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Abstract s

S is a master transcription initiation factor that protects bacterial cells from various

harmful environmental stresses including antibiotic pressure. Although its mechanism remains

unclear, it is known that full activation of sS-mediated transcription requires a s

S-specific activator,

Crl. In this study, we determined a 3.80 Å cryo-EM structure of an Escherichia coli transcription

activation complex (E. coli Crl-TAC) comprising E. coli s
S-RNA polymerase (sS-RNAP) holoenzyme,

Crl, and a nucleic-acid scaffold. The structure reveals that Crl interacts with domain 2 of sS (sS
2)

and the RNAP core enzyme, but does not contact promoter DNA. Results from subsequent

hydrogen-deuterium exchange mass spectrometry (HDX-MS) indicate that Crl stabilizes key

structural motifs within s

S
2 to promote the assembly of the s

S-RNAP holoenzyme and also to

facilitate formation of an RNA polymerase–promoter DNA open complex (RPo). Our study

demonstrates a unique DNA contact-independent mechanism of transcription activation, thereby

defining a previously unrecognized mode of transcription activation in cells.

Introduction
Bacterial cells are capable of rapidly adapting to different ecological conditions through highly regu-

lated dynamic switching among different gene-expression programs, and they do so by selectively

activating distinct s-RNA polymerase (s-RNAP) holoenzymes (Österberg et al., 2011). The alterna-

tive initiating s factor, sS (also known as s

38 in Escherichia coli) is the master stress regulator that

protects many Gram-negative bacteria from detrimental environmental conditions (Lange and

Hengge-Aronis, 1991). It also plays indispensable roles in the biofilm formation, virulence, antibiotic

tolerance, and antibiotic persistence of human pathogens including Salmonella enterica, Pseudomo-

nas aeruginosa, and E. coli (Hansen et al., 2008; Murakami et al., 2005; Stewart et al., 2015;

Wu et al., 2015). Different stress conditions, including antibiotic treatment, could strongly induce
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the expression of s

S (Battesti et al., 2011), which in turn activates the transcription of ~10%

of genes from the E. coli genome by the s

S-RNAP holoenzyme, thereby rendering bacterial cells

resistant to antibiotic treatment and other stresses such as hydrogen peroxide, high temperature,

low pH, osmotic shock and so on (Battesti et al., 2011; Lelong et al., 2007; Weber et al., 2005).

s

S is a group-2 alternative s factor (Feklı́stov et al., 2014). The conserved domains of sS (sS
1.2, s

S
2, s

S
3.1, s

S
3.2, and s

S
4) interact with the RNAP core enzyme through exactly the same interfaces as

those of housekeeping s factor (s70 in E. coli) (Liu et al., 2016). sS shares a high degree of sequence

similarity with s

70 and prefers similar sequences at the �10 (TATAAT) and �35 (TTGACA) promoter

elements (Gaal et al., 2001). Although s

S- and s

70-regulated genes overlap to some extent, s

S

exhibits good selectivity towards its own regulon partially through a ‘derivation-from-the-optimum’

strategy. The s

S-RNAP holoenzyme tolerates degenerate promoter sequences (mostly at the �35

element) better than s

70-RNAP does, though at the cost of reduced overall transcription

activity (Gaal et al., 2001; Maciag et al., 2011; Typas et al., 2007b).

Besides the inferior transcriptional activity of sS-RNAP when compared to s

70-RNAP, the amount

of E. coli s

S in cells is also smaller than that of s

70 in stationary phase and stress conditions

(Jishage et al., 1996), and the affinity of sS is ~15 times lower than that of s70 to the RNAP core

enzyme (Maeda et al., 2000). Therefore, sS has to cooperate with its allies to compete with s

70 for

RNAP core enzyme in order to transcribe its own regulon. A large collection of genetic and bio-

chemical data has highlighted the importance of Crl in s

S-mediated transcription in bacterial cells

(Cavaliere and Norel, 2016). Crl was demonstrated to activate s

S-mediate transcription

directly both in vitro and in vivo (Banta et al., 2013; Banta et al., 2014; Cavaliere et al., 2014;

Cavaliere et al., 2015; England et al., 2008; Monteil et al., 2010a; Pratt and Silhavy, 1998;

Typas et al., 2007a), and Crl-null Salmonella and E. coli cells displayed impaired biogenesis of curli

(which is important for host cell adhesion and invasion as well as for formation of biofilm), increased

sensitivity to H2O2 stress, and reduced virulence due to decreased expression of several sS-regu-

lated genes (Arnqvist et al., 1992; Barnhart and Chapman, 2006; Monteil et al., 2010a; Robbe-

Saule et al., 2006; Robbe-Saule et al., 2008).

Crl is a unique transcription activator in bacteria: 1) unlike other canonical bacterial transcription

factors that regulate the activity of housekeeping s factor (Browning and Busby, 2016), Crl shows

highly stringent specificity to s

S (Banta et al., 2013; Bougdour et al., 2004); 2) Crl broadly activates

s

S-mediated transcription in a promoter sequence-independent manner (Lelong et al., 2007;

Robbe-Saule et al., 2006; Robbe-Saule et al., 2007); and 3) Crl seems to act in at least two stages

to boost s

S-mediated transcription, namely the stage of s

S-RNAP holoenzyme assembly and the

stage of RPo formation (Banta et al., 2013; Bougdour et al., 2004; England et al., 2008). Crl has

been demonstrated to interact with s

S
2 and probably also with the RNAP core

enzyme (England et al., 2008), but whether or how it interacts with DNA remains elusive. Although

crystal and nuclear magnetic resonance (NMR) structures of Crl are available (Banta et al., 2014;

Cavaliere et al., 2014; Cavaliere et al., 2015), it is still unclear how Crl interacts with s

S-RNAP holo-

enzyme and how such interaction contributes to the transcription activation of sS-RNAP.

In this study, we determined a 3.80 Å cryo-EM structure of the transcription activation complex of

Crl (E. coli Crl-TAC) comprising E. coli sS-RNAP holoenzyme, Crl, and a nucleic-acid scaffold mimick-

ing the transcription initiation bubble. In the structure, Crl shields a large solvent-exposed surface of

s

S
2, and bridges sS

2 and the RNAP-b’ subunit, but makes no contact with promoter DNA. The cryo-

EM structure together with results of hydrogen deuterium exchange mass spectrometry (HDX-MS)

and mutational studies have converged on a model in which Crl activates the s

S-RNAP holoenzyme

by stabilizing the active conformation of s

S, thereby promoting the interaction between s

S and

RNAP or DNA.

Results

The cryo-EM structure of E. coli Crl-TAC
To understand the structural basis for transcription activation by Crl, we reconstituted the Crl–TAC

complex that includes the E. coli sS-RNAP holoenzyme, Crl, and a nucleic-acid scaffold comprising a

25-bp upstream dsDNA, a 13-bp downstream dsDNA, a non-complimentary transcription bubble

(�11 to +2 with respect to the transcription start site at +1), and a 5-mer RNA primer (Figure 1A
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and Figure 1—figure supplement 1). The cryo-EM structure of E. coli Crl-TAC was determined at

a nominal resolution of 3.80 Å by a single-particle reconstitution method (Supplementary file 2 and

Figure 1—figure supplement 2). The density map shows clear signals for the nucleic-acid scaffold,

s

S, and Crl (Figure 1B and D–E). The crystal structure of Crl could be readily fit into the density, sug-

gesting little conformational change of Crl upon interaction with s

S-RNAP holoenzyme (Figure 1D)

(Banta et al., 2014).

The cryo-EM structure clearly shows that Crl locates at the outer surface of the s

S-RNAP holoen-

zyme (Figure 1B–C). It mainly interacts with s

S
2 and shields the s

S
2 through an interface of 695 Å2; it

also contacts a helical domain of RNAP-b’ clamp through a very small interface of ~85 Å2

(Figure 2A–D). Crl approaches the upstream edge of transcription bubble, but makes no direct
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Figure 1. The overall structure of E. coli Crl–TAC. (A) The scaffold used in structure determination of E. coli Crl-TAC. (B, C) The top and front view

orientations of the cryo-EM density map (B) and structure model (C) of E. coli Crl–TAC. The RNAP, Crl and nucleic acids are presented as cartoon and

colored as indicated in the color key. The density map is shown in gray envelop. (D) The cryo-EM density map (blue transparent surface) for Crl. (E) The

cryo-EM density map (red transparent surface) for the upstream junction of the transcription bubble of promoter DNA and s

S. NT, non-template-strand

promoter DNA; T, template-strand promoter DNA.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The preparation of E. coli Crl–TAC complex.

Figure supplement 2. The processing pipeline for cryo-EM map construction of E. coli Crl–TAC.
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contact with the promoter DNA (Figures 1D–E and 2A). Such a mode of interaction between Crl

and s

S-RPo supports previous findings from genetic, bacterial two-hybrid, cross-linking, surface plas-

mon resonance (SPR), NMR, or bioinformatic approaches (Banta et al., 2013; Banta et al., 2014;

Cavaliere et al., 2014; England et al., 2008; Monteil et al., 2010a; Monteil et al., 2010b;

Pratt and Silhavy, 1998).

Crl interacts with s
S and the RNAP core enzyme

In the structure of E. coli Crl–TAC, a structural motif that includes helix a2 of sS
1.2 (residues 72–82),

s

S
NCR (residues 83–89), and helix a3 of sS

2.1 (residues 90–93) is embedded into a shallow groove on

Crl, and the nearby ‘specificity loop’ of s

S
2.3 (residues 133–141) is further anchored by Crl

(Figure 2A–C; Figure 2—figure supplements 1–2). Several Crl residues (P21, Y22, C37, L38, C41,

F53, F76, and W82) create a hydrophobic patch in the shallow groove and make van der Waals
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Figure 2. The interactions between Crl and the RNAP-holoenzyme. (A) Crl binds to the s

S
2 and the RNAP-b’ subunit. Crl is represented as a blue

transparent surface and cartoon. (B) sS is embedded into a shallow hydrophobic groove of Crl. The electrostatic potential surface of Crl was generated

using APBS tools in Pymol. (C) The detailed salt-bridge interaction between the ‘R’ loop of Crl and the ‘specificity loop’ of sS. Salt-bridge bonds are

shown as blue dashed lines. (D) The N-terminal tail of Crl makes potential weak interactions with RNAP-b’ subunit, probably through R11 and S10. The

colors are as in Figure 1. (E) The yeast two-hybrid assay reveals the key interface residues (red) of Crl (left) or sS (right). Mutating the key residues

disrupts interactions between Crl and s

S. AD, the activation domain of GAL4; BD, the DNA-binding domain of GAL4. (F) The in vitro transcription assay

shows that mutating most of the key interface residues of Crl (left) substantially impairs its transcription activation activity, and that mutating most

of the key interface residues of sS resulted in reduced response to Crl. DR-loop, replacing residue 43–51 with a ‘GSGS’ linker. (G) Protein sequence

alignment of Crl from 72 non-redundant bacterial species. Filled circles indicate residues that are involved with interactions with s

S; filled red circles

indicate key contact residues. The residues are numbers as in E. coli Crl. NT, non-template-strand promoter DNA; T, template-strand promoter DNA.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The detailed interactions between Crl and s

S
2.

Figure supplement 2. The sequence alignment of bacterial s factors.
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interactions with residues (Y78, F79, R81, R82, L84, and R85) of sS (Figure 2B and Figure 2—figure

supplement 1B). Moreover, potential polar interactions between Crl (R24) and s

S (D87) might also

contribute to the interaction. The interface residues identified here recapitulate most of the hits in a

previous genetic screen to identify interface residues of sS and Crl (Banta et al., 2014). Intriguingly,

most evolutionarily conserved residues of Crl are clustered in the shallow groove, implicating a func-

tional relevance of its interaction with s

S (Figure 2G). Moreover, the Crl derivatives F53A and W82A

rendered salmonella cells more sensitive to H2O2 stress (Monteil et al., 2010a), demonstrating the

physiological importance of such an interface.

We subsequently evaluated contribution of each interface residue to s

S–Crl interaction using a

yeast two-hybrid assay. The results show that mutating most interface residues (P21W, Y22A, R24A,

L38A, F53A, or F76A of Crl; R81A, R82A or R85A of sS
2) substantially impaired s

S–Crl interactions

(Figure 2E). Moreover, the results from an in vitro transcription assay show that alanine substitutions

of R81, R82, or R85 of sS impeded its response to Crl; and that alanine substitutions of L38 or F53 of

Crl also impaired its ability to activate transcription (Figure 2F). The results validate our structure

and confirm the significance of the s

S–Crl interface for the transcription activation activity of Crl.

Previous studies suggested that a conserved ‘DPE’ motif within s

S
2 plays an indispensable role in

its interaction with Crl (Banta et al., 2013; Banta et al., 2014). The ‘DPE’ motif is part of the ‘speci-

ficity loop’ of s

S
2, an essential structural element responsible for recognizing and stabilizing the

unwound nucleotide at the most conserved position of promoter DNA (i.e. position �11 for sS and

s

70-regulted promoters) in all bacterial transcription initiation complexes (Campagne et al., 2014;

Li et al., 2019; Lin et al., 2019; Liu et al., 2016; Zhang et al., 2012). In our structure, the ‘specificity

loop’ encloses the NT-11A nucleotide as reported (Figures 2C and 4D; Figure 2—figure supple-

ment 1D) (Liu et al., 2016). Notably, the conformation of the ‘specificity loop’ is secured by the ‘R’

loop (residues 41–53) of Crl. The side chain of Crl R51 reaches D135 and E137 of the conserved

‘DPE’ motif of sS
2, and probably makes salt-bridge interactions with them (Figure 2C and Figure 2—

figure supplement 1C). Our results from yeast two-hybrid and in vitro transcription assays show that

mutating either D135/E137 of s

S
2 or R51 of Crl significantly compromised the Crl-sS

2 interaction

and Crl-mediated transcription activation, highlighting the importance of such an interface

(Figure 2E–F).

Our structure of Crl-TAC also explains the strict specificity of Crl to s

S. Crl binds to two of the

least conserved regions of bacterial s factors: the s

S
NCR and the ‘specificity loop’ (Figure 2—figure

supplement 2A). The sequence alignments of ten bacterial sS and ten primary s factors clearly show

that most Crl-interacting residues on s

S are not present in s

70 (Figure 2—figure supplement 2B–C).

In agreement with the previous SPR results (England et al., 2008), the density of Crl also sug-

gests possible interactions between Crl and the RNAP-b’ clamp domain (Figure 1D). The interface is

relatively small and only involves residues S10 and R11 of the Crl N-terminal loop (Figure 2D). Dele-

tion of the N-terminal loop of Crl shows only marginal effect on its activation of transcription (left

panel of Figure 2F).

Crl stabilizes s
S
2 to facilitate the assembly of the s

S-RNAP holoenzyme
It has been suggested that Crl may function as a s

S chaperon to facilitate the assembly of the s

S-

RNAP holoenzyme (Banta et al., 2013). We confirm that Crl is able to increase (~3.8 fold) the bind-

ing affinity between s

S and the RNAP core enzyme in a fluorescence polarization assay using fluores-

cein-labeled s

S (Figure 3A). Moreover, an ‘R loop’-mutated derivative of Crl completely lost its

effect on the assembly of the s

S-RNAP holoenzyme, whereas deleting the N-terminal tail of Crl mod-

erately affects this assembly (Figure 3B and Supplementary file 2), in agreement with our in vitro

transcription results (Figure 2E–F). Such results further suggest that Crl facilitates the assembly of

the s

S-RNAP holoenzyme mainly through its interaction with s

S rather than through its interaction

with the RNA-b’ clamp.

A previous report showed that Crl shifts the equilibrium towards sS-RNAP holoenzyme formation

by promoting the association between s

S and RNAP rather than by preventing the dissociation of

the two (England et al., 2008). Such facts imply that Crl may stabilize s

S in a conformation that is

more accessible for the RNAP core enzyme. To investigate this hypothesis, we characterized the in-

solution dynamic conformations of full-length s

S using HDX-MS.

Deuterium exchange of sS was first monitored in the absence of Crl at different time points. At

the earliest time point, 10 s, low deuterium incorporation (�50%) was observed for most peptides
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S-RNAP holoenzyme by stabilizing s
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2. (A) Crl increases binding affinity between RNAP and s

S in a

fluorescence polarization (FP) assay. (B) Deletion the ‘R’ loop but not the N-tail (DN-tail; deleting residue 1–11) abolishes the ability of Crl to

promote the assembly of the s
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Incorporation was mapped onto the cryo-EM structure of sS. The inset shows the color coding for different percentages of deuteron incorporation. (D)

Figure 3 continued on next page
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from s

S
2 and s

S
4 (Figure 3C and Figure 3—figure supplement 1), and the deuterium uptake of

these peptides increased gradually over time (Figure 3—figure supplements 1–3). Such facts indi-

cate that these two domains generally adopt folded structures in solution, as observed in the cryo-

EM structure.

Meanwhile, although s3.1 appears to be folded in our cryo-EM structure (helix a6–a8), most pep-

tides from these regions (except for those ranging residues 182–197) manifest high deuterium incor-

poration level (�50%) at the earliest time point (10 s) and unchanged deuterium uptake up to 900 s

(Figure 3C and Figure 3—figure supplements 1 and 3), indicating that s3.1 is largely solvent-

exposed in solution. Although domain s1.1 (residues 1–55) was not resolved in the cryo-EM structure,

fair peptide coverage was achieved for this region in the HDX-MS experiment (Figure 3—figure

supplement 4) and it shows rapid deuterium incorporation (Figure 3—figure supplement 1). Con-

sistent with their remote locations in the cryo-EM structure, helix a1 from s1.2 (residues 56–67) and

the s3.2 linker (residues 218–245) generally appear to be solvent-exposed in the HDX-MS experiment

(Figure 3C; Figure 3—figure supplements 1 and 3). The HDX profile of sS in the absence of Crl

also agrees well with a recent report (Cavaliere et al., 2018).

We then monitored the deuterium exchange profile of sS in the presence of Crl. In the HDX-MS

results, increased protection from HDX was consistently observed for peptides ranging residues 74–

99 (Figure 3D; Figure 3—figure supplement 2A–B), which span helix a2 of sS
1.2 (residues 74–82),

s

S
NCR (residues 83–89), and the N-terminal part of helix a3 from s

S
2.1 (residues 90–99). The

observed protection from HDX indicates that these structural motifs from s

S may locate at the inter-

face between s

S and Crl, which is highly consistent with our cryo-EM structure (Figures 1D and 2A–

B).

Intriguingly, increased protection from HDX was also observed for certain regions on a4 and a5

(Figure 3D–E; Figure 3—figure supplement 2C–D), all of which locate away from the interface

between s

S and Crl as observed in the cryo-EM structure (Figure 3D). Hence, besides directly shield-

ing the motifs that span a2�a3, Crl seemingly also imposes an allosteric stabilizing effect on s

S. We

thus analyzed the raw spectra of all peptides from these two regions. To our surprise, in the absence

of Crl, typical bimodal shaped isotope clusters were observed for all peptides spanning 118–131aa

and 148–161aa at longer time points (Figure 3E; Figure 3—figure supplement 2C–D). Consistently,

the maximum peak widths of these peptides also increased dramatically as the labeling

period was prolonged (Figure 3F), indicating an EX1 exchange mechanism in these

regions (Weis et al., 2006). Together, these sources of evidence suggest that, in the absence of Crl,

the aforementioned regions on a4 and a5 underwent an unfolding event that is long enough

to allow hydrogen-to-deuterium exchange to happen at all exposed residues (Wales and Engen,

2006). Addition of Crl apparently helps to restrain these regions on s

S
2 in their low HDX conforma-

tion (Figure 3E–F; Figure 3—figure supplement 2C–D), and the HDX protection effect appears to

be highly pronounced for peptides from a4.

Notably, a4 is one of the major anchor point on s

S
2 for the RNAP-b’ subunit (Figure 3G). Hence,

the stabilizing effect rendered on helix a4 by Crl probably facilitates the docking of s

S
2 to

Figure 3 continued

HDX changes for sS in the presence of Crl as compared to free s

S, mapped on the cryo-EM structure of sS. The percentage difference in deuterium

uptake values represents an average across all four time points, ranging from 10 s to 900 s. For heatmap color coding, pink, cyan, and gray indicate

increase, decrease, and no significant change in HDX, respectively. Dark grey represents regions that were not consistently resolved in all HDX

experiments. (E) Deuterium uptake plots and mass spectra of indicated peptides from helices a4 and a5 in the absence and presence of Crl. Left: the

deuterium uptake data are plotted as percent deuterium uptake versus time on a logarithmic scale. Right: mass spectra of the indicated peptides at

different labeling time points, with the mass spectra of undeuterated samples shown as controls. (F) Peak-width analysis at different time points for

peptides from helices a4 and a5 reveal the existence of EX1 kinetics. (C–F) The HDX experiments were repeated at least twice. (G) sS
2 regions with

reduced HDX rate upon Crl binding, the colors are as in (D).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. The raw data of Figure 3A-B.

Figure supplement 1. HDX profile of the s

S protein in the absence of Crl.

Figure supplement 2. Representative peptides from helix a2, a3, a4 and a5 of sS
2 whose HDX rate decreased considerably in the presence of Crl.

Figure supplement 3. Deuterium uptake plots for additional peptides from s

S whose HDX rate did not change in the presence of Crl.

Figure supplement 4. Peptide coverage of sS.
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the RNAP-b’ subunit for subsequent proper positioning of other domains onto the RNAP core

enzyme, thereby promoting the assembly of functional sS-RNAP holoenzyme. Such a hypothesis is

also supported by the increased rate of association that occurs during formation of sS-RNAP holoen-

zyme in the presence of Crl (England et al., 2008).

Crl stabilizes s
S
2 to assist in RPo formation

A previous report suggested that Crl is also able to boost sS-mediated transcription at a step after

s

S-RNAP holoenzyme assembly (Bougdour et al., 2004; England et al., 2008). We here show that
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Figure 4. Crl facilitates RPo formation. (A) Crl increases transcription by a pre-assembled s

S-RNAP holoenzyme from the PosmY promoter in a

concentration-dependent manner. (B) Crl promotes sS-RPo formation in a fluorescence stopped-flow experiment using Cy3-labeled lPR promoter

DNA. (C) Crl promotes sS-RPo formation in a fluorescence stopped-flow experiment using 2AP-labeled lPR promoter DNA. (D) The KMO4 footprinting

experiment result shows that Crl increases formation of the RPo complex. The osmY promoter dsDNA with 32P-labeled at the 50-end of the non-

template strand was used for the assay. The hyperactive T-stretch (�9 to �7) in the transcription bubble upon RPo formation is highlighted in red and

labeled on the right. (E) The upstream promoter DNA is unwound by the W-dyad (W148 and W149), and the unwound A-11 nucleotide of the non-

template strand DNA is recognized and stabilized by a protein pocket on s

S
2. (F) The ‘R’ loop of Crl stabilizes the conformation of the ‘specificity’ loop

that forms the pocket for unwinding and recognizing the A-11 nucleotide of non-template strand promoter DNA.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The promoter DNA used for stopped-flow fluorescence experiments.
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Crl increases the transcription activity of a pre-assembled s

S-RNAP holoenzyme in an in vitro tran-

scription assay (Figure 4A), supporting the previous finding.

To understand how Crl activates s

S-mediated transcription beyond the assembly of s

S-RNAP

holoenzyme, we modified a stopped-flow fluorescence assay to monitor the potential effect of Crl

on RPo formation using pre-assembled s

S-RNAP holoenzyme or pre-assembled Crl-sS–RNAP com-

plex. In the assay, a Cy3 fluorophore, which is attached to the +2 position of the non-template

strand of lPR promoter DNA, is able to sense changes in the local environment upon promoter bind-

ing and unwinding (Figure 4—figure supplement 1). Such a technique has been employed to study

the kinetics of RPo formation by E. coli s70-RNAP holoenzyme and Mycobacterium tuberculosis s

A-

RNAP holoenzyme (Hubin et al., 2017). The Cy3 fluorescence slowly reaches a plateau when s

S-

RNAP holoenzyme alone is mixed with promoter DNA; importantly, the presence of Crl substantially

increases the plateau fluorescence (Figure 4B). The results suggest that Crl probably also functions

at the step of sS-RPo formation.

To confirm above results, we repeated the stopped-flow fluorescence assay using an lPR pro-

moter derivative harboring 2-aminopurine (2-AP) at the �10 position of the template strand (Fig-

ure 4—figure supplement 1). The 2-AP is a better probe for RPo formation, because its

fluorescence is quenched when 2-AP is base-paired and stacked in the context of duplex DNA, and

is enhanced upon duplex DNA unwinding (Sullivan et al., 1997). The results in Figure 4C show that

the 2-AP fluorescence increases slightly when pre-assembled s

S-RNAP holoenzyme alone is rapidly

mixed with promoter DNA; importantly, the presence of Crl greatly enhances the 2-AP fluorescence

at plateau (Figure 4C), consistent with the above results using Cy3-fluoresence and confirming the

effect of Crl on RPo formation.

To further visualize and confirm the effect of Crl on RPo formation, we employed a potassium

permanganate (KMnO4) footprinting approach to measure equilibrated RPo using the OsmY pro-

moter, of which three thymines (�9 to �7, T-stretch) on the non-template strand of unwound tran-

scription bubble would show permanganate reactivity upon RPo formation (red sequence in

Figure 4D). The results show a weak but site-specific cleavage in the expected T-stretch site when

the s

S-RNAP holoenzyme is present in the reaction (Figure 4D, lane 2); and again the presence of

Crl in the complex substantially increases the amount of RPo (Figure 4D, lane 3), consistent with a

previous report (Robbe-Saule et al., 2006). On the basis of the evidence described above from two

stopped-flow fluorescence experiments and the potassium permanganate footprinting assay, we

conclude that Crl is able to promote s

S–RPo formation.

In our structure, Crl uses its residue R51 to interact with D135 and E137 from the ‘specificity loop’

and secures the latter in a conformation that readily accepts the unwound nucleotide (Figure 2—fig-

ure supplement 1D) (Liu et al., 2016). Therefore, it is very likely that Crl may facilitate RPo forma-

tion by pre-organizing or stabilizing a key helix-loop-helix element (a4-specificity loop-a5) of sS
2,

and the ‘specificity loop’ in turn interacts with the first unwound nucleotide to facilitate promoter

unwinding or to stabilize the transcription bubble during the subsequent steps of transcription initia-

tion (Figure 4E–F).

Evidence from HDX-MS also votes for such a notion. Residues from a4 and a5 that showed

decreased HDX rate in the presence of Crl form an intimate interaction with the upstream junction

of promoter DNA (Figure 3G). In the cryo-EM structure, residue R129 from a4 may salt-bridge with

the DNA phosphate backbone (Figure 3G). Meanwhile, residue Y145 from a5 sits just underneath

the base of the unwound A-11 (Figures 3G and 4F), and might facilitate the flipping of A-11 by pi-

stacking with its base. Together, such facts suggest that the rigidifying effect of Crl on helices a4

and a5 may promote not only the assembly of s

S-RNAP holoenzyme but also the interaction

between s

S and DNA, which in turn contribute to promoter unwinding or RPo stability.

Together, our biochemical data, cryo-EM structure and HDX-MS results clearly support a model

in which Crl functions as a stabilizing chaperon to facilitate the assembly of sS-RNAP holoenzyme

and RPo formation.

Discussion
Crl was discovered as the specific transcription activator of the s

S-RNAP holoenzyme about 20 years

ago. A large collection of biochemical, biophysical and genetic data implies that Crl may activate

transcription in an unprecedented manner. In this study, we determined a 3.80 Å cryo-EM structure
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of E. coli Crl–TAC (Figure 1). The structure shows that Crl shields a large and otherwise solvent-

exposed surface on s

S
2 in the s

S-RNAP holoenzyme and stabilizes the key ‘specificity loop’ of sS
2,

but does not contact promoter DNA (Figure 2). Subsequent HDX-MS results recapitulate the inter-

action between Crl and the a2–a3 of sS
2 in solution, and further unravel that the stabilizing effect of

Crl on s

S
2 extends beyond the helix a2–a3 to a4 and a5 (Figure 3C–F). Considering the role of a4

and a5 of s

S
2 in anchoring the RNAP-b’ subunit and promoter DNA, our cryo-EM structure and

HDX-MS data thus point to a model in which binding of Crl stabilizes the conformation of sS to pro-

mote the assembly of the s

S-RNAP holoenzyme and the formation of RPo.

Most bacterial transcription factors activate gene expression by creating additional physical link-

age between RNAP and the corresponding promoter DNA (Browning and Busby, 2016); whereas

the eukaryotic transcription activators typically interact with both enhancer DNA element and media-

tor proteins, the latter bridging the transcription activators to transcription core

machinery (Jeronimo and Robert, 2017). It is widely accepted that transcription factors activate

transcription by enhancing the interaction between promoter DNA and the transcription machinery

(Browning and Busby, 2016), so it will be intriguing to find out how Crl activates transcription as an

unconventional transcription activator that does not contact promoter DNA.

Our structure and biochemical data reveal that Crl activates transcription by stabilizing the critical

structural elements of sS
2: the ‘RNAP-anchoring helix’ and the ‘specificity loop’. The effect on the

‘specificity loop’ is straightforward as Crl makes direct interactions with it. It is intriguing that the

conformations of the ’RNAP-anchoring helix’ are remotely restrained by Crl binding. Although it is

not known how exactly the signal of Crl binding is allosterically transmitted to the ‘RNAP-anchoring

helix’, we infer that Crl probably clamps the two helices (a2 and a3) of sS
1.2 and s

S
2.1, reduces the

internal motion of the helix bundle, and consequently stabilizes the conformer in a way that is com-

petent for engagement to RNAP.

We point out that Cartagena and coworkers recently also reported a cryo-EM structure of

a transcription activation complex comprising the E. coli RNAP core enzyme, Salmonella enterica

serovar Typhimurium Crl and s

S (Cartagena et al., 2019). Our structure of E. coli Crl–TAC agrees

well with this chimeric complex structure, and both structures show that Crl engages s

S-RNAP

through a large interface with s

S
2 and a small interface with the RNAP core enzyme.

Cartagena et al. (2019) proposed a ‘tethering’ mechanism by which Crl tethers s

S to the RNAP

core enzyme and thus promotes s

S-RNAP assembly. By contrast, we found that the interaction

between Crl and the RNAP core enzyme only plays a partial role in s

S-RNAP assembly. Instead, we

demonstrate, using HDX-MS techniques, that Crl stabilizes critical structural elements of sS
2 — the

‘RNAP-anchoring helix’ and ‘specificity loop’ — to promote s

S-RNAP assembly and to facilitate RPo

formation.

Different from canonical bacterial transcription activators that interact with the RNAP-a subunit

and/or region 4 of s factor, Crl specifically activates the s

S-regulated genes by making interactions

with region 2 of s

S. A few recently discovered transcription activators, such as C. crescentus

GcrA (Fioravanti et al., 2013; Haakonsen et al., 2015; Wu et al., 2018), Mycobacterium tuberculo-

sis RbpA (Bortoluzzi et al., 2013; Hu et al., 2012; Hubin et al., 2017; Hubin et al., 2015), and

Chlamydia trachomatis GrgA (Bao et al., 2012), also anchor RNAP through interactions with region

2 of primary s factors (Figure 2—figure supplement 1E–G), suggesting that the region 2 of s fac-

tors could also serve as a hub for docking various transcription activators. However, in contrast to

Crl, these transcription activators contain additional domains that activate transcription by making

essential interactions with promoter DNA in a sequence-independent (GrgA and RbpA) or

sequence-dependent manner (GcrA) (Bao et al., 2012; Fioravanti et al., 2013; Hubin et al., 2017).

Collectively, we revealed here that Crl increases the transcriptional activity of sS-RNAP in a DNA

contact-independent manner and through stabilizing the key structural elements of sS.

Our study provides the structural basis and molecular mechanism of an unprecedented example

of transcription activation by E. coli Crl. The combined effect of Crl — facilitating assembly of sS-

RNAP holoenzyme and assisting RPo formation — would help s

S to outcompete the housekeeping

s and substantially increase the transcription activity of the s

S-RNAP holoenzyme in the expression

of stress-related genes. The unique DNA contact-independent mechanism also provides a new para-

digm for bacterial transcription activation.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Gene
(Escherichia coli)

crl Gene bank
(7152411)

Strain, strain
background
(E. coli)

BL21(DE3) Novo protein, China V211-01A Chemically
competent cells

Recombinant
DNA reagent

pET-28a-TEV-Crl
(plasmid)

This paper Protein expression
vector for E. coli Crl

Recombinant
DNA reagent

pET-28a-TEV-EcsS

(plasmid)
This paper Protein expression

vector for E. coli sS

Recombinant
DNA reagent

pET-28a-TEV-Crl (P21W)
(plasmid)

This paper Protein expression
vector for E. coli
Crl (P21W)

Recombinant
DNA reagent

pET-28a-TEV-Crl (Y22A)
(plasmid)

This paper Protein expression
vector for E. coli
Crl (Y22A)

Recombinant
DNA reagent

pET-28a-TEV-Crl (R24A)
(plasmid)

This paper Protein expression
vector for E. coli
Crl (R24A)

Recombinant
DNA reagent

pET-28a-TEV-Crl (L38A)
(plasmid)

This paper Protein expression
vector for E. coli
Crl (L38A)

Recombinant
DNA reagent

pET-28a-TEV-Crl (R51A)
(plasmid)

This paper Protein expression
vector for E. coli
Crl (R51A)

Recombinant
DNA reagent

pET-28a-TEV-Crl (F53A)
(plasmid)

This paper Protein expression
vector for E. coli
Crl (F53A)

Recombinant
DNA reagent

pET-28a-TEV-Crl (F76A)
(plasmid)

This paper Protein expression
vector for E. coli
Crl (F76A)

Recombinant
DNA reagent

pET-28a-TEV-Crl (DN-tail)
(plasmid)

This paper Protein expression
vector for E. coli
Crl (D1–11)

Recombinant
DNA reagent

pET-28a-TEV-Crl (DR-loop)
(plasmid)

This paper pET-28a-TEV-Crl
(DR-loop; residues
43–51 of Crl by a
‘GSGS’ linker)

Recombinant
DNA reagent

pET-28a-TEV-Crl (DN-tail /DR-loop)
(plasmid)

This paper Protein expression
vector for E. coli
Crl (DN-tail /DR-loop)

Recombinant
DNA reagent

pET-28a-TEV-EcsS(R81A)
(plasmid)

This paper Protein expression
vector for E. coli sS (R81A)

Recombinant
DNA reagent

pET-28a-TEV-EcsS (R82A)
(plasmid)

This paper Protein expression
vector for E. coli sS (R82A)

Recombinant
DNA reagent

pET-28a-TEV-EcsS (R85A)
(plasmid)

This paper Protein expression
vector for E. coli sS (R85A)

Recombinant
DNA reagent

pET-28a-TEV-EcsS (D135A)
(plasmid)

This paper Protein expression
vector for E. coli sS (D135A)

Recombinant
DNA reagent

pET-28a-TEV-EcsS (E137A)
(plasmid)

This paper Protein expression
vector for E. colisS (E137A)

Recombinant
DNA reagent

pET-28a-TEV-EcsS (A239C)
(plasmid)

This paper Protein expression
vector for E. coli sS (A239C)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Recombinant
DNA reagent

pGADT7-Crl (plasmid) This paper Plasmid for yeast
two-hybrid; Crl is
fused to Gal4-AD

Recombinant
DNA reagent

pGADT7-Crl (P21W)
(plasmid)

This paper Plasmid for yeast
two-hybrid; Crl (P21W)
is fused to Gal4-AD

Recombinant
DNA reagent

pGADT7-Crl (Y22A)
(plasmid)

This paper Plasmid for yeast two-
hybrid; Crl (Y22A) is
fused to Gal4-AD

Recombinant
DNA reagent

pGADT7-Crl (R24A)
(plasmid)

This paper Plasmid for yeast
two-hybrid; Crl (R24A)
is fused to Gal4-AD

Recombinant
DNA reagent

pGADT7-Crl (E25A)
(plasmid)

This paper Plasmid for yeast
two-hybrid; Crl (E25A)
is fused to Gal4-AD

Recombinant
DNA reagent

pGADT7-Crl (L38A)
(plasmid)

This paper Plasmid for yeast
two-hybrid; Crl (L38A)
is fused to Gal4-AD

Recombinant
DNA reagent

pGADT7-Crl (V44A)
(plasmid)

This paper Plasmid for yeast
two-hybrid; Crl (V44A)
is fused to Gal4-AD

Recombinant
DNA reagent

pGADT7-Crl (K45A)
(plasmid)

This paper Plasmid for yeast
two-hybrid; Crl (K45A)
is fused to Gal4-AD

Recombinant
DNA reagent

pGADT7-Crl (R51A)
(plasmid)

This paper Plasmid for yeast
two-hybrid; Crl (R51A)
is fused to Gal4-AD

Recombinant
DNA reagent

pGADT7-Crl (F53A)
(plasmid)

This paper Plasmid for yeast
two-hybrid; Crl (F53A)
is fused to Gal4-AD

Recombinant
DNA reagent

pGADT7-Crl (F76A)
(plasmid)

This paper Plasmid for yeast
two-hybrid; Crl (F76A)
is fused to Gal4-AD

Recombinant
DNA reagent

pGADT7-Crl (DR-loop)
(plasmid)

This paper Plasmid for yeast
two-hybrid; Crl (DR-loop)
is fused to Gal4-AD

Recombinant
DNA reagent

pGBKT7-sS
2

(plasmid)
This paper Plasmid for yeast

two-hybrid; sS
2(53–162)

is fused to Gal4-BD

Recombinant
DNA reagent

pGBKT7-sS
2 (Y78A)

(plasmid)
This paper Plasmid for yeast

two-hybrid; sS
2 (Y78A)

is fused to Gal4-BD

Recombinant
DNA reagent

pGBKT7-sS
2 (F79A)

(plasmid)
This paper Plasmid for yeast

two-hybrid; sS
2

(F79A) is fused to Gal4-BD

Recombinant
DNA reagent

pGBKT7-sS
2 (R81A)

(plasmid)
This paper Plasmid for yeast

two-hybrid; sS
2 (R81A)

is fused to Gal4-BD

Recombinant
DNA reagent

pGBKT7-sS
2 (R82A)

(plasmid)
This paper Plasmid for yeast

two-hybrid; sS
2 (R82A)

is fused to Gal4-BD

Recombinant
DNA reagent

pGBKT7-sS
2 (R85A)

(plasmid)
This paper Plasmid for yeast

two-hybrid; sS
2 (R85A)

is fused to Gal4-BD

Recombinant
DNA reagent

pGBKT7-sS
2 (R93A)

(plasmid)
This paper Plasmid for yeast

two-hybrid; sS
2 (R93A)

is fused to Gal4-BD

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Recombinant
DNA reagent

pGBKT7-sS
2 (D135A)

(plasmid)
This paper Plasmid for yeast

two-hybrid; sS
2 (D135A)

is fused to Gal4-BD

Recombinant
DNA reagent

pGBKT7-sS
2 (E137A)

(plasmid)
This paper Plasmid for yeast

two-hybrid; sS
2 (E137A)

is fused to Gal4-BD

Recombinant
DNA reagent

pEasyT-PosmY
(plasmid)

This paper Plasmid containing
PosmY

Commercial
assay or kit

Ezmax one-step
cloning kit

Tolo
Bio-tech, China

Cat#24305–01

Other Ni-NTA agarose smart-
lifesciences, China

Cat#SA004100

Other C-flat CF-1.2/
1.3 400 mesh

Electron
Microscopy Sciences

Cat#CF413-100

Plasmid construction
DNA fragments containing E. coli crl and rpoS were amplified from E. coli genomic DNA and cloned

into pET28a-TEV using the Ezmax one-step cloning kit (Tolo Bio-tech, China). Point mutations of crl

or rpoS were generated through site-directed mutagenesis (Transgen biotech, Inc). pET-28a-TEV-Crl

(DR-loop) was constructed by replacing residues 43–51 of Crl with a ‘GSGS’ linker. pGADT7-Crl and

pGBKT7-sS
2 were constructed using the Gateway LR clonase II (Invitrogen, Inc). The derivatives of

pGADT7-Crl and pGBKT7-sS
2 were generated through site-directed mutagenesis.

Protein preparation
The Ec RNAP core enzyme was overexpressed and purified from E. coli BL21(DE3) carrying pEcABC

and pCDF-Ec rpoZ as described previously (Hudson et al., 2009).

The Ec Crl was overexpressed in E. coli BL21(DE3) cells (Novo protein, Inc) carrying pET28a-TEV-

Crl. Protein expression was induced with 0.5 mM isopropyl b-d-1-thiogalactopyranoside (IPTG) at 18˚

C for 14 hr when OD600 reached to 0.6–0.8. Cell pellet was lysed in lysis buffer (50 mM Tris-HCl [pH

7.7], 500 mM NaCl, 5% (v/v) glycerol, 5 mM b-mercaptoethanol, and protease inhibitor cocktail [Bio-

make.cn. Inc]) using an Avestin EmulsiFlex-C3 cell disrupter (Avestin, Inc). The lysate was centrifuged

(16,000 g; 50 min; 4˚C) and the supernatant was loaded onto a 2 ml column packed with Ni-NTA

agarose (smart-lifesciences, Inc). The proteins bound on resin were washed by the lysis buffer con-

taining 20 mM imidazole and eluted with the lysis buffer containing 300 mM imidazole. The eluted

fractions were mixed with tobacco etch virus (TEV) protease and dialyzed against 20 mM Tris-

HCl (pH 7.7), 50 mM NaCl, and 1 mM DTT. The sample was reloaded onto a Ni-NTA column to

remove his tag. The Crl was further purified on a Q HP column (HiPrep Q HP 16/10, GE healthcare

Life Sciences) with a salt gradient of buffer A (20 mM Tris-HCl [pH 7.7], 50 mM NaCl, and 1 mM

DTT) and buffer B (20 mM Tris-HCl [pH 7.7], 1 M NaCl, and 1 mM DTT). The fractions containing tar-

get proteins were collected, concentrated, and stored at �80˚C.

The Crl and s

S derivatives were prepared by the same procedure.

Nucleic-acid scaffolds
For Cryo-EM study, the DNA sequence of upstream half promoter (�36 to �7) was chosen on the

basis of the nuclei-acid scaffold for obtaining the crystal structure of E. coli sS–RPo (Liu et al., 2016);

whereas the DNA sequence of the downstream half promoter (�6 to +15) was chosen on the basis

of the nuclei-acid scaffold for obtaining the crystal structure of sA–RPo (Zhang et al., 2012). The

nucleic-acid scaffold was prepared by mixing synthetic non-template DNA, template DNA, and RNA

at molar ratio of 1:1.2:1.5 and subjected to an annealing procedure (95˚C, 5 min followed by 2˚C-

step cooling to 25˚C) in annealing buffer (5 mM Tris-HCl [pH 8.0], 200 mM NaCl, and 10 mM MgCl2).
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Complex reconstitution of E. coli Crl–TAC
The Crl–sS binary complex was prepared by incubating Crl and s

S at a molar ratio of 2:1 and purified

by using a Superdex 75 gel filtration column (GE Healthcare). The E. coli Crl–TAC was assembled by

directly incubating the RNAP core enzyme, the Crl–sS binary complex, and the nucleic-acid scaffold

at a molar ratio of 1:4:4 at 4˚C overnight. The mixture was loaded onto a Superdex 200 gel filtration

column (GE Healthcare) and eluted with 10 mM HEPES [pH 7.5], 50 mM KCl, 5 mM MgCl2, and 3

mM DTT. Fractions containing E. coli Crl–TAC were collected and concentrated to ~12 mg/ml.

Cryo-EM structure determination of E. coli Crl–TAC
The E. coli Crl–TAC sample was freshly prepared as described above and mixed with CHAPSO

(Hampton Research, Inc) to a final concentration 8 mM prior to grid preparation. About 4 mL of the

complex sample was applied onto the glow-discharged C-flat CF-1.2/1.3 400 mesh holey carbon

grids (Electron Microscopy Sciences) and the grid was plunge-frozen in liquid ethane using a Vitro-

bot Mark IV (FEI) with 95% chamber humidity at 10˚C.

The data were collected on a 300 keV Titan Krios (FEI) equipped with a K2 Summit direct electron

detector (Gatan). A total of 3290 images of Crl–TAC were recorded using the Serial EM (Mastro-

narde, 2005) in super-resolution counting mode with a pixel size of 0.507 Å, and a dose rate of 6.7

electrons/pixel/s. Movies were recorded at 250 ms/frame for 8 s (32 frames total) and defocus range

was varied between 2.0 mm and 2.5 mm. Frames in individual movies were aligned using MotionCor2

(Zheng et al., 2017), and Contrast-transfer-function estimations were performed using CTFFIND

(Rohou and Grigorieff, 2015). About 1160 particles were picked and subjected to 2D classification

in RELION 3.0 (Fernandez-Leiro and Scheres, 2017). The resulting distinct two-dimensional classes

were served as templates and a total of 315,977 particles for Crl–TAC were picked out. The resulting

particles were manually inspected and subjected to 2D classification in RELION 3.0 by specifying

100 classes (Zivanov et al., 2018). Poorly populated classes were removed. We used a 50 Å low-

pass-filtered map calculated from structure of E. coli sS–TIC (Kang et al., 2017) (PDB: 5IPL) as the

starting reference model for 3D classification. The final maps were obtained through 3D auto-refine-

ment, CTF-refinement, Bayesian polishing, and post-processing in RELION 3.0 (Figure 1—figure

supplement 2). Gold-standard Fourier-shell-correlation analysis (FSC) (Henderson et al., 2012) indi-

cated a mean map resolution of 3.80 Å for Ec Crl–TAC.

The crystal structure of E. coli sS–TIC (Kang et al., 2017)(PDB: 5IPL) and the crystal structure of

P. mirabilis Crl (Cavaliere et al., 2014) (PDB: 4Q11) were manually fit into the cryo-EM density map

using Chimera (Pettersen et al., 2004). Rigid body and real-space refinement was performed in

Coot (Emsley and Cowtan, 2004) and Phenix (Adams et al., 2010).

Hydrogen–deuterium exchange mass spectrometry (HDX-MS) of sS

The HDX-MS was performed as recommended in Masson et al. (2019). Amide hydrogen exchange

of s

S alone was started by diluting 3 ml protein sample at 19 mM into 27 ml D2O buffer (20 mM

Tris [pH 7.7], 150 mM NaCl, 1 mM tris(2-carboxyethyl)phosphine [TCEP]) at 20˚C. At different time

points (0 s, 10 s, 60 s, 300 s and 900 s), the labeling reaction was quenched by the addition of chilled

quench buffer (200 mM KH2PO4/K2HPO4 [pH 2.2]) and the reaction mixture was immediately frozen

in liquid nitrogen. For the HDX-MS of sS in the presence of Crl, 50 mL s

S at 34 mM were first mixed

with 40 ml Crl at 176 mM and incubated at room temperature for 1 hr. 3 mL mixture was then labeled

by adding 27 mL D2O buffer before being quenched at the above time points and flash-frozen. All

frozen samples were stored at �80˚C until analysis.

The thawed samples were immediately injected into an HPLC-MS (Agilent 1100) system equipped

with in-line peptic digestion and desalting. The desalted digests were then separated with a Hypersil

Gold C18 analytical column (ThermoFisher) over a 19 min gradient and directly analyzed with an

Orbitrap Fusion mass spectrometer (ThermoFisher). The HPLC system was extensively cleaned with

blank injections between samples to minimize any carryover. Peptides identification was performed

by tandem MS/MS in the orbi/orbi mode. All peptides were identified using the Proteome Discov-

erer Software (ThermoFisher). We carried out the initial analysis of the peptide centroids with HD-

Examiner v2.3 (Sierra Analytics) and then manually verified every peptide to check retention time,

charge state, m/z range and the presence of overlapping peptides. The peptide coverage of s

S

were found to be 95.2% and the relative deuteration levels (%D) of each peptide were automatically
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calculated by HD-Examiner with the assumption that a fully deuterated sample retains 90% D in cur-

rent LC setting.

Yeast two-hybrid assay
The GAL4-based yeast two-hybrid system (MATECHMAKER GAL4 two-hybrid system3, Clontech

Laboratories, Inc) was used to analyze the protein-protein interaction according to the standard pro-

cedure. Briefly, wild-type or derivatives of EcCrl and EcsS
2 were cloned into prey vector pGADT7

and the bait vector pGBKT7, respectively. The bait and prey vectors were transformed into Y187

and AH109 yeast cells, respectively. The haploid colonies of Y187 were mated with haploid prey col-

onies of AH109 in the YPDA medium for 24 hr, and the diploid yeast cells containing both bait and

prey vectors were selected on SD (–Leu, –Trp) plates at 30˚C for 48 hr. The colonies were inoculated

into SD (–Leu, –Trp) medium and cultured at 30˚C for 24 hr. The resulting cell suspensions with a

series of dilution were spotted onto SD (–Leu, –Trp) and SD (–Ade, –His, –Leu, –Trp) plates, incu-

bated at 30˚C for 4–5 days. Positive colonies appear after 3 days on SD (–Ade, –His, –Leu, –Trp)

plates and the plate images were taken 5–6 days after plating.

Fluorescence labeling
The E. coli sS(A239C) was labeled with fluorescein at residues C239. The labeling reaction mixture (2

mL) containing s

S (0.07 mM) and fluorescein-5-maleimide (0.7 mM; Thermo Scientific, Inc) in 10 mM

Tris-HCl, pH 7.7), 100 mM NaCl, and 1% glycerol was incubated overnight at 4˚C. The reaction was

terminated by addition of 2 mL 1M DTT, and loaded onto a 5 mL PD-10 desalting column (Biorad,

Inc). The fractions containing labeled protein was pooled and concentrated to 3 mg/mL. The label-

ing efficiency is estimated at ~70%.

Fluorescence polarization
The reaction mixtures (100 mL) contain the fluorescein-labeled s

S (4 nM; final concentration) with or

without Crl (1 mM; final concentration) in FP buffer (10 mM Tris-HCl [pH 7.9], 300 mM NaCl, 1 mM

DTT, 1% glycerol, and 0.025% Tween-20) were incubated for 10 min at room temperature. RNAP

core enzyme (0 nM to 1024 nM; final concentration) was added and incubated for 10 min at room

temperature. The FP signals were measured using a plate reader (SPARK, TECAN Inc) equipped

with an excitation filter of 485/20 nm and an emission filter of 520/20 nm. The data were plotted in

SigmaPlot (Systat software, Inc) and the dissociation constant Kd was estimated by fitting the data

to the following equation:

F¼B½S�=ðKdþ½S�ÞþF0

where F is the FP signal at a given concentration of RNAP, F0 is the FP signal in the absence of

RNAP, [S] is the concentration of RNAP, and B is an unconstrained constant.

Stopped-flow assay
The stopped-flow assay was performed essentially as in Feklistov et al. (2017). The Cy3-lPR pro-

moter (�60 to + 53) with Cy3-amido-dT at position +2 of the non-template strand was prepared by

PCR extending (�60 to + 53; Figure 4—figure supplement 1A). To monitor promoter melting, 60

mL pre-assembled Ec s

s-RNAP holoenzyme or pre-assembled Ec s

s-Crl-RNAP holoenzyme (200 nM;

final concentration) and 60 mL Cy3-lPR promoter DNA (20 nM; final concentration) in 10 mM Tris-

HCl [pH 7.7], 20 mM NaCl, 10 mM MgCl2, and 1 mM DTT were rapidly mixed, and the change of

fluorescence was monitored in real time by a stopped-flow instrument (SX20, Applied Photophysics

Ltd, UK) using an excitation wavelength of 519 nm (slit width = 9.3 nm) and a long-pass emission fil-

ter (570 nm).

The 2AP-lPR promoter (�60 to + 53) with 2-amido purine at position �10 of the template strand

was prepared by PCR extending (Figure 4—figure supplement 1B). To monitor the promoter melt-

ing, 60 mL pre-assembled Ec s

s-RNAP holoenzyme or pre-assembled Ec s

s-Crl-RNAP holoenzyme

(400 nM; final concentration) and 60 mL Cy3-l PR promoter DNA (100 nM; final concentration) in 10

mM Tris-HCl [pH 7.7], 20 mM NaCl, 10 mM MgCl2, and 1 mM DTT were rapidly mixed, and the

change of 2-AP fluorescence was monitored in real time by a stopped-flow instrument (SX20,
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Applied Photophysics Ltd, UK) using an excitation wavelength of 309 nm (slit width 9.3 nm) and a

long-pass emission filter (360 nm).

In vitro transcription assay
The osmY promoter with a tR2 terminator was prepared by PCR amplification of the osmY promoter

region (�107/+50 relative to the transcription start site) from E. coli genomic DNA using primers

(forward primer: 50–TTCCCTTCCTTATTAGCCGCTT�30; reverse primer: 50–AAATAAAAAGGCC

TGCGATTACCAGCAGGCCCTGATATCTACGCATTGAACGG�30). All of the in vitro transcription

reactions were performed in transcription buffer (40 mM Tris-HCl [pH 7.9], 75 mM KCl, 5 mM MgCl2,

12.5% glycerol, and 2.5 mM DTT) in a 20 ml reaction mixture.

To study the effect of overall transcription activation by Crl, Crl (500 nM; final concentration) was

pre-incubated with s

S (200 nM; final concentration) for 10 min at 30˚C in transcription buffer prior to

addition of RNAP core enzyme (100 nM; final concentration). Promoter DNA (100 nM; final concen-

tration) was subsequently added and incubated for 10 min. RNA synthesis was allowed by addition

of NTP mixture (30 mM ATP, 30 mM CTP, 30 mM GTP, 30 mM [a-32P]UTP [0.04 Bq/fmol]; final concen-

tration) for 15 min at 30˚C. The reactions were terminated by adding 5 mL loading buffer (8 M urea,

20 mM EDTA, 0.025% xylene cyanol, and 0.025% bromophenol blue), boiled for 2 min, and cooled

down in ice for 5 min.

To study the transcription activation of pre-assembled s

s-RNAP holoenzyme by Crl, reaction mix-

ture containing pre-assembled E. coli ss-RNAP (200 nM; final concentration) and Crl (0 nM to 1600

nM; final concentration) were incubated in transcription buffer for 10 min at 30˚C, then promoter

DNA (200 nM; final concentration) was added before the mixture was incubated for 10 min at 30˚C

for open complex formation. RNA synthesis was allowed by the addition of NTP mixture (30 mM

ATP, 30 mM CTP, 30 mM GTP, 30 mM [a-32P]UTP [0.04 Bq/fmol] for each; final concentration) for 15

min at 30˚C. The reactions were terminated by adding 5 mL loading buffer (8 M urea, 20 mM EDTA,

0.025% xylene cyanol, and 0.025% bromophenol blue), boiled for 2 min, and cooled down in ice for

5 min. The RNA transcripts were separated by 15% urea-polyacrylamide slab gels (19:1 acrylamide/

bisacrylamide) in 90 mM Tris-borate (pH 8.0) and 0.2 mM EDTA, and analyzed by storage-phosphor

scanning (Typhoon; GE Healthcare, Inc).

Potassium permanganate KMnO4 footprinting assay
The osmY promoter dsDNA with 32P-labeled at the 50-end of non-template strand for the footprint-

ing assay was prepared as follows. The pEasyT-PosmY was constructed by ligation of pEasy-Blunt

and a dsDNA fragment containing osmY promoter DNA (�66/+27) followed by an EcoRI site, which

was prepared by annealing synthetic non-template and template oligodeoxynucleotides (osmY-NT:

50- CACTTTTGCTTATGTTTTCGCTGATATCCCGAGCGGTTTCAAAATTGTGATCTATATTTAA-

CAAAGTGATGACATTTCTGACGGCGTTAAATAGAATTC-30; osmY-T: 50- GAATTCTATTTAACGCCG

TCAGAAATGTCATCACTTTGTTAAATATAGATCACAATTTTGAAACCGCTCGGGATATCAGC-

GAAAACATAAGCAAAAGTG-30). Subsequently, a dsDNA fragment of 520 bp containing osmY pro-

moter (amplified from pEasyT-PosmY using forward primer 50-CACTTTTGCTTATGTTTTC-30 and

reverse primer 50-ACCCTAATCAAGTTTTTTGGGGTC-30) was labeled with g-32P-ATP (PerkinElmer,

Inc) and T4 Polynucleotide Kinase (NEB, Inc) at 37˚C for 1 hr, and purified using illustra MicroSpin

G-25 columns (GE Healthcare, Inc). The labeled dsDNA was digested by EcoRI at 37˚C for 1 hr, and

separated by native PAGE electrophoresis. The final osmY promoter dsDNA with 32P-labeled at the

50-end of the non-template strand was purified from the gel and quantified.

The reaction mixture (25 ml) containing pre-assembled E. coli ss-RNAP (200 nM; final concentra-

tion) or E. coli Crl-ss-RNAP (200 nM; final concentration), 32P-labeled osmY promoter DNA (50 nM;

final concentration), 10 mM Tris Tris-HCl (pH 7.9), 100 mM NaCl, and 5 mM MgCl2 was incubated at

room temperature for 15 min. Subsequently, 1 ml potassium permanganate (KMnO4, 2.5 mM; final

concentration) was added and the mixture was incubated at 37˚C for 2 min. The reaction was

stopped by adding 24 ml b-mercaptoethanol (250 mM; final concentration) and incubating for 15 s.

DNA was precipitated and rinsed with ethanol, resuspended in 100 ml 1M piperidine, and heated at

90˚C for 30 min. After piperidine cleavage, the DNA was precipitated with 100% ethanol, pelleted

and washed with 75% ethanol. The pellet was air-dried, resuspended in 20 ml loading buffer (8 M
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urea, 20 mM EDTA, 0.025% xylene cyanol, and 0.025% bromophenol blue) and boiled for 2 min

before loading onto a 15% urea-polyacrylamide slab gel.

The A+G marker was prepared essentially as in Ross and Gourse (2009). Briefly, 12 ml 32P-

labeled PosmY (20 nM; final concentration) was incubated with 50 ml formic acid at room tempera-

ture for 7 min. The depurinated DNA was precipitated and rinsed with 100% ethanol. The pellet was

then resuspended in 100 ml 1 M piperidine and heated at 90˚C for 30 min. The cleaved DNA was

precipitated with 100% (v/v) ethanol, washed with 75% ethanol, air-dried, and resuspended in 20 ml

loading buffer. The sample was then boiled for 2 min and loaded onto a 15% urea-polyacrylamide

slab gel.

Quantification and statistical analysis
All biochemical assays were performed at least three times independently. Data were analyzed with

SigmaPlot 10.0 (Systat Software Inc).
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Österberg S, del Peso-Santos T, Shingler V. 2011. Regulation of alternative sigma factor use. Annual Review of
Microbiology 65:37–55. DOI: https://doi.org/10.1146/annurev.micro.112408.134219, PMID: 21639785

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF chimera–a
visualization system for exploratory research and analysis. Journal of Computational Chemistry 25:1605–1612.
DOI: https://doi.org/10.1002/jcc.20084, PMID: 15264254

Pratt LA, Silhavy TJ. 1998. Crl stimulates RpoS activity during stationary phase. Molecular Microbiology 29:1225–
1236. DOI: https://doi.org/10.1046/j.1365-2958.1998.01007.x, PMID: 9767590
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