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Systems approach to characterize 
the metabolism of liver cancer stem 
cells expressing CD133
Wonhee Hur1,*, Jae Yong Ryu2,*, Hyun Uk  Kim2,3, Sung Woo Hong1, Eun Byul Lee1,  
Sang Yup Lee2,3,4 & Seung Kew Yoon1,5

Liver cancer stem cells (LCSCs) have attracted attention because they cause therapeutic resistance in 
hepatocellular carcinoma (HCC). Understanding the metabolism of LCSCs can be a key to developing 
therapeutic strategy, but metabolic characteristics have not yet been studied. Here, we systematically 
analyzed and compared the global metabolic phenotype between LCSCs and non-LCSCs using 
transcriptome and metabolome data. We also reconstructed genome-scale metabolic models (GEMs) 
for LCSC and non-LCSC to comparatively examine differences in their metabolism at genome-scale. 
We demonstrated that LCSCs exhibited an increased proliferation rate through enhancing glycolysis 
compared with non-LCSCs. We also confirmed that MYC, a central point of regulation in cancer 
metabolism, was significantly up-regulated in LCSCs compared with non-LCSCs. Moreover, LCSCs 
tend to have less active fatty acid oxidation. In this study, the metabolic characteristics of LCSCs were 
identified using integrative systems analysis, and these characteristics could be potential cures for the 
resistance of liver cancer cells to anticancer treatments.

Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed malignancies worldwide with a par-
ticularly poor prognosis, given its resistance to currently available treatments1,2. HCC is highly prevalent in Africa 
and Southeast Asia, and its incidence is steadily increasing in Western countries3,4. The majority of HCC develops 
as a result of chronic liver injury caused by infections with hepatitis B virus (HBV) and hepatitis C virus (HCV), 
alcohol abuse, non-alcoholic steatohepatitis, and exposure to liver toxins such as aflatoxin and oral contracep-
tives. Currently available options for the treatment of advanced HCC, including chemotherapy, radiation therapy, 
local ablation, and anti-angiogenesis therapies, have only demonstrated limited efficacy5,6. Our poor understand-
ing of the molecular mechanisms that control initiation, progression, and treatment refractoriness of the tumor 
has made HCC treatment even more difficult.

In this context, recent research efforts have focused on characterizing phenotypes of cancer stem cells 
(CSCs) in an effort to develop new therapeutic strategies and improve outcomes in the treatment of liver cancer. 
CSCs or tumor initiating cells represent a small subpopulation of cancer cells in various types of cancers. CSCs 
possess capabilities of self-renewal and differentiation, and are believed to cause chemo- or radio-resistance, 
leading HCC patients to suffer frequent tumor recurrence or metastasis7–9. Among various markers of CSCs, 
CD133 has been widely used as a marker for the identification of CSCs in hepatocarcinogenesis10,11. CD133, a 
five-transmembrane-spanning cell-surface glycoprotein, is associated with resistance to existing radio/chemo-
therapies12–14. In our previous studies, Huh7 cells (HCC cell line) expressing CD133 exhibited increased prolif-
eration rates in vivo tumor formation, and metastatic potential compared with Huh7 cells not expressing CD133 
after exposure to radiation treatment in vitro and in vivo13,15,16. However, major factors enhancing CSC survival 
following radio/chemotherapies in HCC remain unclear. We focus on CSC metabolism to address this problem 
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because metabolism generates the energy necessary for cell proliferation. For clarity, Huh7 cells either expressing 
CD133 or not expressing CD133 are referred to as liver cancer stem cells (LCSCs) and non-LCSCs, respectively.

Thus, we investigated the global metabolic phenotype of LCSCs using systems biology tools, including 
transcriptome, metabolome and their genome-scale metabolic models (GEMs), to explore genome-wide met-
abolic characteristics of LCSCs compared with non-LCSCs. GEMs are computational models that mathemat-
ically describe biochemical reactions in an organism of interest, and have been widely used to simulate cell/
tissue-specific metabolism17. As a result of the integrative analysis and experimental validation, we propose repro-
grammed metabolic characteristics of LCSCs in comparison with non-LCSCs.

Results and Discussion
Differential growth characteristics between LCSCs and non-LCSCs.  We utilized FACS sorting 
to isolate LCSCs and non-LCSCs from Huh7 cells. As a result, LCSCs accounted for 58.66% of the total Huh7 
cell population (Fig. 1a and b). Considerable enrichment of CD133 expressing LCSC was observed in the pos-
itive fraction (>​91% purity), as determined by FACS. Then the CD133 expression level in the isolated popula-
tions was validated by western blotting. As shown in Fig. 1c, high level of CD133 expression was detected in the 
LCSC, compared with non-LCSC. We previously demonstrated that the expression of 14–3–3δ​, a multifunctional 
phosphor-serine/phosphor-threonine binding protein, was up-regulated by approximately 1.5-fold in CD133-
expressing LCSCs after irradiation compared with non-exposed CD133-expressing LCSCs15. However, no sig-
nification difference in 14-3-3δ​ expression was noted between CD133-expressing LCSCs and non-LCSCs. For 
this reason, we chose to examine expression of 14-3-3δ​ protein as negative control for CSC marker. As shown in 
Fig. 1c, 14-3-3δ​ expression was similar between CD133-expressing LCSCs and non-LCSCs.

To explore the biological properties of LCSCs, we compared clonogenic potentials of LCSCs and non-LCSCs. 
As shown in Fig. 1d, the number of sphere-forming cells  increased by at least greater than two-fold in LCSCs 
compared with non-LCSCs. Next, to investigate their ability to initiate tumor formation in vitro and in vivo, we 
performed a proliferation assay and subcutaneously injected LCSCs and non-LCSCs in both hind legs of 3 nude 
mice. As demonstrated by Fig. 1e, the cell proliferation was increased at various time points (1, 3 and 5 days) in 
LCSC compared with non-LCSC. Furthermore, after 6 weeks of engraftment, we found that LCSC injected mice 
had formed tumors that had a volume greater than 1300–2400 mm3, while non-LCSC had formed a small tumor 
that had a volume less than 200–320 mm3 (Fig. 1f). This result showed that the growth rate formed tumor in LCSC 
was faster than non-LCSC formed tumor and was consistent with our previously reported findings16. Both results 
showed that LCSCs exhibited a significantly increased proliferation rate compared with non-LCSCs both in vivo 
and in vitro.

Thus, LCSCs appeared to exhibit more stem cell-like properties, including colony formation, self-renewal and 
differentiation ability, and a greater ability to initiate tumors compared with non-LCSCs. Based on the observed 
phenotypic differences between LCSCs and non-LCSCs, we next investigated differences in their metabolism 
comparing their transcriptome and metabolome data to form a more detailed understanding.

Transcriptome and metabolome data suggest that the metabolism of LCSCs is reprogrammed 
to increased proliferation compared with non-LCSCs.  Transcriptome landscapes of LCSCs and 
non-LCSCs were statistically compared using our transcriptome dataset previously released16; this comparison 
examining the effects of CD133 expression on the metabolism of the two types of cells without radiotherapy 
perturbation was not conducted in our previous study. Among a total of 18,494 genes for the cells of both cell 
types, the expression levels of 63 and 47 genes were significantly increased and decreased, respectively, in LCSCs 
compared with non-LCSCs (P <​ 0.05 from Student’s t-test; absolute changes >​1.5-fold). These up-regulated genes 
in LCSCs were significantly involved in cell migration and cell proliferation according to Gene Ontology (GO) 
biological process categories (Fig. 2a, Supplementary Table S1 and Materials and methods). Prior studies have 
demonstrated that in hepatocarcinogenesis, the Endothelin 1 (EDN1) gene is involved in 6 out of 11 up-regulated 
pathways (Supplementary Table S1) and plays important roles in cell proliferation and migration by activating 
ERK1/2 and AKT signaling pathways18,19. This observation is consistent with biological characteristics of LCSCs, 
including a more rapid proliferation rate and increased metastasis compared with non-LCSCs16,20.

Metabolome analysis was subsequently conducted to directly observe differences between global metabo-
lite concentrations of LCSCs and non-LCSCs (Materials and methods). In this metabolomic analysis, standard 
metabolites are the absolutely quantified metabolites (Supplementary Table S2), whereas putative metabolites 
represent metabolites with relative abundances in LCSCs compared with non-LCSCs (Supplementary Table S3). 
In this study, 48 metabolites out of a total of 110 measurable standard metabolites were detected in both LCSCs 
and non-LCSCs (Supplementary Table S2). For the remaining 62 standard metabolites, 51 metabolites were not 
detected in both cell types, and 5 metabolites were detected only in one of the two cell types. The detection of 
the remaining 6 metabolites was not reproducible (Supplementary Table S2). Among the standard metabolites 
detected in both cell types, the concentrations of lactate, citrate, succinate and 7 amino acids (i.e., aspartate, gluta-
mate, isoleucine, leucine, phenylalanine, tyrosine and valine) were greater in LCSCs compared with non-LCSCs 
by more than 1.5-fold. The overall greater concentrations of lactate in LCSCs compared with non-LCSCs indicate 
possibly more active glycolysis in the former cell type obviously because lactate should come from glycolysis. 
Meanwhile, greater concentration of ATP, TCA cycle intermediates and amino acids in LCSCs suggest likely more 
active bioenergetics and cell proliferation capacity of LCSCs in comparison with non-LCSCs (Fig. 2b)21.

Similarly, additional evidence from metabolome data on putative metabolites revealed more enhanced 
bioenergetics of LCSCs compared with non-LCSCs. The primary evidence was derived from relatively more 
increased levels of phosphocreatine and carnitine in LCSCs compared with non-LCSCs. Phosphocreatine is a 
phosphate donor for the production of ATP, and carnitine facilitates the transport of acyl-CoA into mitochon-
dria for fatty acid oxidation, which is also an important metabolic process for energy generation (Fig. S1 and 
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Supplementary Table S3). In addition, 1-methylnicotinamide and N-acetylneuraminate were exclusively detected 
in the LCSCs among putative metabolites (Supplementary Table S3). Interestingly, 1-methylnicotinamide, a prod-
uct of nicotinamide catabolized by nicotinamide N-methyltransferase (NNMT), stimulates cell growth of both 
rat hepatocellular carcinoma cells22 and human murine erythroleukemia cells23. N-acetylneuraminate, the most 
common sialic acid derivative in mammals, is an anticancer target because sialylation in cancer cells is associated 
with inhibition of apoptosis, progression, metastasis and resistance to therapy24. For example, a sialyltransferase 
inhibitor, P-3Fax-Neu5Ac, has a potential as an anticancer because it inhibits sialylation, leading to impaired cell 
adhesion, migration and tumor growth25,26.

Taken together, overall tendency of the transcriptome and metabolome profile appeared to be consistent. 
Integrative transcriptome and metabolome analyses revealed that metabolism of LCSCs was reprogrammed to 

Figure 1.  Cell sorting and characterization of tumorigenicity of LCSCs and non-LCSCs. (a and b) 
Optimization of flow cytometric detection of CD133 expression in hepatoma cells. The hepatoma cell line Huh7 
was stained as a control for CD133 cell surface expression analysis by flow cytometry using a phycoerythrin 
(PE)-conjugated anti-CD133 antibody. (c) CD133 and 14-3-3δ​ expression was analyzed by Western blot using 
CD133 and 14-3-3δ​ antibody in Huh7, LCSC and Non-LCSC. Bands densities were quantified using Image J 
analysis software and normalized to β​-actin expression. *P <​ 0.05 compared with Huh7 cells. (d) The clonogenic 
potential of the four subpopulations was determined using sphere formation assays. Representative image of 
spheres that were obtained using an inverted microscope (Olympus). Scale bar, 50 μ​m. The number of spheres 
(diameter >​ 50 μ​m) per well (2 ×​ 102 cells/well) was determined using an inverted microscope (Olympus). The 
results are expressed as the means ±​ SD of three independent experiments. *P <​ 0.05, LCSC vs. Non-LCSC. 
(e) Cell number measured by direct count of viable cells in a hemocytometer. The data for cell count/well are 
expressed as the mean ±​ SD (n =​ 5 wells at each time point). (f) In vivo tumorigenicity of the LCSCs and non-
LCSCs was analyzed in Balb/c nude male mice. LCSCs and non-LCSCs were subcutaneously injected into 
the left and right legs of nude mice, respectively. The black arrowheads indicate subcutaneous tumors derived 
from either LCSCs or non-LCSCs subpopulation. Tumor volume was measured at different time points up to 
6 weeks, and the average volume at each time point was plotted (n =​ 3; *P <​ 0.05 and **P <​ 0.001 for LCSC vs 
non-LCSC).
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be more proliferative based on the altered gene expressions (e.g., EDN1) and metabolite concentrations (e.g., 
1-methylnicotinamide, amino acids, ATP, lactate, N-acetylneuraminate, and TCA cycle intermediates) related to 
cancer progression.

MYC is a key regulator for LCSC metabolic reprogramming.  In addition to the analysis of tran-
scriptome and metabolome data, we next reconstructed GEMs of LCSC and non-LCSC to further capture 
genome-wide metabolic differences between LCSCs and non-LCSCs. GEM is a computational model that takes 
into account all the known biochemical reactions based on the genomic information of the target cell type and 
has served as an important systems biology tool to explore genome-wide human metabolism through integration 
with omics data17. To this end, we used one of the most comprehensive generic human GEMs, HMR 2.0, along 
with both transcriptome and metabolome data to generate GEMs specific to LCSCs and non-LCSCs. A “task‐
driven integrative network inference for tissues” (tINIT) algorithm was used for the omics data integration27,28 
(Materials and methods, Supplementary Tables S4-S5 and Fig. 3a). Because the transcriptome dataset consists 
of duplicate samples for each LCSC and non-LCSC, a total of four functional LCSC and non-LCSC GEMs were 
reconstructed (Fig. 3a). See Materials and methods for details on GEM reconstruction process.

Figure 2.  Analysis of transcriptome and metabolome data from LCSCs and non-LCSCs. (a) Gene ontology 
(GO) biological process enrichment analysis for differentially expressed genes in LCSCs compared with non-
LCSCs. GO biological processes are sorted by −​log10P. GO biological processes corresponding to up- and 
down-regulated genes in LCSCs are presented with red and blue bars, respectively. (b) Concentrations of 
standard metabolites (pmol/106 cells) involved in central metabolism. Concentrations of metabolites involved 
in glycolysis, glutaminolysis, TCA cycle and energy carriers (i.e., ADP and ATP) were increased in LCSCs (red 
bars) compared with non-LCSCs (blue bars). Metabolites in red exhibit concentrations increased by greater 
than 1.5-fold in LCSCs compared with non-LCSCs. Dotted lines indicate multiple reactions. All the data 
samples were performed in duplicates. Error bars indicate the mean ±​ S.D.
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Overall, the two non-LCSC GEMs appeared to have a slightly greater model size compared with the other two 
LCSC GEMs in terms of the number of genes, metabolites and reactions (Fig. 3a). Close examination of the LCSC 
and non-LCSC GEMs revealed differences in their metabolic contents. The increased model size of non-LCSC 
GEMs resulted from a large number of metabolic reactions involved in glycan metabolism mostly found in the 
two non-LCSC GEMs, including keratan sulfate biosynthesis, N-glycan metabolism and chondroitin/heparan 
sulfate biosynthesis (Fig. 3a). Among the genes involved in glycan metabolism, the mannosidase alpha class 1A 
member 1 (MAN1A1) gene was observed, which regulates multiple metabolic reactions in the pathway of keratin 
sulfate biosynthesis (14 out of 43 reactions). MAN1A1 expression level is decreased in metastatic HCC cell lines 
compared with non-metastatic cell lines29. Consistently, MAN1A1 expression levels were decreased by 31% in 
LCSCs compared with non-LCSCs according to the transcriptome data. By contrast, amino acid metabolism 
(i.e., arginine and proline metabolism, and biosynthesis of phenylalanine, tyrosine and tryptophan) and lipid 
metabolism (i.e., fatty acid oxidation, and formation and hydrolysis of cholesterol esters) were largely included 
in the two LCSC GEMs (Fig. 3a and Supplementary Table S6). In particular, tyrosine and phenylalanine concen-
trations were increased by more than 1.5-fold in LCSCs compared with non-LCSCs (Fig. 2b). Such differences in 
metabolite contents of the LCSC and non-LCSC GEMs appeared to be consistent with the key metabolite profiles 
of the two types of cells (Fig. 2b), and indicate that LCSCs indeed exhibit metabolism better optimized for cell 
proliferation and energy compared with non-LCSC. Finally, in accordance with the metabolome data discussed 
above, 1-methylnicotinamide and N-acetylneuraminate were exclusively identified in the two LCSC GEMs.

Based on the structural differences of GEMs representing LCSCs and non-LCSCs, we next simulated the 
LCSC GEMs to identify metabolic reactions in LCSCs that may be highly correlated with biomass generation 
(i.e., increased cell proliferation rate) (Fig. 3b). Briefly, for the metabolic simulation, a simulation method called 
flux response analysis was conducted to identify metabolic reactions that exhibited increased flux values as the 
cell growth rate was forced to increase30 (Fig. 3b; see Materials and methods for details on metabolic simulation 
using flux response analysis). Subsequently, we attempted to identify major transcription factors, which may bind 
to and regulate genes responsible for the metabolic reactions predicted to be highly associated with biomass gen-
eration. As a result, we obtained 247 such reactions from LCSC GEMs (i.e., Pearson correlation coefficient >​0.7).

Transcription factors were next investigated by searching those that are known to bind to and regulate met-
abolic genes responsible for the 247 reactions. Information on transcription factors and their target genes was 
obtained from RegNetwork31 (Materials and methods). Among a total of 184 transcription factors, MYC had 
the greatest number of target genes that operate reactions predicted to be highly associated with biomass gener-
ation (Fig. 3c); the outcome suggests a high chance that MYC is involved in the high proliferation rate of LCSCs. 
Furthermore, our observations are consistent with other studies that have reported that MYC was associated 

Figure 3.  Reconstruction of LCSC and non-LCSC GEMs and application for the identification of regulators 
associated with cell proliferation. (a) Reconstruction process of LCSC and non-LCSC GEMs. Transcriptome 
and metabolome data were integrated with a generic human GEM, HMR 2.027. During the GEM reconstruction 
process, draft GEMs were examined and validated by simulating the predefined 56 metabolic tasks under the 
cultivation condition of RPMI-1640 medium (Supplementary Table S5). The GrowMatch gap-filling algorithm 
was performed to enable the cell type-specific GEMs to demonstrate growth50. Reactions involved in lipid and 
amino acid metabolisms were more included in LCSC GEMs, whereas keratan sulfate biosynthetic pathway 
(largely mediated by MAN1A1) was more represented in non-LCSC GEMs. (b) Scheme of metabolic simulation 
using flux response analysis of the LCSC and non-LCSC GEMs to predict transcription factors regulating 
biomass generation (i.e., cell growth rate). The mean flux value (purple line) of each reaction was used when 
calculating the correlation between each reaction’s flux value and cell growth rate. In the right panel, upon 
prediction of reactions with flux values positively correlated with cell growth rate (red lines). Transcription 
factors (TF) that are known to bind to and regulate genes of the predicted reactions were next searched from 
RegNetwork31. (c) Transcription factors that potentially regulate genes responsible for the metabolic reactions 
with flux values positively correlated with cell growth rate. Names of the top 10 transcription factors (out of 184 
transcription factors) are presented.
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with regulation of glycolytic metabolism in cancer cells and virtually all glycolytic genes32,33 (Fig. 4a). Several 
studies have revealed that MYC is involved in mitochondrial biogenesis and function as well as glutamine metab-
olism34,35. Hence, we performed experimental validation of target genes obtained by RegNetwork. As shown in 
Fig. 4b, the expression level of MYC was significantly increased in LCSCs compared with non-LCSCs. This result 
demonstrates that MYC expression in LCSCs regulated glucose metabolism and mitochondrial bioenergetics and 
is an important regulator of energy metabolism in the response of liver cancer to pathogenic stress. In addition to 
MYC, PPAR and RXR families were also predicted to regulate genes operating the biomass-associated reactions. 

Figure 4.  Experimental validation of reprogrammed metabolism in LCSCs in comparison with non-
LCSCs. (a) Reprogrammed metabolism of LCSCs compared with non-LCSCs, which can be highlighted 
by more active glycolysis and glutaminolysis (red lines) and relatively inhibited fatty acid oxidation (blue 
lines). Dotted line indicates indirect regulations through signaling cascade. It should be noted that the level 
of acetylated PGC-1α​ was significantly increased in LCSCs despite high levels of SIRT1, which deacetylates 
PGC-1α​. (b) Western blot analyses of MYC, SIRT and PGC-1α​. Protein expression levels of MYC and SIRT1 
were increased in LCSCs compared with non-LCSCs, whereas PGC-1α​ protein expression was comparable in 
both LCSCs and non-LCSCs. (c) Quantification of acetylated PGC-1α​. Total PGC-1α​ was immunoprecipitated 
and extent of acetylation (Ac-Lys) in PGC-1α​ was quantified using Western blot analysis. Acetylated PGC-1α​ 
was increased in LCSCs compared with non-LCSCs. (d) qRT-PCR data showing mRNA expression levels 
of PPARα​, PPARγ​, and CPT1 genes in LCSCs and non-LCSCs. Expression level of PPARγ​ was significantly 
decreased in LCSCs. (e) qRT-PCR data showing comparable mRNA expression levels of COX5B, ATP5α and 
ERRα genes in LCSCs and non-LCSCs, which are markers for mitochondrial ATP production. (f) qRT-PCR 
data showing mRNA expression levels of ACC1, ACC2, and FASN genes responsible for fatty acid biosynthesis. 
Expression level of ACC2 was significantly increased in LCSCs. Error bars indicate mean ±​ S.D. *P <​ 0.05, LCSC 
vs. Non-LCSC.
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The PPAR-RXR complex induces cell proliferation in endothelial cell proliferation and angiogenesis, and controls 
energy metabolism via fatty acid transport, fatty acid oxidation and adipogenesis36,37. Taken together, these results 
demonstrated that our systems approach is useful for understanding global metabolic characteristics of LCSCs.

LCSCs exhibit less active fatty acid oxidation compared with non-LCSCs.  We next focused on 
fatty acid metabolism of LCSCs and non-LCSCs because the metabolome data suggested potentially greater 
increased fatty acid metabolism in LCSCs compared with non-LCSCs, and the signaling factors predicted that 
using GEMs were highly associated with fatty acid metabolism. Previous studies demonstrated that fatty acid 
metabolism is often reprogrammed in cancer cells and plays important roles in biosynthesis of membrane and 
signaling molecules38,39. Thus, we experimentally investigated expression levels of genes and proteins involved in 
the fatty acid metabolism of LCSCs and non-LCSCs, thereby generating greater insight into the increased resist-
ance of LCSCs expressing CD133 against radio/chemotherapies.

Firstly, we hypothesized that fatty acid oxidation was more active in LCSCs compared with non-LCSCs 
to generate more ATP for cell proliferation via oxidative phosphorylation based on the biochemical evi-
dence of the aforementioned metabolites and signaling factors. According to metabolome data, intracellular 
NAD+ concentration was increased in LCSCs by more than 1.5-fold compared with non-LCSCs (Fig. 2b and 
Supplementary Table S3). Fatty acid oxidation requires NAD+, which induces fatty acid oxidation to generate 
ATP40. Moreover, NAD+ can activate the upstream signaling pathway of fatty acid oxidation by activation of 
SIRT1, a NAD+-dependent protein deacetylase (Fig. 4a). SIRT1 induces fatty acid oxidation by deacetylating 
its target genes in cancer41,42. In particular, PPARγ​ co-activator-1α​ (PGC-1α​) is the potent target of SIRT1 and 
induces the transcription of target genes responsible for fatty acid oxidation by forming a complex with PPARγ​ 
and RXRα​43,44. PPARγ​ and RXRα​ were also predicted in our metabolic simulation (Fig. 3c). Using Western blot 
analysis, we experimentally confirmed that SIRT1 protein expression was slightly increased in LCSCs compared 
with non-LCSCs, but whereas PGC-1α​ expression was comparable in both cell types (Fig. 4b and c). Given that 
SIRT1 is a deacetylase, we also measured the degree of acetylation of PGC-1α​ using immunoprecipitation experi-
ments. In contrast to our expectation, PGC-1α​ acetylation levels were significantly increased in LCSCs compared 
with non-LCSCs, despite increased SIRT1 expression in LCSCs (Fig. 4c). This unexpected outcome potentially 
resulted from increased acetylation activity of other acetylases than deacetylation activity of SIRT1. We addition-
ally measured mRNA levels of PPARα, PPARγ, and CPT1 genes using quantitative RT-PCR to more thoroughly 
validate fatty acid oxidation. Expression levels of PPARα and PPARγ were decreased in LCSCs, supporting our 
conclusion that LCSCs are likely to have less active fatty acid oxidation (Fig. 4d). However, expression level of 
CPT1 was comparable between LCSCs and non-LCSCs. Indeed, we want to know that increased ATP concen-
trations in LCSCs are produced by oxidative phosphorylation with reducing equivalents generated from fatty 
acid oxidation. We assessed oxidative phosphorylation activity by measuring expression levels of three genes 
responsible for oxidative phosphorylation; COX5B, ATP5α and ERRα genes. As a result, all of these genes were 
comparable in both LCSCs and non-LCSCs, indicating that ATP production through induced fatty acid oxidation 
did not seem to be significant in LCSCs compared with non-LCSCs (Fig. 4e). In other words, LCSCs produce 
more ATP using glycolysis compared with non-LCSCs (Fig. 4a).

We next focused on fatty acid biosynthesis. We expected that LCSCs exhibit increased fatty acid biosynthe-
sis compared with non-LCSCs because rapid proliferating cells exhibit greater fatty acid biosynthesis to meet 
high demands for membrane biogenesis. This assumption is also supported by increased concentration of cit-
rate in LCSCs from our metabolome data (Figs 2b and 4a). To validate the activity of fatty acid biosynthesis, 
we determined mRNA expression levels of acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2 genes) convert-
ing acetyl-CoA to malonyl-CoA, and fatty acid synthase (FASN gene) catalyzing synthesis of palmitate from 
acetyl-CoA and malonyl-CoA. Both ACC1 and ACC2 genes are required for fatty acid biosynthesis and inhibit 
fatty acid oxidation. In particular, malonyl-CoA produced by ACC1 serves as a substrate for fatty acid biosynthe-
sis more effectively than inhibition of fatty acid oxidation, whereas malonyl-CoA produced by ACC2 serves to 
inhibit CPT1 more than fatty acid biosynthesis, thus preventing fatty acid oxidation45 (Fig. 4a). ACC1 and ACC2 
genes were higher expressed in LCSCs than non-LCSCs, but FASN gene appeared to be slightly decreased in 
LCSCs (Fig. 4a and f); all three genes catalyze fatty acid biosynthesis. It should be noted that ACC2, significantly 
more expressed in LCSCs, also indirectly downregulates fatty acid oxidation. This result also supports our obser-
vation that fatty acid oxidation is likely to be less active in LCSCs. Taken together, fatty acid biosynthesis is likely 
to be not changed between LCSCs and non-LCSCs. Uncertainties that led to the lack of statistical significances for 
some results could be attributed to incomplete cell sorting (LCSCs vs non-LCSCs), different cell conditions and 
possibly less differences in fatty acid metabolism activities between LCSCs and non-LCSCs in reality.

As we characterized the metabolism of LCSCs, understanding metabolism of LCSCs is important for devel-
oping therapeutic strategies, such as targeted therapy, and discovering potential cures for the resistance of liver 
cancer cells to anticancer treatments. Based on integrative analysis results, we observed that LCSCs have more 
active glycolysis and less active fatty acid oxidation compared with non-LCSCs. In particular, aerobic glycolysis 
has important roles in cancer cell resistance. However, it is not clear that aerobic glycolysis in liver cancer could 
be used as a potential target for therapy, and this possibility remains the most intriguing. Our systems approach 
may be useful for understanding the biological significance of aerobic glycolysis in liver cancer. In addition, we 
also suggested that MYC and SIRT1 play important roles in reprogrammed metabolism in LCSCs. For instance, 
MYC and SIRT1 synergistically promote proliferation of liver cancer cells and predict a poor prognosis of HCC 
patients46.

In summary, we systematically analyzed and compared the global metabolic phenotype of LCSCs using tran-
scriptome, metabolome and GEMs and compared this with the metabolism of non-LCSCs. We first identified 
that LCSCs have more rapid proliferation compared with non-LCSCs. We also suggested that more rapid cell 
proliferation of LCSCs can be achieved by rewired global transcriptional and metabolic changes. Along with 
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experimental validation of the expression of key metabolic genes and signaling factors, we suggest that LCSCs 
exhibit less active fatty acid oxidation compared with non-LCSCs. Moreover, LCSCs are likely to depend more 
on glycolytic ATP production rather than non-LCSCs, whereas ATP production by oxidative phosphorylation 
induced by fatty acid oxidation is inhibited by increased expression of the ACC2 gene and acetylated PGC-1α​. 
The present study is the first to demonstrate global metabolic characteristics of LCSCs, and the insights gleaned 
from this study will be helpful to develop therapeutic strategies for HCC.

Materials and Methods
Cell culture and flow cytometric analysis.  The human hepatoma Huh7 cell line was obtained from 
the Human Science Research Resources Bank (Tokyo, Japan). Cells were grown in Dulbecco’s modified Eagle’s 
medium (DMEM; Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS; Invitrogen), 
100 μ​g/ml penicillin, and 0.25 μ​g/ml streptomycin and maintained in a humidified 37 °C incubator with 5% CO2. 
Cells were harvested with 0.5 mM trypsin/EDTA (Invitrogen) and subsequently incubated at 4 °C with a phyco-
erythrin (PE)-conjugated anti-CD133/1 antibody (Miltenyi Biotec, Auburn, CA). LCSCs were sorted from Huh7 
cells using flow cytometry (MoFlo XDP: Beckman Coulter, Miami, FL, USA) with an antibody against CD133/1. 
Isotype-matched mouse IgG was used as a control.

Sphere formation assay.  Cells were plated in ultra-low attachment multiwell plates (Corning Costar Corp., 
Cambridge, MA, USA) at a density of 2 ×​ 102 cells per well in serum-free DMEM/F12 (Invitrogen) with B27 
supplement (Invitrogen), basic fibroblast growth factor (bFGF, 20 ng/ml; PeproTech, Rocky Hill, NJ, USA) and 
epidermal growth factor (EGF, 20 ng/ml; PeproTech). Cells were incubated at 37 °C in an atmosphere of 5% CO2 
for 5 days. Subsequently, the number of spheres (diameter >​ 50 um) in each well was counted using an inverted 
microscope (Olympus, Tokyo, Japan). The average number of spheres was calculated from three independent 
experiments.

Cell proliferation assay.  Proliferation assays were conducted in 6-well plates, starting with a cell density of 
104 cells/cm2. At the time points indicated in Fig. 1e, LCSCs and non-LCSCs were trypsinized, collected by cen-
trifugation, and resuspended in PBS. The total number of cells in each sample was determined by hemocytometer 
counting, and the ratio of the final cell number to the initial number of plated cells was determined.

Tumor xenograft model.  All animal experiments were performed in accordance with institutional guide-
lines and were approved by the Institutional Animal Care and Use Committee of The Catholic University of 
Korea. Five-week-old Balb/c nude male mice (Central Lab. Animal Inc., Seoul, Korea) were housed in the animal 
facility for least 2 weeks before starting the experiments. In order to establish a subcutaneous xenograft model, 
sorted LCSCs and non-LCSCs were resuspended in FBS-free culture medium and subcutaneously injected into 
the left and right legs of mice at 2 ×​ 106 cells/mouse. Tumor size was measured using calipers, and tumor volume 
was calculated as (length ×​ width2)/2. The average volume at each time point was plotted (n =​ 3; *P <​ 0.05 and 
**P <​ 0.001 for LCSC vs non-LCSC).

Transcriptome data analysis.  Transcriptome data were obtained from our previous study16 and include 
duplicate gene expression profiles of the two cell types; LCSCs and non-LCSCs treated without irradiation. The 
data are available at the Gene Expression Omnibus (GEO accession number: GSE22247). Transcriptome analysis 
for the differential expression was conducted using Expander 7.147. Genes with P <​ 0.05 by Student’s t-tests were 
considered as differentially expressed genes.

Functional enrichment analysis.  Functional enrichment analysis was conducted by mapping genes with 
significant expression level changes onto the Gene Ontology (GO) biological process terms using the Database 
for Annotation, Visualization, and Integrated Discovery (DAVID)48. Transcriptome data from LCSCs and 
non-LCSCs treated without irradiation were used for the functional enrichment analysis. Significantly up- and 
down-regulated genes in LCSCs were used as input genes for DAVID to determine their involvement in the bio-
logical processes. A P <​ 0.01 was considered as a threshold to determine functional characteristics.

Metabolome data analysis.  Metabolome analysis was performed in samples of sorted cells according 
to the protocol provided by Human Metabolome Technologies, Inc. (HMT, Yamagata, Japan). The filtrate was 
concentrated by centrifugation and dissolved with Milli-Q water immediately before the measurement. The 
compounds were measured in the Cationic and Anionic modes of Capillary Electrophoresis time-of flight mass 
spectrometry (CE-TOFMS)-based metabolome analysis. The samples were diluted 2-fold and 10-fold for the 
measurement of cation and anion modes, respectively, to improve sensitivity of the CE-MS analysis.

Peaks detected in CE-TOFMS analysis were extracted using automatic integration software (MasterHands 
ver. 2.16.0.15 developed at Keio University) to obtain peak information including m/z, migration time (MT), and 
peak area. All target metabolites were then assigned from HMT’s standard library and Known-Unknown peak 
library on the basis of m/z and MT. The tolerance was ±​0.5 min in MT and ±​10 ppm in m/z.

Reconstruction of LCSC and non-LCSC GEMs.  The generic human metabolic model HMR 2.0 was used 
as a template model27. The tINIT algorithm was applied to the HMR 2.0, which is an omics integration method 
maximizing the consistency of omics data by solving mixed integer programming problem (MILP), to generate 
LCSC and non-LCSC GEMs28. Three input datasets were prepared for implementation of the tINIT. First, gene 
expression values of transcriptome data were transformed to their rank values because hierarchical clustering of 
the transcriptome data with rank values produced clearer patterns than the transcriptome data with expression 
values (see Fig. S2). Among all the genes from the transcriptome data, only metabolic genes present in the HMR 
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2.0 model were considered for this study. All the considered genes were sorted in descending order based on 
their expression levels, and were given rank values accordingly. A gene with the greatest expression level receives 
the highest rank value (i.e., the total number of genes), and a gene with the lowest expression level receives the 
lowest rank value (i.e., ‘1’). The score of each gene was assigned by adjusting their rank values (i.e., dividing 
the rank value of each gene with a total number of genes * 0.3 where 0.3 represents bottom 30% of genes in 
the rank). Second, among all the detected standard and putative metabolites, 82 and 78 corresponding metab-
olites present in HMR 2.0 were set to be produced in the LCSC and non-LCSC GEMs, respectively, to ensure 
that the corresponding metabolites are intracellularly produced (Supplementary Table S4). Finally, 56 essential 
metabolic tasks that occur in human cells regardless of the cell type (e.g., de novo biosynthesis of nucleotides, 
uptake of essential amino acids and fatty acid oxidation) were considered in the tINIT algorithm to ensure the 
correct model functionality. With the three input data, the tINIT algorithm was implemented using the RAVEN 
Toolbox49 under MATLAB R2013a (MathWorks Inc., Natick, MA) environment. After the reconstruction, the 
GrowMatch algorithm was performed to enable the cell type-specific GEMs to demonstrate growth under RPMI-
1640 medium by adding a minimum number of reactions from the HMR 2.0 to the LCSC and non-LCSC GEMs 
(Supplementary Table S5)50,51. The GrowMatch algorithm was implemented under Python environment with 
Gurobi Optimizer 6.0 and GurobiPy package (Gurobi Optimization, Inc., Houston, TX).

Prediction of transcription factors responsible for LCSCs proliferation.  Biomass reaction of each 
LCSC GEM was forced to gradually increase its flux value from 90% to 100% of growth rate. Simultaneously, 
flux range (i.e., minimum and maximum) of each reaction was calculated at each step. After calculation, Pearson 
correlation coefficient between each reaction and biomass reaction was calculated. In this stage, we used mean 
flux of each reaction. Reactions with Pearson correlation coefficient >​0.7 were considered as growth associated 
reactions. Metabolic genes mediating these reactions were obtained from gene-protein-reaction (GPR) asso-
ciations defined in the LCSC GEMs. Information on transcription factors and their target genes was obtained 
from RegNetwork31. We downloaded high confidence data with experimental evidence. These metabolic simu-
lations were performed in the Python environment with Gurobi Optimizer 6.0 and GurobiPy package (Gurobi 
Optimization, Inc., Houston, TX). Pearson correlation coefficient was calculated using python package SciPy52. 
Reading and writing of the SBML models were implemented using COBRApy51 and the RAVEN Toolbox49.

Quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR).  Total RNA 
was extracted using TRIzol reagent (Invitrogen) according to the manufacturer’s protocol. Complementary DNA 
(cDNA) was synthesized from 1 μ​g of total RNA using reverse transcriptase (Promega, Madison, WI) and random 
primers (Promega) and amplified using Lightcycler 480 Probes Master real-time PCR master mix (Roche Applied 
Science, Indianapolis, IN) in combination with Universal Probe Library (UPL) assays (Roche Applied Science). 
Assays were designed according to publicly available gene sequences (NCBI) using ProbeFinder UPL software 
(v.2.45) (Roche Applied Science). Each 20 μ​L PCR reaction comprised 0.4 μ​M target primers, 0.4 μ​M target UPL, 
0.4 μ​M reference primers, 0.4 μ​M reference probe, and Roche real-time PCR master mix. The cycling conditions 
were as follows: preincubation at 95 °C for 10 min, followed by 45 cycles at 95 °C for 10 s, 55 °C for 45 s, and 
72 °C for 1 s. Human β​-actin was used as reference genes. All fluorescence data were analyzed using LightCycler 
4.0 software (Roche Applied Science), and Ct results were exported to Excel (Microsoft, Redmond, WA). Gene 
expression was quantified and normalized using the comparative Ct method.

PGC-1α acetylation assay and western blot analysis.  PGC-1α​ lysine acetylation was analyzed by 
immunoprecipitation of PGC-1α​ followed by Western blot using anti-acetyl-lysine antibodies (Cell Signaling 
Technology, Beverly, MA, USA). Protein extracts were obtained as described53. PGC-1α​ levels and acetylation 
were detected using specific antibodies for PGC-1α​ and acetyl-lysine.

The immunoprecipitates and protein extracts were separated by SDS-polyacrylamide gel electrophoresis, 
transferred to nitrocellulose membranes (Schleicher & Schuell, Dassel, Germany) and blocked in 5% skim milk. 
Primary antibodies were used as indicated by the manufacturer and include the following: SIRT1, PGC-1α​, 14-3-
3δ​ (Santa Cruz Biotechnology, Santa Cruz, CA, USA) and β​-actin (Sigma-Aldrich, St. Louis, MO, USA).
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