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Background: Clove oil is known for its medicinal properties. The mechanism of anti-cancer properties of Syzygium 
aromaticum were investigated by mathematical  modelling on the genome scale with metabolomics using 1H Nuclear 
Magnetic Resonance spectroscopy on Raji cells.
Objectives: An integrative analysis correlated the metabolites identified by 1HNMR and genes with the detected pathways. 
Materials and Methods: Raji cells treated with clove oil were collected and sent for 1HNMR spectroscopy and the spectra 
analyzed by MATLAB and Human Metabolome Database for metabolite identification. Pathway and topology analysis was 
implemented using the genes and metabolites in the integrative analysis of Metaboanalyst software. 
Results: 50% inhibitory concentration of clove oil was 50 µg/ml and the model anticipated 74 genes with differentiating 
metabolites being some amino acids, cholesterol and fucose.
Conclusions: The integrative study predicted that the anti cancer mechanism of clove oil involves novel enzymes, as likely 
drug targets,  24-dehydrocholesterol reductase and 7-dehydrocholesterol reductase in cholesterol biosynthesis, dehydrofolate 
reductase in one carbon metabolism and serine palmitoyl-transferase long chain in sphingolipid biosynthesis.
Keywords: Genes and pathways, In silico mathematical model, Methanol clove extract, Raji cells.
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1. Background
Any drug whether natural or synthetic, preventing, 
delaying or supressing a disease such as cancer is 
described as chemo-preventive.  It is well known that 
a wide range of spices have anti-cancer properties and 
this is substantiated by laboratory evidence (1).
Clove extract has been used for treatment of respiratory 
diseases by Indian traditional medicine, Ayurveda, since 
ancient times. Cloves have also been used in Chinese 
medicine for treating indigestion, diarrhea, ring worms 
and fungal infections. Even, modern medicine employs 
cloves to heal digestive disorders, nausea and its oil 
is used to relieve toothaches (1). Cloves possess anti-
septic, antibiotic, antiviral and anaesthetic properties; 
and inhibit the growth of spore germination of the 
bacillus Subtilis enterides and also pathogens in the 
intestine like Salmonella and Escherichia coli (1). 
Moreover, although there have been reports of anti-
cancer activity of clove oil on different cancer cell lines 

in-vitro, a large number of questions have arisen about 
its mechanism (2).
In cancer research, mathematical modelling approaches 
have become significantly more numerous. The 
intricacy seen in cancer is well matched to quantitative 
analysis as it can result in new approaches and can 
provide challenges and opportunities for new progress. 
Mathematical models can be a balance between 
clinical and experimental investigations, but they 
also defy present standard prototypes and reconsider 
the comprehension of different mechanisms steering 
tumorigenesis and hence chart out new ways for further 
research in cancer biology (3). 
In this study, the modified Recon-1 model was used on the 
presumption that altered concentrations of a metabolite 
represent the different expression of the gene(s) 
responsible for enzymatic reaction(s) for synthesis of 
that metabolite. Its model was based on phenotypic 
variations of acute leukaemia (4). To corroborate the in 
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silico model with in vitro mechanisms, the model was 
combined with a metabonomics study of the effect of 
clove extract on Raji cells, a lymphoblast line of B cell 
cancer seen in Hodgkin’s disease (5).
Metabonomics is a simultaneous study of metabolites 
using high- throughput technology like Nuclear Magnetic 
Resonance (NMR) and Mass Spectrometry (MS) in 
biological samples like cells and their organelles, tissues 
and their extracts, biofluids or entire organisms. It is a 
non-invasive method which is used to identify biomarkers 
in bio-fluids such as plasma, urine and saliva (6).Cancer 
cell lines are widely used to study drugs which could have 
therapeutic potential, to identify proteins with altered 
expression levels, gene mutations, and inhibition or 
activation of metabolic pathways (7). Several metabolomics 
studies have shown variances in metabolic profiles among 
different cancer cell lines, during apoptosis and cell cycle 
phases and have helped in better understanding their anti-
cancer mechanisms (8). The mechanism for anti cancer 
effect of clove oil is unclear. 

2. Objectives
In the present study, a novel in silico prediction based 
on a mathematical model constructed on silencing 
of the metabolic genes was carried out. This was 
integrated with the metabolites obtained in the analysis 
of the inhibitory potential of clove treated Raji cells 
and controls in vitro using 1HNMR spectroscopy. This 
investigation may help in predicting the  anti cancer 
targets of clove oil for Raji cells.

3. Materials and Methods

3.1. In silico Mathematical Modelling 
Detection of the genes responsible for alteration of 
metabolites was carried out by mathematical modelling. 
For this, we used an in silico approach which is based on 
analysis of the genome-scale metabolic model of cancer 
cell lines by modified Recon-1 model. Our method was 
based on the premise that the altered concentration of a 
metabolite represents the differential expression of the 
gene(s) encoding the enzymatic reaction(s) responsible 
for synthesis of that metabolite. We employed the human 
genome-scale metabolic model of Ruppin (4) known as 
modified Recon-1 which includes 1,496 ORFs, 3,742 
reactions and 2,766 metabolites. The metabolic network 
is shown as an m|n stoichiometric matrix S, where the 
number of metabolites is m, the number of reactions 
is n, and the stoichiometric coefficient of metabolite i 
in reaction j is represented by Sij. The definition of the 
biomass reaction was as the objective function which 
is biomass by the Constraint based method (CBM) and 

Flux Balance Analysis (FBA). FBA studies for a flux 
distribution v that maximizes the objective function 
(Equation 1) subject to steady-state, thermodynamic 
and growth medium constraints: 
Maxv biomass (1)
Subject to 
S.v=0          (2)
vmin ≤ v ≤ vmax (3)

Equation 2 imposes the constraints of the 
steady state on the system, presuming that the 
metabolite concentrations remain constant in time. 
Thermodynamic constraints deciding the reaction 
directionalities are arranged via the flux limits vmin and 
vmax in Equation 3. The uptake and excretion of a pre-
defined set of metabolites from and to the surrounding 
is assisted via the definition of exchange reactions in 
the stoichiometric matrix (4).
The genes whose silencing resulted in loss of 
proliferation (from 50% to 100% in the IC50 range) 
were identified from their numbers by NCBI genes 
website and the enzymes and metabolic pathways which 
they affect were detected by KEGG pathway analysis.
The model was obtained from modified Recon 2 for 
leukaemia and the supplementary files were courtesy the 
authors (Tomer Shlomi 2011) showing the genome model 
MATLAB file, excel files for the enzyme molecular weight 
data for reactions, enzyme turnover  number data and 
human biomass composition (Supplementary data # 1) 
 obtained from their paper. Validation of the model was 
carried out by the same authors (Tomer Shlomi 2011) 
where different criteria of the model was validated with 
variations in different conditions and compared with data 
obtained by proteomics.

3.2. Preparation of Samples 
50g air-dried powdered clove buds obtained from 
Mumbai, India was subjected to hydro-distillation for 
3h using a Clevenger-type apparatus. The essential oil 
was carefully collected in a separated sealed container 
to avoid evaporation. The isolated essential oils were 
re-extracted with organic solvent dichloromethane and 
dried over anhydrous sodium-sulfate and preserved 
in a sealed vial at 4°C until further analysis (8). Then 
1 gram of the sticky extract was dissolved in 20 mL 
RPMI medium to give 50mg/mL methanolic clove 
extract (MCE).

3.3. Identification of Active Ingredient of Clove Extract 
by Thin Layer Chromatography (TLC)
Silica gel slurry was prepared on a slide and toluene and 
ethyl-acetate (93:7) were used as mobile phase. Standards 
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such as clove oil and standard eugenol were used. The 
spotting was done in such a way that approximately 1 
mm-sized spot of the solution could be seen. The plate 
was kept slightly tilted in the solvent system so as to 
run the solvent system to 3/4th of the plate. The spots 
became visible by incubation in an iodine chamber and 
photographs were recorded and Rf calculated (8).

3.4. Cell Culture
B cell lymphoma named Raji cells were purchased 
from the Cell Bank of Pasteur Institute of Iran. The 
cells were cultured in 25 mL flasks in RPMI-1640 
medium containing 10% foetal calf serum, penicillin, 
and streptomycin (complete medium). Incubation was 
at 37 ˚C with 5% CO2, 95% humidity and the medium 
changed every 48h (8).

3.5. Treatment of Raji Cells with Clove
1 mL of culture medium and 1.6 × 104 Raji cells were 
added to each well, in three 12 well plates, and treated 
with different concentrations of MCE, 5000 µg.ml-1, 
500 µg.ml-1, 50 µg.ml-1 and 5 µg.ml-1 was added for 24, 
48, and 72 hours. The test was carried out in duplicate 
and negative controls without MCE (9).

3.6. Viability Test 
Viability was tested using Trypan blue method at 24, 
48, and 72 hours (9).

3.7. MTT Assay
180 μl of culture medium were applied to 96 well plates 
to which were added 10 μl of MCE and 10 μl containing 
1×104 cells; and then they were left to incubate overnight. 
The next day, 20μl/well-1 of MTT (5mg⁄ml-1) was added 
and the cells kept at 37°C for 3 to 4 hours. The crystals 
were dissolved in 100μl of dimethyl sulfoxide for 30 
min and the absorbance read at 570nm using Microplate 
Reader, (BIOTEK U.S.A)(10).

3.8. Cell Extraction for 1HNMR Spectroscopy 
Methanol-chloroform-water extraction was done at 4 ̊ C 
on a crushed ice bath. The cell pellets were re-suspended 
in 500 µL of ice-cold 2:1 (v/v) methanol:chloroform 
solution and then transferred to a 1.5mL Eppendorf 
tube, vortexed and placed in a mixer for 10 min at 4 
˚C. Next, 250 µL of ice-cold H2O 1:1 (v/v) chloroform/
H20 was added and once again vortexed. The tubes 
were sonicated on ice for 10 min and centrifuged at 
18000×g for 10 mins. The top hydrophilic and the 
bottom lipophilic extract were separated into different 
Eppendorf tubes. The samples were lyophilized to 
remove water as its presence could interfere in the 

spectra and then stored at −20 ˚C until analysis (11).
3.9. Preparation of 1HNMR Extracts 
Lyophilized hydrophilic cell extracts were re-suspended 
in 200µL of 150mM potassium phosphate buffer of pH 
7.4, 1 mM NaN3, and 0.01% Trimethyl-silyl-propionate 
(TSP) in 100% D2O (deuterium oxide: the required 
quantity of buffer for each sample was originally 
prepared in H2O, lyophilized, and reconstituted in 
100% D2O), and the lipophilic cell extracts were 
re-suspended in 200µL deuterated chloroform. The 
hydrophilic extract will be denoted as (hyd-ext) and 
lipophilic extract as (lip-ext).  Both the extracts were 
analyzed via 1HNMR analysis (12).

3.10. 1HNMR Spectroscopy 
 The cell suspensions were placed in 5mm probes 
(Bruker) for analysis. A Bruker spectrometer operating 
at 400 MHZ recorded the results by 1D NOESY method. 
The temperature of the sample was maintained at 298 
K. For each sample 3000 transients and 3.0s relaxation 
delay, with standard 1D NOESY (Nuclear Overhauser 
Spectroscopy) pulse sequence to suppress the residual 
water peak was considered (11).
The spectra were then analyzed by MestReC Nova 
software. Automatic phase correction was used as 
baseline correction and chemical shifts were referenced 
to external 0.1% TSP in D2O. All spectra were binned 
into 1000 parts and their normal intensity and chemical 
shift were added to Excel files (8).

3.11. Data Processing
Chemometrics analysis: MATLAB 6.5 was employed 
and PLS was implemented with the PLS-Toolbox 
version 3.0 with Orthogonal Signal Correction and 
Partial Linear Square (OSC-PLS) analysis. 

3.12. Identification of Metabolites
Metabolites corresponding to these resonances were 
then recognized by assigning the chemical shifts of 
the spectra based on comparison with chemical shifts 
of metabolites in Human Metabolome Database 
(HMDB) (http://www.hmdb.ca/metabolites) and in 
other available data bases (13). Analysis of metabolites 
was carried out using Metabo-Analyst software (http://
www.metaboanalyst.ca/) (14).

3.13. Combination of Modelling and Pathway Analysis  
Integrative analysis option on the Metaboanalyst 
website was used for combination of modelling and 
pathway analysis. The list of gene accession numbers 
obtained from our mathematical model and the list of 
metabolites from 1HNMR spectroscopy was entered 

http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/


48 Iran J Biotech. 2020 July;18(3): e2336

Azadi M et al.

into the integrative analysis option which were then 
converted into csv excel files and enrichment analysis 
and topology analysis was carried out. Enrichment 
analysis evaluated whether the observed genes and 
metabolites in a particular pathway were significantly 
enriched (appear more than expected by random 
chance) within the dataset. The topology analysis 
however calculated whether a given gene or metabolite 
plays an important role in a biological response based 
on its position within a pathway.  
The result is depicted as a graph showing the p values 
of the significance of the metabolite pathways and the 
genes participating in them.

3.14. Statistical Analysis 
Statistical analysis was performed by SPSS version 19 
and results showed as mean ± SEM. Student’s t-test; the 
significance in differences stood at p< 0.05. 

(A)          (B)

Figure 1. (A) TLC of methanolic clove extract (left lane) with standard clove oil (Right lane). (B) Effect of clove oil extract on Raji cells. 
MTT assay showing effect of MCE on Raji cells after 48 h. IC50 obtained was 50μg.ml-1

4. Results

4.1. In Silico Mathematical Modelling 
The modified Recon 1 model predicted 74 genes to 
participate in the IC50 inhibition of Raji cells and our 
metabolomics study identified 11 metabolites which when 
integrated with the genes, obtained 29 pathways with 
different p values and the result of the metabolomics analysis 
will be presented first followed by the integrated study. 

4.2. TLC Analysis
Thin layer chromatography of MCE and standard clove 
oil had the same Rf value Figure 1 and MCE was seen 
to be reasonably pure. (Fig. 1a)

4.3. MTT Assay
The effect of MCE on percentage viability of Raji cells 
after 48h. IC50 of MCE on Raji cells is 50 µg.ml-1.(Fig.1b)

4.4. 1HNMR Spectra Analysis
The superimposed spectra of the hydrophilic phases 
of control and Raji cells exposed to MCE are seen in 
Figure 2a and b and that of the lip-ext of control and 
Raji cells exposed to MCE in Figure 2C and 2D with 
differentiating metabolites marked on the spectra.

4.5. Data Processing
OSC-PLS was carried out and the score plot of both 
the hydrophilic and lipophilic phases show good 
separation of samples in (Fig. 3A, 3B). The biplot 

depicting the loading plot and score plot together 
of both the phases are shown in Figure 3C and 3D 
where the overlapping variables are common in the 
controls and the treated samples and the outliers are 
the differentiating ones. 

4.6. Identification of Metabolites
The chemical shifts of the differentiating metabolites 
were identified using the reference databank of HMDB 
as depicted in Table 1. 
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A       B

Figure 2. (A) Superimposed spectra of hyd-ext of control and experimental Raji cells exposed to MCE showing differentiating metabolites. 
(B) Superimposed spectra of lip-ext of control and experimental Raji cells exposed to MCE exhibiting differentiating metabolites.

A       B

C       D

Figure 3. A) Score plot of OSC-PLS of hyd-ext. B) Score for lip-ext of the control and MCE group. Odd numbers indicate control group 
and even numbers are related to the treated extract.C) Biplot plot of OSC-PLS of hdy-ext D) Biplot of OSC-PLS of lip-ext.
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Table 1. Metabolites identified by their chemical shifts

Number Chemical shifts Level Location List of metabolites

1 7/2003
7/19

 lip-ext&hyd-ext L-Tryptophan

2
2/1103
2/2501
2/2398

 lip-ext
L-Homocysteine
7-Ketocholesterol
Cholesterol sulfate

3

1/3403
1/35
1/33

1/3203

 lip-ext&hyd-ext
7-Ketocholesterol
Cholesterol sulfate

Cholesterol

4 1/1992
1/1901

 lip-ext 7-Ketocholesterol
Cholesterol sulfate

5 1/2101  lip-ext L-Isoleucine
Fucose

6 1/0302  lip-ext L-valine

7 3/2501  both phases L-histidine

8 2/3099  both phases L-Homocysteic acid

9 2/2498
2/24

 lip-ext&hyd-ext Cholesterol

10 1/93  lip-ext&hyd-ext Cholesterol sulfate
7-Ketocholesterol

11
1/3497
1/3399
1/3199

 lip-ext&hyd-ext Cholesterol sulfate
Cholesterol

12 1/2001  lip-ext&hyd-ext Cholesterol sulfate

13 1/18  lip-ext&hyd-ext 7-Ketocholesterol

14 1/1698  lip-ext&hyd-ext L-Fucose

4.7. Combination of Modelling and Pathway Analysis
For identification of the affected pathways, all the 
detected metabolites along with the Entrez number of the 
genes were copied into the MetaboAnalyst software using 
integrated pathway analysis with pathway enrichment 
analysis and pathway impact values from pathway 
topology analysis, as seen in Figure 4. The identified 
genes in the pathways are shown in Table 2. The main 
pathways are shown in Supplementary data #1, 2.

5. Discussion
The modified Recon-1 model analyzes a very precise 

network of 2766 metabolites and 1496 ORFs along 
with 3,742 pathways. This model provides information 
on known biochemical changes in the target species to 
produce a biochemical and genomic knowledge base 
(4).  This model is used for checking the Warburg effect 
which is a characteristic of cancer cells. The modified 
model was used for the first time in an integrative 
study with metabolomics on the effect of MCE on 
lymphoblastic B cells of Burkitt’s lymphoma throwing 
light on its mechanism. The model identified the relevant 
genes in the obtained metabolic pathways whose levels 
changed as a result of the MCE and hence the altered 
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Table 2. Metabolic pathways and the genes affected 

Number Pathway name Gene name P values

1 Steroid biosynthesis DHCR-34, DHCR7, SOAT-1, EBP, CYPS1A1, SC5DL, 
DHCR-24. TM7SF2, NSDML, EBF, SOAT1, SSDL, 00

2 Terpenoid backbone 
biosynthesis

PMVK, DHCR24, DHCR7, SOAT, SCSDL, CYP51, LSS, 
SC5OL, TM7F2,

FDPS
00

3 Pyrimidine metabolism DHODH 0.01
4 One-carbon pool by folate DHFR, TYMS, 0.01
5 Sphingolipid metabolism SPTLC1 0.03

6 Valine, leucine, isoleucine 
biosynthesis BCAT1 0.44

7 Folate biosynthesis DHFR 0.44
8 Purine metabolism ATIC, SATCAR, ARM2B, PAIC, PRPS 0.06

9 Alanine, aspartate and 
glutamate metabolism CAD, PPAT 0.27

10 Primary bile acid biosynthesis HSD17B4 0.32

11 Glycine, serine and threonine 
metabolism DLD, PHDGH 0.35

12 Glycerophospholipid 
metabolism PISD, AGPAT6, PISD 0.36

13 Glycerolipid metabolism PISD, AGPAT6, GPDIL 0.38

Figure 4. The pathway analysis overview showing the integrated analysis of all matched pathways with reported genes (according to p 
values) from pathway enrichment analysis and pathway impact values from pathway topology analysis. Pathway analysis utilized the 
hypogeometric test in the over-representation analysis and relativeness between centrality in the pathway topology analysis.
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metabolic state was mapped onto the genetic level and 
then associated with the metabolites obtained from 
the metabolomics studies, using integrated analysis 
from two platforms consisting of pathway enrichment 
analysis and pathway topology analysis by the http://
www.metaboanalyst.ca/ website with novel results.
Different investigations have demonstrated the effect of 
clove extract on various anatomical cell lines in vitro 
showing anti-proliferative and apoptosis properties 
(15). In lung cancer-induced mice, the effect of clove oil 
infusion has been reported with a significant reduction 
in the number of proliferating cells and an increase in 
the number of apoptotic cells, along with a boost in 
pro-apoptotic proteins p53 and Bax which causes down 
regulation of anti-apoptotic protein Bcl-2, as detected 
by western blot (16).
The IC50 of clove extract on Raji cells was 50 µg.ml-1 
revealing its cytotoxic effect with 80% cells killed at less 
than 5mg/ml. It is noteworthy that the dosage obtained in 
this study is far less than the ones reported earlier which 
was 300µ/ml from a stock of 100mg/ml (1).
Our analysis predicted 72 genes, whose knockout 
would partially or completely inhibit cancer cell growth 
for which there was 100% match between the identified 
metabolites and the genes recognized. The integrated 
study showed different pathways, the most significant 
ones are discussed in detail below.
The first two important pathways depicted in the 
integrative study are steroid biosynthesis and 
terpenoid backbone synthesis, which are related. 
The metabolites participating in these pathways are 
cholesterol, cholesterol sulfate and 7-ketocholesterol. 
Investigations in the last few years have linked low 
plasma cholesterol levels to early cancers diagnosis 
(17). In a recent metabolomics study on the plasma of 
Non-Hodgkin’s lymphoma using ultra-performance 
liquid chromatography-quadrupole time-of-flight mass 
spectrometry, cholesterol was the main metabolite 
detected and steroid biosynthesis was identified as 
the most important cycle(18). Another new report 
has indicated that targeting cholesterol with lipid 
lowering drugs like lovastatin enhances chemo 
immune-sensitivity in lymphoid malignancies(19).  
In the present integrated study, the metabo-analyst 
figure shows the presence of two enzymes which 
participate in many reactions. The two enzymes are 
24-dehydrocholesterolreductase (1.3.1.72) (DHCR24) 
which is seen in 7 reactions and DHCR-7 is also seen in 
5 reactions, (Supplementary data #1) both are potential 
drug targets in cancers. DHCR24 is an oxido-reductase 
enzyme acting on the CH-CH group of donors and 
takes part in the formation of cholesterol and has been 

associated with endometrial cancer, advanced clinical 
stage of lymphatic metastasis and reduced overall 
survival (20). There are reports that its gene expression 
is increased in melanoma metastases and is related to 
resistance to apoptosis induced by oxidative stress (21). 
The other enzyme is DHCR-7, also seen to participate 
in three reactions and in 2011 a new inhibitor of 
DHCR7 was tested on various human hepatocytes in 
vitro with differing results (22).  These are the enzymes 
affected by clove extract, and as the modified Recon-1 
model shows an increase or decrease in the genes, it can 
be concluded from our integrative studies that clove 
extract targets these important enzymes. 
The next 3 cycles predicted by our integrative analysis 
are closely related, the pyrimidine metabolism, 
one carbon folate cycle and purine metabolism 
(Supplementary data  #2).  All three cycles are involved 
with the amino acids present in our metabolic table 
with differing p values (23). One-carbon metabolism 
encompasses a complex metabolic network that is based 
on the chemical reactions of folate compounds with 
dehydrofolate reductase DHFR as the enzyme detected 
by our model. DHFR has been recognized as vital in 
cancer as its interference results in inhibition of cancer 
cells (24). The enzyme dihydorotate dehydrogenase 
(DHOH) is a mitochondrial enzyme involved in 
different stages of purine and pyrimidine metabolism. 
It has recently been identified as an anticancer drug 
target (25). Hence, MCE affects these enzymes which 
are known drug targets for cancer. 
The next cycle identified is the sphingolipid cycle 
with one gene detected by our modelling study of  
(supplement 2) serine palmitoyl-transferase long 
chain base (SPTLC), a key enzyme in sphingolipid 
biosynthesis pathway (26). Sphingolipids are a class 
of lipids synthesized in the ER from non-sphingolipid 
precursors such as serine. Besides its participation in 
the one carbon folate metabolism, serine is required 
for a number of biosynthetic and signalling pathways 
including the synthesis of other amino acids such as 
glycine and cysteine and the production of phospholipids 
such as sphingolipids and phosphatidylserine. This 
cycle has been reported as a new target for anti-cancer 
therapy because modification of biosynthesis of 
sphingolipid and its homeostasis cause an increase of 
ceramide levels and programmed cell death. A water-
soluble sphingosine analogue FTY720 acting on the 
nutrient transporter proteins via ceramide generation in 
cancer cells is being tested (27), but, more research will 
have to be carried out to observe its therapeutic value 
in Burkitts lymphoma. SPTLC2 is the next important 
enzyme on which MCE acts. 

http://www.metaboanalyst.ca/
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The next two cycles identified in the integrative study 
are again closely related; t-RNA biosynthesis and 
valine, leucine, isoleucine biosynthesis due to the 
presence of the amino acids, L-valine, L-isoleucine, 
L-histidine and L- tryptophan which were detected 
in the pathway. These amino acids singly have been 
linked to regulation of anti-tumour immune response, 
especially tryptophan. Branched chain amino acids 
(BCAAs), leucine, isoleucine, and valine make up 40% 
of the essential amino acids and are important in protein 
synthesis as they are major nitrogen donors for alanine 
and glutamine synthesis. BCAAs signal the regulation 
of mammalian target of rapamycin (m-TOR) pathway, 
which controls protein translation, cell growth, 
proliferation, and autophagy and is recognized as a 
critical regulator of cellular function (28). 
Cytoplasmic branched chain aminotransferases 
(BCATc) participating in amino acid biosynthesis may 
play a role in immunosuppression in the cellular micro-
environment continuing to tumour escape mechanisms.  
BCATc may play an immunosuppressive role in the 
tumour microenvironment possibly contributing to 
different tumour escape mechanisms (29).
The model detected the amino acids and the enzymes 
which are involved in t-RNA biosynthesis called 
aminoacyl-tRNAsynthetases (ARSs) found in the 
cytoplasm and the mitochondria that are in charge of 
cellular protein synthesis and help in ligation of amino 
acids to their cognate tRNAs. In mammals, there are 
additional domains that cause interaction with three 
auxillary factors named ARS-interacting multifunctional 
protein 1 (AIMP1), AIMP2 and AIMP3 which is a 
complex known as the multi-synthase complex (MSC) 
whose systemic analysis of the expression of ARSs and 
AIMPs shows that these proteins are associated with 
cancer. MCE is seen to affect these 2 cycles of prime 
importance (30).
Our mathematical model predicted many more cycles 
but these were of importance due to the p-values and 
the number of genes involved. The Ruppin model has 
been constructed on acute leuakemia, but as there was 
no genomic data available on Hodgkin’s disease, this 
was used as the closest model and the most significant 
cycles were discussed. It can be said that MCE affects 
many different genes and cycles and exhibits an anti-
cancer effect on Raji cells. However, as metabolomics 
identifies only a few metabolites, probably all the 
genes will be identified by the analysis, but a few 
metabolites would correlate with them.  The important 
enzymes affected by MCE were DHCR-7 and DHCR-
24 in cholesterol biosynthesis, DHFR in one carbon 
metabolism and STLC1 in sphingolipid biosynthesis.  

These enzymes could make good cases for further 
studies as likely drug targets in B cell lymphoma.
Finally, it can also be safely concluded that not only can 
integrative mathematical modelling and metabolomics 
be used to detect genes involved in cancers and to study 
their mechanisms but also to identify new drug targets. 

6. Conclusions
The integrative study predicted that the anti cancer 
mechanism of clove oil involves novel enzymes, as 
likely drug targets,  24-dehydrocholesterol reductase 
and 7-dehydrocholesterol reductase in cholesterol 
biosynthesis, dehydrofolate reductase in one carbon 
metabolism and serine palmitoyl-transferase long chain 
in sphingolipid biosynthesis.
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