of “omics” approach combining transcriptomic, ELISA-based serum proteomic, and nuclear magnetic 
resonance-based metabolomic analyses of liver biopsy tissue and serum samples obtained from patients with high 
versus low grade steatosis has recently been reported50. However, the number of individuals assessed was quite 
small (N =  20), thereby limiting the conclusions that can be drawn from that analysis.

We selected the rs738409 variant in PNPLA3 for modeling based on existing genomic data that had been 
generated in populations not selected for obesity39–41, as well as our own data based on a similar population with 
extreme obesity39. By itself, rs738409 showed the poorest discriminatory value, a finding that was not surprising 
given the relatively small effect size found in the initial studies51,52. Adding rs738409 genotype to the phenomic 

Gene Protein Odds Ratio [95% CI] p-value

ACY1 Aminoacylase-1 57.89 [13.69, 244.90] < 0.0001

SHBG Sex hormone-binding globulin 0.56 [0.42, 0.75] < 0.0001

CTSZ Cathepsin Z 0.69 [0.48, 0.98] 0.0400

MET Hepatocyte growth factor receptor 0.60 [0.43, 0.83] 0.0020

GSN Gelsolin/GSN 2.69 [1.74, 4.16] < 0.0001

LGALS3BP Galectin-3 binding protein 0.59 [0.43, 0.79] 0.0005

CHL1 Neural cell adhesion molecule L1-like protein 2.20 [1.42, 3.42] 0.0004

SERPINC1 Antithrombin III 0.68 [0.49, 0.94] 0.0185

Table 2.  Logistic regression model for NAFLD using selected protein biomarkers. The biomarkers were 
rescaled to the standard normal (mean =  0, SD =  1) before inclusion in the logistic regression model. Odds 
ratios can be interpreted as the odds of steatosis for each 1 standard deviation increase in the protein expression 
level.

Model

Discovery Validation

AUC 95%CI AUC 95%CI

1. GENOMIC only 0.596 [0.547, 0.645] 0.610 [0.519, 0.713]

2. PHENOMIC only 0.886 [0.851, 0.918] 0.778 [0.693, 0.851]

3. PHENO +  GENO 0.892 [0.862, 0.924] 0.782 [0.710, 0.865]

4. PROTEOMIC ONLY 0.913 [0.882, 0.937] 0.864 [0.793, 0.927]

5. PROTEO +  GENO 0.920 [0.892, 0.946] 0.889 [0.832, 0.945]

6. PROTEO +  PHENO 0.932 [0.904, 0.955] 0.892 [0.840, 0.943]

7. 3 DOMAIN MODEL 0.935 [0.913, 0.959] 0.914 [0.871, 0.957]

Table 3.  Area under (AUC) the receiver operating characteristic (ROC) curve based on a c-statistic.

Figure 2. ROC curves for Discovery Model*. *Note that PNPLA3 was included as the number of alleles  
(0, 1, 2) and was treated as an ordinal variable. Those with unknown PNPLA3 status were included in the model 
by using a common missing data strategy (i.e. treating them as a separate subgroup).
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classifier essentially yielded no effect, whereas combining it with the proteomic classifier had a small but positive 
effect (0.892 vs. 0.913). This suggests that genomic classifier may be already represented by one or more variables 
present in the phenomic classifier. This is somewhat surprising because the phenomic variables are largely rep-
resented by those related to metabolic abnormalities, while rs738409 genotype has been associated with NAFLD 
independent of metabolic disease48,53,54, although some studies have found an interaction with glucose metabo-
lism55. Its complementary relationship with the group of serum proteins in the proteomic classifier implies that 
there are multiple mechanistic pathways involved in the development of steatosis.

We used the SOMAscan platform21,32,56 as a discovery assay that has been applied successfully to diagnostic 
biomarker discovery and validation for other disorders. This platform has been used for the identification of bio-
markers in rheumatoid arthritis57, Alzheimer’s disease58, and infectious disease59. The SOMAscan aptamer-based 
assay has been designed for high-throughput multiplexing allowing for the measurement of over 1000 proteins in 
only 65 μ L of serum. However, because the aptamer-based methodology only detects available protein epitopes, 
in instances where epitopes may be blocked by other proteins or post-translational modifications, measured levels 
may not represent actual protein concentrations. Further, protein markers associated with steatosis were identi-
fied using a stability selection algorithm with an L1-regularized logistic regression kernel; therefore, the most sta-
ble group of markers may not represent the most highly associated individual markers. Nevertheless, individual 
markers identified here may shed light on the underlying biology of steatosis. For example, several of the serum 
proteins identified in the proteomic screen have previously been associated with NAFLD or a related aspect of 
hepatic lipid metabolism. Aminoacylase 1, a zinc-binding protein that catalyzes the hydrolysis of N-acetyl amino 
acids into free aliphatic amino acids and acetic acid60, was increased in hepatic lipid droplets of mice subjected 
to caloric restriction61, suggesting a role in the metabolic adjustments to the overfed state in NAFLD. However, 
we found increased steatosis associated with aminoacylase 1 levels. This could reflect a rapid temporal response 
in aminoacylase 1 levels since patients were fasting at the time of blood draw. In addition, sex hormone binding 
globulin (SHBG), a glycoprotein that is produced primarily by hepatocytes and serves to transport sex ster-
oid hormones through the blood to target tissues, was first associated with hepatic steatosis through studies of 
monosaccharide-induced hepatic lipogenesis in animals, a treatment that suppressed expression of sex hormone–
binding globulin62. A number of human population-based studies have found that SHBG levels are inversely asso-
ciated with NAFLD63–68, consistent with our results. MET (hepatocyte growth factor)/mesenchymal-epithelial 
transition factor) functions in anti-apoptosis pathway signaling in hepatocytes, in part by sequestering Fas to 
inhibit Fas-mediated apoptosis. This relationship appears to be lost in NAFLD69.

Data linking the other protein markers to NAFLD is less clear. Galectin-3 binding protein (LGALS3BP) has 
been used as a component of a multi-protein panel for the prediction of fibrosis in Hepatitis C (HCV) infection70, 
and serves as a biomarker of hepatocellular carcinoma resulting from HCV cirrhosis71. Antithrombin III levels 
did not correlate with liver NAFLD histology in obese patients72, although markedly decreased levels have been 
found in acute fatty liver of pregnancy73. Gelsolin is a protein generated by the liver, and appears to be expressed 
by hepatic sinusoidal endothelial cells, hepatic stellate cells, myofibroblasts, and mononuclear cells, but not hepat-
ocytes74. Gelsolin has been implicated in the apoptosis of hepatic stellate cells, which play a major role in the 
progression of steatosis to fibrosis and cirrhosis75,76. Deficiency of cell adhesion molecule L1 like does not appear 
to affect hepatic metabolism. Chl1 knockout mice did not show any significant abnormal phenotype up to an age 
of 2 years77. Little biological information is available on cathepsin Z, a cysteine proteinase of the papain family, 
except that it is widely expressed in human tissues78.

In addition to non-invasive blood-based classifiers, various imaging approaches have been used to charac-
terize NAFLD. Ultrasound is commonly used to assess for the presence and amount of liver fat, though it can be 
dependent upon the skill of the operator and the particular capacity of the instrument79. Due to the subjective 
nature of the technique, reproducibility can therefore be low and the ability to detect mild levels of steatosis is not 

Figure 3. ROC curves for Validation model. 
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as robust as for moderate to severe steatosis. However, the technique is relatively inexpensive, simple to perform, 
and safe. Alternatives to traditional ultrasound, such as controlled attenuation parameter80, are being developed 
and validated, thus may significantly improve on the disadvantages. Other imaging modalities include computed 
tomography (CT) and magnetic resonance imaging (MRI). Multi-parametric quantitative MRI is also a promis-
ing technique that may be able to closely correlate with liver histology. However, all imaging-based approaches 
are limited by cost and availability vis-à-vis blood-based testing and will likely not be scalable to the population 
at risk for NAFLD.

We used variables from three different data domains that were derived from “omics” analyses to develop a 
multi-component classifier for NAFLD. Despite the robust nature of the classifier, there is still a need to improve 
the AUC. The use of even larger samples sizes would be useful, although high-throughput analyses are more 
costly and complex than smaller scale analyses. We also have used a population with extreme levels of obesity 
in part because of the availability of gold standard liver biopsy pathology data. Developing classifiers for lower 
levels of obesity may be limited by the difficulties in obtaining such data. We also used a relatively ethnically, 
racially, and geographically homogenous population, appropriate for discovery and initial development studies. 
Extending these results to other populations and/or developing classifiers specific to other populations are needed 
for future studies. Despite these potential limitations, our results suggest that a high-throughput, multi-domain, 
multi-component approach may be a promising avenue for further investigation.
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