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Oxytocin and vasopressin are pituitary neuropeptides that have been shown to
affect social processes in mammals. There is growing interest in these molecules
and their receptors as potential precipitants of, and/or treatments for, social deficits
in neurodevelopmental disorders, including autism spectrum disorder. Numerous
behavioral-genetic studies suggest that there is an association between these peptides
and individual social abilities; however, an explanatory model that links hormonal
activity at the receptor level to complex human behavior remains elusive. The following
review summarizes the known associations between the oxytocin and vasopressin
neuropeptide systems and social neurocircuits in the brain. Following a micro- to
macro- level trajectory, current literature on the synthesis and secretion of these
peptides, and the structure, function and distribution of their respective receptors
is first surveyed. Next, current models regarding the mechanism of action of these
peptides on microcircuitry and other neurotransmitter systems are discussed. Functional
neuroimaging evidence on the acute effects of exogenous administration of these
peptides on brain activity is then reviewed. Overall, a model in which the local
neuromodulatory effects of pituitary neuropeptides on brainstem and basal forebrain
regions strengthen signaling within social neurocircuits proves appealing. However,
these findings are derived from animal models; more research is needed to clarify the
relevance of these mechanisms to human behavior and treatment of social deficits in
neuropsychiatric disorders.

Keywords: oxytocin, vasopressin, vasopressin receptor subtype 1a, OXTR, autism

Introduction

Oxytocin and arginine vasopressin (AVP) are neuropeptides synthesized in the hypothalamus and
secreted from the posterior pituitary gland. Oxytocin was first described for its important role
in stimulating uterine contractions and milk let down after birth, while AVP is central to water
homeostasis by regulating urine concentration at the level of the kidney. In addition to these
physiologic functions, both peptides are now understood to mediate numerous social behaviors
in mammals.

The role of the oxytocin and vasopressin systems in social functioning has developed out
of a large body of animal research, focusing primarily on rodents. This literature has been
extensively reviewed elsewhere (Wang et al., 1998; Insel, 2010). For example, oxytocin has been
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FIGURE 1 | Example of receptor autoradiography study in voles
showing higher density of vasopressin receptor 1a staining in
monogamous prairie voles (top) as compared to polygamous meadow
voles (middle). When receptor expression was increased using an adeno
associated viral (AAV) vector, polygamous meadow voles demonstrated more
preferential contact with their partners (bottom). Figure reproduced with
permission from Science, (Donaldson and Young, 2008) adapted from
research presented by Lim et al. (2004). ∗p < 0.05.

shown to be an important regulator of maternal behavior in
female rats, with central injection of this molecule triggering
protective and nursing behavior toward pups. Similarly, both
peptides mediate affiliative behavior in prairie voles, although
effects differ by sex. In male prairie voles, for example,
manipulation of this system with AVP receptor antagonists
attenuates preferential association with a partner after mating,
while central administration of this peptide triggers pair bonding
even in the absence of mating behavior (see Figure 1) (Wang
et al., 1998; Cho et al., 1999). Accordingly, there is growing
interest in oxytocin and vasopressin as modulators of social
behavior and functioning in humans; either as a potential
explanatory factor for social differences in typically developing
individuals, or as a possible precipitant of and/or treatment for
social deficits in neurodevelopmental disorders such as autism
spectrum disorder (ASD).

Indeed, there is ample research to suggest to that common
genetic variation in the receptor structure for these molecules
may impact on some aspects of social functioning in humans;
additionally, central administration of oxytocin seems to
encourage certain social behaviors and cognitive capacities
(Meyer-Lindenberg et al., 2011). Functional neuroimaging
studies further support a link between these neuropeptides

and activity in specific brain regions implicated in social
communication and behavior. It remains unclear whether
disruption of the oxytocin/vasopressin system contributes to
the etiopathogenesis of ASD, however. A single case report
describes a family in which a rare mutation in the oxytocin
receptor was detected in an individual with ASD (Gregory et al.,
2009), and a recent meta-analysis suggests certain common
genetic variants may be over represented in autism (Loparo
and Waldman, 2014). However, new research has shown that
both peripheral oxytocin levels, and common genetic variation
in the oxytocin receptor affect social communication abilities in
family members of individuals with ASD as well, irrespective of
diagnosis (Skuse et al., 2014; Parker et al., 2014). Accordingly,
dozens of trials in which oxytocin or vasopressin are manipulated
with pharmacotherapy are underway, showing early evidence as a
potential treatment for social deficits (reviewed by Baribeau and
Anagnostou, 2014). Despite this growing interest, a model that
links the molecular and cellular activity of these peptides to social
neurocircuits detectable on neuroimaging remains elusive.

Accordingly, the following review intends to summarize the
current literature with respect to underlying mechanisms via
which neuropeptides affect social processes in humans, focusing
on the oxytocin and vasopressin systems. We aim to provide
a sequenced narrative review of research evidence, following
a micro- to macro- level trajectory. Specifically, we begin by
summarizing what is known about the synthesis and secretion
of these peptides, followed by a discussion on the distribution,
structure, and activity of their respective receptors. Next, current
models associating these peptides to specific effects on neurons,
neurotransmitters, and microcircuits will be reviewed. We will
then correlate this research with current functional neuroimaging
literature examining responses to experimental manipulation
of these systems. Potential implications for, and associations
with ASD are included throughout. The aim is to provide
a non-technical overview of this field, to synthesize results
from overlapping yet distinct areas of science, and to identify
knowledge gaps in need of further exploration.

Oxytocin and Vasopressin Molecules:
Synthesis and Release

Oxytocin and vasopressin are related pituitary non-apeptides;
they consist of nine amino acids in a cyclic structure. These
molecules differ by only two amino acids, at position 3 and 8
(isoleucine and leucine in oxytocin are replaced by phenylanine
and arginine in vasopressin, respectively). Related peptides are
detectable in all vertebrate species and are thought to have
evolved from similar parent compounds. Both oxytocin and
vasopressin are coded in a precursor form on chromosome 20
(Gimpl and Fahrenholz, 2001).

Both molecules are synthesized in overlapping regions of the
hypothalamus, primarily in large magnocellular neurons situated
in the supraoptic and paraventricular nuclei. These neurons
project their axons to the posterior pituitary, where the peptides
are stored in vesicles until action potentials trigger their release
into the peripheral circulation (for example during labor, or
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imbalance of water homeostasis) (Ludwig and Leng, 2006) (see
Figure 2). Oxytocin and vasopressin molecules that have been
released in this way, through the axon projections, are for the
most part prevented from re-entering the central nervous system
(CNS) via the blood brain barrier; however, very small amounts
of peripherally administered peptides (e.g., < 1%) do appear to
cross over into the cerebral spinal fluid (CSF) (Mens et al., 1983;
Opacka-Juffry and Mohiyeddini, 2012). It has been shown that
oxytocin and vasopressin concentrations can be up to 1000X
higher in the brain than the peripheral blood, indicative of
a potentially important role for both molecules in the central
nervous system (CNS) (Ludwig and Leng, 2006). While earlier
studies suggested potentially lower oxytocin and vasopressin
levels in the plasma of children with ASD as compared to typical

children (Modahl et al., 1998; Al-Ayadhi, 2005), subsequent
research has shown that plasma oxytocin levels tend to be similar
within members of the same family, irrespective of a diagnosis of
autism, although do correlate with social communication abilities
overall (Parker et al., 2014). Of note, the methodology used to
quantify plasma oxytocin levels in humans has varied across
studies, which may have affected the reliability of results (Szeto
et al., 2011).

Oxytocin has a single receptor (OXTR) encoded on
chromosome 3, whereas vasopressin has three types of receptors,
AVPR1a and AVPR1b (also called V3) and V2, on chromosome
20 (De Keyzer et al., 1994; Thibonnier et al., 2002). AVPR1a
is present primarily on vascular smooth muscle, in the liver,
and on neurons; AVPR1b/V3 is detectable in the anterior

FIGURE 2 | Parvocellular neurons (yellow) secrete oxytocin and vasopressin (red) to numerous brain regions, including the amygdala, brainstem, and
anterior pituitary. Magnocellular neurons (green) in the hypothalamic nuclei secrete oxytocin and vasopressin into the peripheral circulation via the posterior pituitary
(axonic secretion). Additionally, they secrete these peptides into the extracellular fluid the hypothalamus (dendritic secretion).
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pituitary; and the V2 receptor is found primarily in the kidneys.
Information on the central distribution, structure, and function
of these receptors will be discussed further in subsequent
sections. Outside of the brain, oxytocin receptors are detectable
in humans in high concentrations in the uterus, gradually
increasing in number over the course of pregnancy. Tissue taken
from hysterectomy or cesarean section at different gestational
time points in pregnant women has shown a significant and rapid
up regulation (e.g., 200-fold) of oxytocin receptor expression
around the onset of labor, facilitating uterine contractions (Fuchs
et al., 1984). Many other tissues and organs, including ovaries,
testis, mammary glands, kidneys, thymus, pancreas, adrenal,
and even adipose tissue, have been shown to express oxytocin
and/or vasopressin receptors in different species; some studies
even suggest exogenous synthesis of oxytocin can take place at
certain peripheral sites (see Gimpl and Fahrenholz, 2001 for a
detailed review). As well, both oxytocin and vasopressin can exert
effects on the cardiovascular system by affecting blood pressure,
vasodilation, diuresis, and water intake (Pittman et al., 1982;
Petersson et al., 1996). This finding may be of relevance in ASD
given emerging evidence of aberrant autonomic functioning and
heart rate reactivity in this condition (Ming et al., 2005; Kushki
et al., 2013).

The synthesis and release of oxytocin and vasopressin in
the CNS is of primary importance for models associating
these peptides with social behavior. Our knowledge of these
processes stems almost exclusively from research in animal
models, primarily in rodents (see Ludwig and Leng, 2006, for an
extensive review). Central release appears to bemediated through
two pathways, distinct from the peripheral secretion described
above (see Figure 2). First, both peptides are produced in in
hypothalamic neurosecrotor neurons (parvocellular neurons),
whose axons project to the anterior pituitary and other brain
regions in rodents (Castel and Morris, 1988; Ludwig and Leng,
2006). Parallel to this, the magnocellular neurons (mentioned in
the previous section) also have been shown to secrete oxytocin
and vasopressin from their dendrites (as opposed to the axons)
in the hypothalamus (Pow and Morris, 1989). This mechanism
appears to be separate and distinct from the axonal secretion
in the posterior pituitary, and potentially contributes feedback
to the overall system (Ludwig et al., 2002). Following secretion,
these peptides are thought diffuse throughout the extracellular
space, serving a neuromodulatory effect on surrounding brain
tissue (Landgraf and Neumann, 2004).

Across histological studies, many investigators have
highlighted extensive axonic and dendritic projections extending
from the oxytocin and vasopressin neurons in the hypothalamus.
In mice, for example, dendrites arising from hypothalamic
magnocellular neurons were shown to display a corkscrew
morphology, projecting posteriorly toward the third ventricle,
and also extending beneath the pia layer of the base of the brain
(Castel and Morris, 1988). Similarly, oxytocin neurons in the
paraventricular nucleus of the hypothalamus have been shown
to project axons long distances across the basal forebrain in rats,
with extensive branching and three dimensional orientations
extending potentially as far as the nucleus accumbens, amygdala,
hippocampus, and into the somatosensory cortex (Knobloch

et al., 2012; Grinevich et al., 2015). Interestingly, these axonal
projections are only detected in adult animals, and are absent in
prenatal and early postnatal studies. Dendritic secretion has been
shown to be of central importance in animal models of social
stress (Ludwig and Leng, 2006), while axonic secretion has been
shown to effect fear responses in mice (Knobloch et al., 2012). As
summarized in Table 1, oxytocin receptors have been detected
on cell fibers in the hypothalamus, brainstem, and throughout
the limbic system in human brains (Boccia et al., 2013).

In animal models, the central vs. peripheral secretion of
these peptides have been shown to follow distinct timelines in
their responses, with brain levels peaking later, and lasting for
longer than elevations in blood levels. For example, injection
of a hypertonic solution into the peripheral circulation of rats
triggered elevations in peptide levels that peaked at 150min
in the CNS as opposed to 30min in the periphery (Ludwig
et al., 1994). When either oxytocin or vasopressin was injected
into the rat peripheral circulation, central elevations in the CSF
were also shown to persist for much longer, and were cleared
more slowly than peripheral levels (Mens et al., 1983). In order
to deliver oxytocin directly to the central nervous system for
therapeutic uses in ASD, intranasal sprays have been developed
which show rapid rises in CSF oxytocin levels within 10min of
application in macaques (Dal Monte et al., 2014). In humans,
single intranasal administration of oxytocin led to elevated
plasma levels for approximately 90min afterwards (Gossen et al.,
2012). In primates, levels of both oxytocin and vasopressin have
been shown to fluctuate over the course of the day, with different
patterns in the plasma vs. the CSF; specifically, CSF levels tended
to correspond with periods of daylight, while plasma levels did
not (Perlow et al., 1982).

Interestingly, oxytocin and vasopressin neurons have
receptors for their own secreted neuropeptides on their cell
surfaces, and are able modulate their own release, respectively,
without necessarily triggering action potentials (Gouzenes et al.,
1998; Ludwig et al., 2002). Evidence derived from mouse models
indicates that a transmembrane glycoprotein called CD38 must
be present to facilitate depolarization-induced oxytocin secretion
in the pituitary, and that blockade of this molecule interrupts
mouse maternal and social behavior (Jin et al., 2007; Lopatina
et al., 2012). Specific common genetic variants in CD38, and
reduced CD38 expression on lymphoblastoid cells, have been
associated with ASD (Higashida et al., 2010; Lerer et al., 2010).
Once released via either central pathway, the peptides then
diffuse throughout the extracellular space, and can be detected
across the brain, where they act on their respective receptors
(Ludwig and Leng, 2006). The mechanism of action of peptide
binding and central distribution of these receptors will be
discussed in the next sections.

Neuropeptide Receptors: Structure and
Function

Both oxytocin and vasopressin receptors are G-protein coupled,
each with seven transmembrane alpha-helices connected via
extra and intracellular loops (Kimura et al., 1992) (for a detailed
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TABLE 1 | Distribution of oxytocin receptors in the central nervous system.

Non-human Primates Humans

References Boccia et al., 2001 Boccia et al., 2007 Freeman et al., 2014a Freeman et al., 2014b Loup et al., 1989, 1991 Boccia et al., 2013

Species Macaque Macaque Macaque Titimonkey Human Human

Method (Right) Monoclonal
antibody

Oxytocin antagonist Autoradiography Autoradiography,
mRNA

Autoradiography IHC

Brain regions (Below)

CORTICAL AREAS

Frontal cortex + − ±
Temporal cortex − −/−
Parietal cortex − −/−
Cerebellar cortex − −
Occipital cortex − ++
Retrosplenial
cortex/Subcallosal area

+/+

Cingulate cortex +++/+
BASAL FOREBRAIN

Diagonal band of Broca +++ +++
Basal nucleus of Meynert +++ ++ +++
Septal nuclei ++ +++ +++ +++/+++
BASAL GANGLIA

Caudate nuclei − −
Globus pallidus +
Nucleus accumbens − − −/−
Putamen −
LIMBIC SYSTEM

Amygdala + − − +++/+++
Hippocampus ++ − −/−
Parahippocampus/
Hippocampal formation

+++ − +++/+++

Olfactory system − +/+
Thalamus ++
HYPOTHALAMUS

Anterior Hypothalamus ++ +++ ++ ++/++
Posterior Hypothalamus ++ +++/+++
Tuberal Hypothalamus +++ + ++/−
BRAIN STEM

Midbrain − +++ ++ −/−
Pons − +++ ++ + −/−
Medulla − ++ ++ +++/+++

Cell bodies/Cell fibers. IHC, immunohistochemistry; + + +, high density binding; ++, moderate density binding; +, low density binding; −, no binding. Boxes left blank not explicitly
described in manuscript. Note that tracts and nuclei have been grouped by brain region. See respective reference for more details.

review of the receptor structure see (Zingg and Laporte, 2003)
or Gimpl and Fahrenholz, 2001). There is cross reactivity in
binding of each peptide with its respective receptor; oxytocin
binds to the oxytocin receptor with only 10x greater affinity
than vasopressin, for example (Kimura et al., 1994). The strength
of binding of the neuropeptide into its specific binding pocket
can be manipulated by mutational analyses; for example, single
amino acid substitutions at key structural areas can significantly
reduce or eliminate peptide binding (Hausmann et al., 1996;
Postina et al., 1996). A natural example of this occurs in
nephrogenic diabetes insipidis, where a point mutation affecting

arginine disrupts the V2 receptor structure, resulting in an
inability to concentrate urine in affected individuals (Bichet
et al., 1993; Birnbaumer et al., 1994; Rosenthal et al., 1994).
The genetic sequences coding for mouse, rat, and human
oxytocin/vasopressin receptor genes are conserved across species,
with over 80% identical amino acid residues. There are subtle
differences in receptor function across species, however. For
example, in mice and rats, there are two N-glycosylation sites
in the extracellular NH2 region, while in humans and primates,
there appear to be three (Gimpl and Fahrenholz, 2001). In
vitro studies suggest that the binding affinity of endogenous
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oxytocin for its receptor is comparable in humans, rats, andmice.
However, there is significant variability the affinity constants of
the synthetic oxytocin analog TGOT for OXTR across different
species (Busnelli et al., 2013). As such, animal models using
synthetic OXTR agonists may not necessarily reflect human
physiology. Although numerous studies have associated common
genetic variation in the human oxytocin receptor with ASD
or social deficits (Bakermans-Kranenburg and van Ijzendoorn,
2014; Loparo and Waldman, 2014), the impact of these genetic
changes on the structure and function of the oxytocin receptor
in vivo is unclear at the present time.

The neuropeptide binding to its respective receptor triggers
a conformational change in the receptor structure, leading to
downstream activation of G proteins, and subsequent Ca2+
release from intracellular stores. Potential downstream effects
include phosphorylation of intracellular proteins, activation of
nitric oxide synthase leading to vasodilation, smooth muscle
contraction, gene transcription, and increased excitability of
neurons. The specific effects of receptor activation seem to
vary by organ and tissue (Zingg and Laporte, 2003). For
both OXTR and V2, there is evidence for rapid receptor
desensitization, via receptor internalization. In vitro studies
suggest this desensitization effect may be present minutes to
hours after exposure to the peptide, and can result in >50%
internalization of receptors (Gimpl and Fahrenholz, 2001).
Internalized receptors are not degraded, however; approximately
85% of receptors return to the cell surface within 4 h (Conti
et al., 2009). This internalization process may impact on
social functioning. In mice, for example, chronic twice-daily
administration of intranasal oxytocin reduced oxytocin receptor
expression in the brain, and decreased some social behavior,
while acute administration increased social behaviors, although
findings varied by dose (Huang et al., 2014). The mechanism
driving receptor internalization appears to involve receptor
congregation with beta-arrestin into clathrin-coated pits (Oakley
et al., 2001). Both oxytocin and vasopressin receptors show
capacity to form hetero- homo- or oligo-dimers in vitro; it is
unclear to what extent formation of receptor complexes is a
biologically important process in vivo (Cottet et al., 2010).

Mediators of Peptide and Receptor
Transcription, Synthesis, and Secretion

Several mediators of transcription, synthesis, and
secretion/expression of the oxytocin and vasopressin peptides
and their respective receptors have been described in various
species (Burbach et al., 1995; Jorgensen et al., 2002; Weiser
et al., 2008). Specifically, activation of transcriptional promoters
upstream of the oxytocin or vasopressin genes via estrogen
receptor binding, thyroid hormone receptor binding or retinoic
acid receptor binding has been shown in vitro (Richard and
Zingg, 1990, 1991; Shapiro et al., 2000; Pak et al., 2007). Sex
steroids, including estrogen, progesterone, and testosterone,
and pro-inflammatory cytokines, such as interleukin-6 and
interleukin 1-beta, have been shown to impact on OXTR
expression levels in various tissues in animal models (Kimura

et al., 2003). Of note, in ASD, abnormal levels of inflammatory
cytokines have been described (Croonenberghs et al., 2002).
Various neurotransmitters, including noradrenaline and
serotonin have also been shown to play a role in modulating
neuropeptide secretion in both the central and peripheral
circulation (Vacher et al., 2002). Restraint of a rat induced
elevation in oxytocin and vasopressin levels, which could
be inhibited by blocking specific serotonin receptors, for
example (Jorgensen et al., 2002). The discussion on the
relationship between sex steroids, neurotransmitters, and the
behavioral effects of oxytocin and vasopressin is elaborated
in Section Association with Neurotransmitters and Social
Circuits.

Receptor Distribution in the Central
Nervous System

The specific distribution of oxytocin and vasopressin receptors
in the human brain has been difficult to study precisely. Unlike
other neurotransmitter systems, a positron emission tomography
(PET) radioligand has yet to be identified with adequate receptor
specificity and CNS penetration for use in humans. Early trials
testing tentative oxytocin PET ligands are currently underway in
animal models, however (Smith et al., 2013a,b).

Accordingly, investigators have relied on post-
mortem tissue analysis via receptor autoradiography and
immunohistochemistry (IHC) in small samples of human
subjects; alternatively, inferences can be drawn from data derived
using similar techniques in animal studies. Both approaches
have associated limitations. For example, certain oxytocin
autoradiographic receptor ligands have been shown to have
significant cross reactivity with AVP receptors (Toloczko et al.,
1997). Acquisition of post-mortem brain tissue for analysis
can prove challenging. Only typical adult brains have been
studied so far. Additionally, receptor distribution in animal
models has been shown to vary significantly depending on
the age of the animal (Tribollet et al., 1989), and the species
studied (Raggenbass et al., 1989; Gimpl and Fahrenholz, 2001).
Translating information on receptor distribution in rodents to
humans is particularly problematic, as patterns vary profoundly
even between related rodents species.

Autoradiography uses a radioactive ligand tracer applied
to mounted tissue sections and analyzed under a microscope,
circumventing any difficulties with receptor penetration of the
blood brain barrier. Tribollet and colleagues were some of the
first investigators to apply this approach to the rat brain (Tribollet
et al., 1988), suggesting that AVP and OT receptor distributions
were sufficiently distinct. AVP receptors were detected primarily
in the limbic system and hypothalamus; oxytocin receptors were
also detected in the hypothalamus, as well in the olfactory
tubercle and hippocampus. The relevance and translation of this
information to the human brain was unclear at the time.

Loup and colleagues subsequently applied autoradiography
to study oxytocin receptor distributions in 12 post-mortem
human brains in typical adults, free of psychiatric illness (Loup
et al., 1989). They used [3H]OT9−11 and a newly synthesized
OXTR ligand [125I]OTA, applied to tissue sections. In their first

Frontiers in Neuroscience | www.frontiersin.org 6 September 2015 | Volume 9 | Article 335

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Baribeau and Anagnostou Oxytocin and vasopressin

publication on receptor distribution in the brain stem and spinal
cord, they identified oxytocin binding in numerous overlapping
tracts involved in sensory, motor, and autonomic function (e.g.,
the substantia nigra, the substantiae gelatinosa of the spinal
trigeminal nucleus, the dorsal horn of the upper spinal cord, as
well as the nucleus of the solitary tract) (Loup et al., 1989).

The same investigators subsequently applied this technique
to the entire brain, while adding an AVP receptor ligand
([3H]AVP) to distinguish AVP binding from binding to the
oxytocin receptor, in both cortical and subcortical regions.
Oxytocin and AVPR1a binding was detected in numerous limbic
and autonomic pathways, with some distinct areas and some
overlapping. In the cortical sections, oxytocin binding was
strongest in the basal forebrain and nearby structures, including
(1) specific cholinergic tracts (i.e., the basal nucleus of Meynert
and the nucleus of the vertical limb of the diagonal band of
Broca); (2) in the ventral part of the lateral septal nucleus (which
relays between the hippocampus, thalamus, and midbrain); and
(3) in parts of the hypothalamus and basal ganglia. Importantly,
no OXTR binding was identified in the nucleus accumbens,
caudate, putamen, hippocampus, amygdala, or in the frontal,
temporal, or cerebellar cortices (see Table 1). The areas with
strongest AVP binding were non-overlapping as compared to
oxytocin, in the dorsal part of the lateral septal nucleus, and
in certain thalamic nuclei as well (Loup et al., 1991). Many
other areas showed weaker binding for AVP, including the
hippocampal formation, parts of the basal ganglia, and specific
brainstem nuclei (e.g., nucleus of the solitary tract and spinal
trigeminal nucleus). However, the ligand used to test for oxytocin
receptor binding in these studies (125I-OTA), was subsequently
shown to also bind AVPR1a receptors with equal strength as
to the oxytocin receptor, calling into question the reliability of
previous findings (Toloczko et al., 1997).

Recent literature is limited with respect to more concise
localization of oxytocin and vasopressin receptors in the central
nervous system in humans (see Table 1). One study in human
brains used immunohistochemistry with a monoclonal antibody
targeted to the oxytocin receptor (Boccia et al., 2013). As
with earlier work, oxytocin receptors were identified in the
hypothalamic and limbic areas, including the vertical limb of
the diagonal band. The authors specifically commented on a
lack of oxytocin receptor detection in the raphe nucleus of the
brainstem. Unlike in previous human autoradiographic studies,
however, oxytocin receptors were also detected in the anterior
cingulate, amygdala, and in the olfactory nucleus. Of note,
IHC staining of OXTR receptors was detected on both the cell
membrane and in the cytoplasm of the cell body. The authors
of this paper and of others (e.g., Yoshida et al., 2009) have
described difficulty with reliability using immunostaining for the
OXTR receptor, however, with variable results with each lot of
antiserum.

Recent research in non-human primate brains may help
clarify potential inconsistencies in the limited literature on
human subjects. For example, Freeman et al., applied novel
autoradiographic ligands for both OXTR and AVPR1a to
coppery titi monkey brains, a socially monogamous species
(Freeman et al., 2014b). They found AVPR1a receptors diffusely

throughout the brain, with oxytocin receptors more localized
to specific areas (e.g., the hippocampus and surrounding
areas, nucleus basalis, thalamus, visual cortex, and brainstem
structures). They confirmed their findings regarding OXTR by
measuring mRNA expression levels, which overlapped with
autoradiographic binding for OXTR (Freeman et al., 2014b).
Similarly, Freeman et al., applied the same technique to macaque
brains, and again detected more diffuse AVPR1a binding, with
more localized OXTR binding. In the macaques, regions where
OXTR boundmost strongly involved sensory processing of visual
and auditory stimuli, (e.g., nucleus basalis, pedunculopontine
tegmental nucleus, superior colliculus, trapezoid body in the
brainstem, hypothalamus) and seemed to overlap with many
cholinergic pathways of the basal forebrain (Freeman et al.,
2014a).

Overall, limited human data in control subjects only,
inconsistencies and criticisms regarding methodology, and lack
of a specific PET ligand for either receptor, highlight a need for
further investigation into the distribution of these receptors in
the CNS. However, by looking across existing human studies,
and extrapolating from primate data, several conclusions can be
drawn: (1) Oxytocin and vasopressin receptors are consistently
detected in the hypothalamus. (2) AVPR1a expression appears
to occur more diffusely throughout the central nervous system,
while oxytocin receptor expression appears more localized. (3)
Oxytocin receptors have been inconsistently identified in the
limbic system, with conflicting evidence regarding the amygdala.
(4) Oxytocin receptor staining occurs most prominently in
the basal forebrain, in certain cholinergic tracts (e.g., nucleus
basalis, diagonal band of Broca) and specific brainstem nuclei
(e.g., the pedunculopontine tegmental nucleus). The basal
forebrain consists of a group of structures situated anterior
and inferior to the striatum, including the nucleus basalis of
Meynert, the diagonal band of Broca and the medial septal
nuclei. It provides extensive cholinergic input to all layers of
the cortex, and receives input from prefrontal regions, the
nucleus accumbens and the ventral tegmental area. GABAergic
basal forebrain projections to the amygdala have also been
shown to modulate inhibitory signals in this region (McDonald
et al., 2011). The basal forebrain is thought to play an
important role in visual attention, memory, and learning,
and undergoes degeneration in conditions such as Alzheimer’s
dementia. Future studies examining differences in the expression
and distribution of these receptors in neurodevelopmental
and neuropsychiatric disorders will be of particular interest
moving forward.

Association with Neurotransmitters and
Social Circuits

The complex relationships between oxytocin, vasopressin, and
monoamine neurotransmitter systems have been studied in
various animal models. The translation of this information to
human social networks remains speculative. Below, we discuss
the relationship between oxytocin, vasopressin, and various
neurotransmitter systems and brain circuits.
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Serotonin
As mentioned in previous sections, serotonin activity may also
contribute to the effects of oxytocin and vasopressin on social
functioning, either by modulating peptide secretion, or for
downstream effects on fear responses and anxiety. For example,
functional activation of specific serotonin receptor subtypes was
necessary to facilitate elevations in oxytocin and vasopressin
levels in response to stress in rodents (Jorgensen et al., 2002).
Likewise, application of serotonin to tissue sections from the
hypothalamus/pituitary of the rat brain increased oxytocin and
vasopressin secretion (Galfi et al., 2005). Data in rodent models
suggest that the aggressive behavior stimulated as a result of AVP
administration can be blocked via serotonergic activity (Delville
et al., 1996a; Ferris, 1996). Oxytocin receptors are expressed on
the neurons of the serotonin raphe nuclei in rats; infusion of
oxytocin facilitated serotonin release from these cells and had an
anxiolytic effect on rat behavior (Yoshida et al., 2009). However,
a recent study in which oxytocin receptors were knocked out
of the raphe nuclei in mice found deficits only in males with
respect to aggression; all other social and parenting behaviors
remained intact (Pagani et al., 2015). In macaques, serotonin
transporters co-localized to the regions of the hypothalamus
expressing oxytocin receptors (Emiliano et al., 2007). In human
subjects with personality disorders, CSF levels of AVP correlated
with aggression, while one of two serotonin proxy-measures
was inversely associated with aggressive behavior (Coccaro
et al., 1998). In children with ASD, oxytocin and serotonin
plasma levels were inversely correlated with each other in one
study (Hammock et al., 2012). In adults with ASD, serotonin
transporter binding was lower throughout the brain on PET
(Nakamura et al., 2010). Overall, animal studies suggest that
serotonin receptor activation can trigger, andmay be necessary to
facilitate oxytocin and vasopressin secretion, while oxytocin may
also stimulate serotonin release. Simultaneously, serotonin and
vasopressin may have opposing effects with respect to aggressive
behavior.

Hypothalamic Pituitary Axis
Other investigators have shown that oxytocin and vasopressin
may affect behavior by regulating stress responses through the
HPA axis (Neumann, 2002). For example, rats put under a
forced swim test showed central elevation of both oxytocin
and vasopressin. Peripheral blood levels of oxytocin but not
vasopressin, increased as well (Wotjak et al., 1998). Rats exposed
to a noise stress had a dose dependent reduction in corticosteroid
levels when treated with centrally administered oxytocin.
Anxious behavior when exploring an unfamiliar maze was also
less (Windle et al., 1997). In response to restraint, oxytocin
but not vasopressin administration reduced adrenocorticotropic
hormone (ACTH) and cortisol levels in rats (Windle et al.,
2004). This effect resulted from reduced neuronal activity in
the hypothalamus, hippocampus, and ventrolateral septum, as
indicated by absence of elevations c-fos mRNA expression in
these regions in the rats who were restrained and treated with
oxytocin; no such effect was seen with vasopressin. In squirrel
monkeys, chronic oxytocin administration reduced ACTH, but
not cortisol secretion in response to social isolation (Parker

et al., 2005). In humans, oxytocin administration enhanced
the stress buffering effect of social support in response to a
social stress paradigm, as indicated by increased calmness and
reduced salivary cortisol levels in participants (Heinrichs et al.,
2004). Similarly, oxytocin enhanced positive communication and
reduced salivary cortisol levels during couple conflicts (Ditzen
et al., 2009).

Vasopressin has been shown in animals to enhance
corticotrophin releasing factor (CRF) mediated elevations
in ACTH (Rivier and Vale, 1983). This process appears to be
mediated via the AVPR1b receptor (Stevenson and Caldwell,
2012). It may be that oxytocin attenuates the stress response,
while vasopressin might facilitate it (Bisagno and Cadet, 2014).
In a rodent model, each peptide was shown to activate a different
set of neurons in the amygdala, having opposite regulatory
effects on excitatory input (Huber et al., 2005; Viviani et al.,
2011). Interest in using AVPR1b antagonism to treat anxiety
disorders has been investigated showing potential benefits in
rodent models (Iijima et al., 2014), while commercial human
studies are underway for AVPR1a receptor antagonists as a
potential treatment for ASD (e.g., RG7314, clinical trials.gov ID:
NCT01793441).

Sex Hormones
Sex hormones have been shown to be of particular importance
to the central neuropeptide effects in animal models. Estrogen
receptor beta (ER-β), for example, was found to co-localize in
the hypothalamus with cells expressing oxytocin and vasopressin
receptors in rodents (Alves et al., 1998). Female rats treated
with exogenous sex hormones in the neonatal period showed
higher levels of oxytocin receptor binding in the brain (Uhl-
Bronner et al., 2005). Castrated hamsters had lower levels of
AVPR1a receptor in their brains, unless they were treated with
testosterone replacement (Delville et al., 1996b). In an animal
model using ovariectomised rats, the HPA axis showed elevations
in stress hormones when rats were restrained; this effect was
buffered by administration of oxytocin only in the presence of
exogenous estradiol replacement (Ochedalski et al., 2007).

Sex steroids have also been shown to be important to the
behavioral effects of these neuropeptides. For example, knockout
of either the oxytocin gene, or estrogen receptors α or β led to
deficient social abilities in mice (Choleris et al., 2003). Central
administration of vasopressin triggered aggression in rats, but the
effect was lessened if they had been castrated, thereby lowering
testosterone levels (Korte et al., 1990). The relevance of these
findings to research looking at behavioral effects in humans
remains unclear; a single intranasal dose of oxytocin in humans
led to slight augmentation in peripheral testosterone levels, but
no change in progesterone or estradiol levels (Gossen et al., 2012).
The relationship between sex hormones and neuropeptides
is supported, yet further complicated by literature showing
that single doses of estradiol and testosterone administered in
humans can lead to behavioral effects on social functioning and
threat/reward perception that overlap with effects of oxytocin
or vasopressin administration (Bos et al., 2012). While autism
is significantly more common in males than females, there is
no clear understanding of whether sex hormones, oxytocin,
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or vasopressin contribute to this difference, although various
hypotheses have been proposed (Baron-Cohen et al., 2011).

Dopamine
Dopamine is thought to contribute to the effects of oxytocin
and vasopressin on social processes, potentially via its impact
on the reward pathway. Specifically, research in prairie voles
has highlighted the importance of dopamine in facilitating
the partner preference formation via oxytocin and vasopressin
manipulation. For example, dopamine receptor 2 (D2) blockade
using various agents including haloperidol blocked partner
preference behavior in prairie voles, while D2 agonists facilitated
partner preference formation (Wang et al., 1999). This
mechanism appeared to be mediated via dopaminergic activity
in the nucleus accumbens, as evidenced by increased dopamine
turnover in this area, and specificity of the effects of D2
blockade injected into this region in particular (Gingrich
et al., 2000; Aragona et al., 2003). Activation of both the
D2 receptor and oxytocin receptor was necessary to facilitate
partner preference formation in voles; blockade of either
receptor eliminated partner selection (Liu and Wang, 2003).
Similarly, artificial up regulation of AVPR1a in voles using a
viral vector led to increased partner preference formation, an
effect that was blocked by D2 antagonism (Lim et al., 2004).
Oxytocin neurons in the hypothalamic nuclei in rats have also
been shown to express dopamine receptors (Baskerville et al.,
2009).

Dopamine activity in the nucleus accumbens is central to
behavioral reinforcement, reward, and motivation. Dopamine
neurons which originate the ventral tegmental area (VTA)
project to the medial prefrontal cortex, amygdala, and
nucleus accumbens, while glutamatergic neurons in the
medial prefrontral cortex project back to the nucleus accumbens
and serve a regulatory function. Glutamate antagonists or
oxytocin injected into the VTA in rodents decreased dopamine
release in the frontal cortex, while increasing dopamine release
in the nucleus accumbens, suggesting differential inhibitory
regulation within this system (Takahata and Moghaddam, 2000;
Melis et al., 2007). This regulation of dopamine in the nucleus
accumbens by the ventral tegmental area via the prefrontal
cortex in voles provides an example of a circuit driving social
behavior. Inhibition of either GABAA (gamma hydroxyl butyric
acid) receptors or AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid) receptors in the ventral tegmental area
also led to a decrease in dopamine activity in the prefrontal
cortex, and an increase in dopamine in the nucleus accumbens,
which was associated with increased partner preference
formation (Curtis and Wang, 2005). Oxytocin, vasopressin and
dopamine receptors are co-expressed in the medial prefrontal
cortex in voles; higher D2 concentration and OXTR binding
in this region is associated with greater monogamous behavior
(Smeltzer et al., 2006). Simultaneously, variation in the density
of OXTR in the nucleus accumbens of prairie voles (through
viral mediated over-expression) accelerated partner preference
formation (Ross et al., 2009). Along these lines, humans with
ASD have been shown to have aberrant dopamine transporter
distribution and function (Nakamura et al., 2010; Hamilton et al.,

2013), while oxytocin administration in humans may be able to
enhance the saliency of certain social cues (discussed further in
subsequent sections).

In summary, oxytocin’s effects on reward pathways, (including
the nucleus accumbens, VTA, and prefrontal cortex) likely
modulate the saliency of social stimuli. Given that oxytocin
receptors have not been detected in the nucleus accumbens
in human and primate brains, other areas may indirectly
mediate this effect. Notably, the basal forebrain which stains
densely with oxytocin receptors in humans receives many inputs
from the prefrontal cortex, VTA, and nucleus accumbens, and
indeed projects to various cortical regions (Sarter et al., 2009).
It would follow that pituitary neuropeptides may selectively
modulate signaling within the basal forebrain and surrounding
areas, contributing to signaling within classic reward pathways
involving dopamine in humans.

Interneurons
A separate body of research proposes that the neuropeptide
effects occur specifically on fast spiking interneurons.
Interneurons serve a local regulatory function within
microcircuits by impacting on the firing of principal neurons.
Principal neurons drive the dominant signals and outputs
propagated to other brain regions (Freund and Buzsaki, 1996).
There have been numerous and varied attempts to classify
interneurons based on their structure and function. Generally
speaking, interneurons exert inhibitory signals on principal
neurons through GABA. Fast spiking neurons are classified as
such due to their low threshold to quickly deliver inhibitory
signals.

Recent research in hippocampal cells in vitro has shown that
oxytocin receptor agonism effectively strengthens the signal to
noise ratio via its impact on interneurons. When exposed to
oxytocin, these fast-spiking interneurons in the hippocampus
increased their inhibitory output, thereby lowering background
firing (noise) in the principal cell circuits. Simultaneously, the
balance of excitatory to inhibitory transmission within the circuit
was altered, such that the strength and fidelity of firing within the
principal cells was increased and made more efficient, effectively
enhancing the coordinated signal in the overall network (Owen
et al., 2013). In a mouse model in vivo, interneurons expressing
the oxytocin receptors in the frontal cortex were shown to
be involved in social and sexual behavior (Nakajima et al.,
2014). A similar mechanism may also exist with respect to
the actions of vasopressin. It has previously been shown that
application of vasopressin to hippocampal cells can enhance
neurotransmission, leading to long-term potentiation (Rong
et al., 1993; Chepkova et al., 1995). In rats, application of
AVP to hippocampal tissue sections increased the frequency
of inhibitory signals; this process was shown to occur due to
AVP binding to AVPR1a, which through a G-protein mediated
cascade, increased the excitability of interneurons, leading to
increased GABA release. At the same time, AVP had an excitatory
effect on principal neurons (of pyramidal type) in this circuit
(Ramanathan et al., 2012). OXTR and AVPR1a were also shown
tomediate reciprocal inhibitory effects in different regions within
the rat amygdala via GABA activity (Huber et al., 2005). Of note,
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networks of GABAergic interneurons have also be characterized
in the basal forebrain in primates (Walker et al., 1989).

Recent literature using optogenetic methods further
support an association between the inhibitory GABA system,
oxytocin, vasopressin, and behavior. Specifically, Knobloch
et al. used an adenovirus vector to insert light sensitive
channelrhodopsin molecules into the oxytocin axons of rat
brains. They demonstrated that hypothalamic neurons have
axonic projections extending directly to the amygdala, among
other locations. When endogenous oxytocin was released as
triggered by blue light, there was a local increase in GABAergic
interneuron signaling within the amygdala, which was associated
with a reduction in freezing behavior in fear conditioned rats
(Knobloch et al., 2012). Cortical and brainstem networks may
also be impacted in this way; a recent optogenetic study showed
that oxytocin secretion via hypothalamic projections to the
piriform cortex was necessary for social learning around both
salient and aversive stimuli (Choe et al., 2015), while oxytocin
projections to brainstem autonomic nuclei mediated heart rate
variability (Pinol et al., 2014).

An imbalance of excitatory/inhibitory signaling during critical
periods of development is an appealing explanatory theory for
autism (Yizhar et al., 2011). A potential mechanism of action
of oxytocin on GABA transmission occurs via modulation
of chloride channel activity. In fetal rats, oxytocin increased
intracellular chloride concentration in GABA neurons, thereby
reducing neuronal excitation; this process was thoughts to
protect the neonate from anoxic injury (Tyzio et al., 2006, 2014).
Accordingly, chloride importer antagonists are currently being
investigated as a potential treatment for ASD (Lemonnier et al.,
2012).

Section Summary
In summary, data derived from animal studies have begun
to tease apart a complex social network involving multiple
brain structures potentially impacted by pituitary neuropeptides.
Specifically, dopamine and serotonin appear to be important
to encoding social information, potentially via their impact on
reward pathways and anxiety, while serotonin may be involved
in peptide secretion. Sex hormones appear to impact on the
density of peptide receptor expression from early life, while
both oxytocin and vasopressin can modulate stress responses
in the hypothalamic-pituitary (HPA) axis. Recent research
suggests that oxytocin and vasopressin may mediate their effects
by activating inhibitory interneurons across subcortical and
potentially cortical networks, including reward pathways. This
model provides an appealing example of how these molecules
may impact diffuse brain regions to strengthen signal outputs
or fine tune inhibitory control. Further research using more
advanced methods like optogenetics is anticipated to clarify these
networks.

Functional Neuroimaging

Functional neuroimaging studies investigating the neural
correlates of social processing began to emerge in the late
1990s and early 2000s. Investigators used blood oxygen level

dependent imaging (BOLD) imaging to quantify local brain
regions with increased activity in response to various social
stimuli. Together, this research provides evidence for a large-
scale social network in the human brain spanning multiple
regions, including the amygdala, prefrontal, and orbitofrontal
cortex, the insula, temporoparietal junction, and fusiform
gyrus (Stanley and Adolphs, 2013). In the following section,
we review functional neuroimaging literature in response to
acute peptide administration in humans. Note that most studies
include fMRI scans performed approximately 1 h after intranasal
application, with data analyzed primarily via a region of interest
approach. Neuroimaging correlates of common genetic variation
in oxytocin and vasopressin receptors are not included in
this review, but have been summarized elsewhere (Zink and
Meyer-Lindenberg, 2012).

Oxytocin
Kirsch et al. (2005) were one of the first groups to employ
functional neuroimaging technology in order to try to better
understand the mechanism by which oxytocin exerts behavioral
effects in humans following acute administration. They
administered intranasal oxytocin to 15 male subjects, and then
had them watch fear inducing stimuli, including fearful faces, in
an fMRI scanner. Using a region of interest approach focused
on the amygdala, they found that oxytocin significantly reduced
amygdala activation, and also reduced coupling between the
amygdala and brainstem regions involved in autonomic arousal
(see Figure 3) (Kirsch et al., 2005). The authors proposed
that oxytocin attenuated the fear response at the level of the
amygdala.

Domes et al. (2007) subsequently showed that this attenuated
activity in the amygdala from oxytocin persisted in response
to viewing other facial expressions also (e.g., happy, angry)
(Domes et al., 2007). On exploratory whole brain analysis, they
also identified reduced activation in many other brain regions
including areas of the temporal lobe, thalamus, and frontal
lobe. Subsequent investigators have showed a similar pattern
of attenuated fMRI activity in the amygdala when treated with
oxytocin during games of trust (Baumgartner et al., 2008), and
in response to the sound of an infant crying (Riem et al.,
2011) (see Table 2). Further studies suggested that the pattern
of amygdala activation might vary within specific subsection of
the amygdala, or depending on the valence of the emotional
cue. For example, more than one study has shown that oxytocin
increased amygdala activation in response to positive social
information (Gamer et al., 2010; Rilling et al., 2012). However,
there is significant variability within the functional neuroimaging
literature, with bidirectional, and at times conflicting findings
regarding amygdala activation in response to social cues (see
Table 2). A recent meta-analysis of data suggested left insular
hyperactivation emerges most consistently (Wigton et al., 2015).

One potential explanation for observed differences across
studies is the seemingly differential effects of oxytocin
administration depending on the sex of the participant.
Prior to 2010, most fMRI studies of oxytocin recruited only male
participants. Domes et al. (2010) were the first to investigate
oxytocin’s effects on face processing in a group of females only;
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FIGURE 3 | Kirsch et al. (2005) showed that oxytocin attenuated amygdala activation in response to fearful stimuli. (A) shows activation at the amygdala,
with neural responses to fearful faces shown on the left, and to fearful scenes on the right, under placebo conditions (top), and after treatment with oxytocin (bottom).
(B) shows the main effect of the drug in the left amygdala, where the signal was strongest. (C) plots BOLD levels at the amygdala using a region of interest analysis.
Reproduced with permission from J. Neurosci. (Kirsch et al., 2005).

they detected a pattern somewhat opposite to that observed in
males, with increased amygdala activity while observing negative
facial expression in response to oxytocin treatment (Domes et al.,
2010). This effect persisted despite controlling for estradiol and
progesterone levels. Increased amygdala activation in females
in response to negative or threatening social information
was replicated in a small sample (Lischke et al., 2012),
although subsequent studies did not find the same effect (see
Table 2).

Rilling and colleagues have published several manuscripts
attempting to tease apart the sex effects of this response, with
increasingly large sample sizes, using the prisoner’s dilemma
game. In this task, participants must choose whether to risk
cooperating to achieve the best outcome for both participants, or
defect against their partner and achieve a positive outcome for
themselves only (Declerck et al., 2014). In males, treatment with
either AVP or oxytocin increased brain activation in the basal
forebrain, amygdala, hippocampus and striatum, and treatment
with AVP increased cooperative behavior in the game (Rilling
et al., 2012). In women, however, neither peptide led to activation
in these brain regions; oxytocin instead decreased amygdala
activity (Rilling et al., 2014). Plasma estrogen levels did not
modulate this effect. A subsequent paper confirmed differential
sex effects in the same, but larger group of participants; findings
were more specific, however, with increased activity in the frontal
pole, medial prefrontal cortex, and caudate/putamen in men, but
decreased or no activity in these regions in women, in response to
reciprocal cooperation while being treated with oxytocin (Feng
et al., 2014). The amygdala was no longer implicated with the
larger sample size. Other investigators recently showed that
women who scored lower on a social perception task (reading
the mind in the eyes), performed better in response to oxytocin
administration, an effect that was associated with enhanced
activation in the superior temporal gyrus and insula (Riem et al.,
2014). The ventral tegmental area showed increased activation in

response to oxytocin administration in another group of women
(Groppe et al., 2013).

Subsequent studies have attempted to tease apart the
differential fMRI findings in response to oxytocin administration
by looking at brain connectivity specifically (for a more detailed
review Bethlehem et al., 2013). Some have found, for example,
that oxytocin can both reduce amygdala activation in response
to negative stimuli (Striepens et al., 2012), but also increase
connectivity of the amygdala to other regions including the
insula, and prefrontal cortex, and anterior cingulate, potentially
facilitating memory of social information (Striepens et al., 2012;
Sripada et al., 2013). Resting state MRI data showed increased
connectivity between the posterior cingulate and brainstem in
response to oxytocin treatment (Riem et al., 2013). Others have
shown that oxytocin reduced connectivity between the amygdala
and precuneus (Kumar et al., 2014).

Oxytocin in ASD
Recent data have used fMRI technology to attempt to understand
the potential effects of oxytocin administration in individuals
with ASD. In a small pilot study, Domes et al., showed that
participants with ASD had lower activity as compared to controls
in the right amygdala, fusiform gyrus, and occipital region during
face processing, and that intranasal oxytocin administration
increased the right amygdala activity in the affected group
(Domes et al., 2013). The same investigators subsequently
showed that oxytocin improved emotion recognition abilities in
adults with ASD, and that this effect correlated with increased
left amygdala activation on fMRI. Note that under placebo
conditions, amygdala reactivity was comparable in both the
ASD and control group in this sample (Domes et al., 2014).
In another study in adults with ASD, oxytocin increased the
otherwise decreased brain activation in the medial prefrontal
cortex (Watanabe et al., 2014). Increased activity in the right
anterior insula in response to oxytocin treatment coincided with
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increased accuracy in inferring others’ emotions (Aoki et al.,
2014). Gordon et al., also found that oxytocin enhanced fMRI
activity in regions including the amygdala, nucleus accumbens,
and orbitofrontal cortex during social tasks in a group of children
with ASD (Gordon et al., 2013).

AVP
Far fewer studies have been conducted looking at AVP
administration in humans on fMRI. One of the first trials found
no effects of AVP administration on amygdala activity, although
there was a corresponding decrease in medial prefrontal cortex
hyperactivity in the treatment group as compared to placebo
(Zink et al., 2010). A subsequent paper by the same group also
showed that a region which showed increased activity in the
temporoparietal junction in response to unfamiliar faces, was
no longer hyperactive in participants treated with AVP (Zink
et al., 2011). Notably, behavioral and symptom surveys did not
identify any neuropsychiatric effects of AVP administration in
these studies. Rilling et al. compared fMRI signals and functional
connectivity measures in male participants during the prisoner’s
dilemma game, following administration of either oxytocin
or vasopressin. Interestingly, both peptides led to behavioral
changes, with more cooperative behavior. Oxytocin increased
caudate activation in response to positive cooperation and also
increased left amygdala activity on whole brain analysis. AVP
increased activity in the bed nucleus of the stria terminalis and
lateral septum. Both peptides reduced amygdala connectivity to
the brainstem (Rilling et al., 2012). Subsequent studies also found
sex effects in response to AVP administration; bilateral insula,
and right supramarginal gyrus activity was increased in men,
while decreased in women, during reciprocated cooperation
(Feng et al., 2014).

Summary
Overall, functional neuroimaging literature following acute
administration of oxytocin and vasopressin support their
potential role in social information processing as evidence
by neural activation in regions implicated in social brain
networks. Findings in this regard are complicated by (1)
significant heterogeneity in the tasks studied, (2) the potential
of differential effects of these peptides depending on the sex of
the participants and the valence of the emotional stimuli, and
(3) the large number of studies of relatively small sample size.
A few themes stand out overall: (1) Brain activation patterns
in response to peptide administration span several different
regions; the amygdala, prefrontal cortex, insula and temporal
lobe emerge most frequently across studies. Some studies have
also detected differential activation patterns in the basal forebrain
and brainstem. (2) Many investigators have shown changes
in functional connectivity between various structures in the
above listed regions in response to peptide administration. (3)
A small number of studies including participants with ASD
suggest that aberrant functional activation patterns in response
to social stimuli may be partially corrected following acute
treatment with oxytocin. The implications of this information
as it relates to previous sections are discussed in the next
section.

Discussion, Synthesis, and Implications in
Autism

In summary, oxytocin and vasopressin are neuropeptides
synthesized in the hypothalamus and secreted into the peripheral
vasculature through the posterior pituitary. In rodents, a
functionally separate process also mediates central release of
these peptides from hypothalamic neurons into central nervous
systems; it is presumed that a similar mechanism is at play in
humans as well. Centrally secreted neuropeptides are thought to
diffuse through the extracellular fluid into surrounding tissue,
where they exert their neuromodulatory effects; specific axons
also deliver peptides directly to distant brain regions. The
oxytocin and vasopressin receptors are G-protein linked, and
activate various downstream pathways, which vary by cell type
and organ system.

Limited literature on the distribution of these neuropeptide
receptors in the central nervous system implicates the basal
forebrain (including the nucleus basalis, and diagonal band),
brainstem, and potentially the limbic system as areas of oxytocin
binding in humans and primates, while AVP receptors appear
more diffusely throughout the brain. The basal forebrain has
previously been described as serving a regulatory function,
consolidating various external inputs and amplifying signals
in relevant downstream cortical targets (Givens and Sarter,
1997). It is functionally connected within a reward network
involving the nucleus accumbens and ventral tegmental area
(Sarter et al., 2009). Indeed, various neurotransmitter systems
and brain regions that have afferent or efferent connections
with the basal forebrain and brainstem regions have been
implicated in studies investigating the mechanisms behind the
neurobehavioral effects of these peptides. Blocking dopamine
within the reward pathways described above can eliminate many
of the behavioral effects of oxytocin in rodents. Recent literature
demonstrating that oxytocin and vasopressin can increase the
signal to noise ratio and enhance coordinated signaling via their
activity on interneurons could tentatively link these concepts
together. In essence, could these pituitary neuropeptides act
on interneurons within the basal forebrain to consolidate
and strengthen signaling to relevant downstream cortical and
subcortical regions via cholinergic, glutamatergic, or monoamine
neurotransmitter pathways in response to external social
stimuli?

Functional neuroimaging can provide information on brain
activation patterns. Earlier studies proposed that the neural
effects of oxytocin and vasopressin occurred as a result of
attenuated amygdala activity in response to fearful stimuli.
Subsequent studied found differences in BOLD signaling more
diffusely, although clustering within specific social brain areas
(including the prefrontal cortex, insula, amygdala, and temporal
lobe). Importantly, significant heterogeneity across studies
highlight how the neural effects of oxytocin and vasopressin
likely depend on the type of social stimulus, the sex of the
participant, and other contextual factors. While oxytocin and
vasopressin receptors have been detected in the insula, amygdala,
and cerebral cortex in rodents, data are inconsistent in these
regions in primates and humans. The neuroimaging literature
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would instead support a model in which peptide effects on
subcortical networks subsequently impact social appraisals and
downstream cortical activation patterns. Indeed, numerous
studies highlight how the functional connectivity between the
amygdala, brainstem, anterior cingulate, insula, temporal lobe,
and prefrontal cortex is altered under the influence of these
pituitary neuropeptides. Along these lines, the cholinergic basal
forebrain has prominent connections to the cortex, as well as
other subcortical and brainstem structures; it can also regulate
amygdala activity (Power, 2004).

Tentatively, many associations can be drawn between the
putative mechanisms of action of oxytocin and vasopressin
and hypotheses regarding the pathophysiology of ASD. For
example, numerous immune system differences have been
detected in autism, while specific inflammatory cytokines
have been shown to alter the expression of oxytocin receptors
in vitro. Sex differences in the manifestation and incidence
of autism have been well-described; at the same time, the
oxytocin and vasopressin systems have been shown to
interact with sex hormones in numerous ways. Imbalances
in excitatory/inhibitory neurotransmission have increasingly
been characterized in neurodevelopmental disorders such as
ASD, while cellular physiology research suggests that both
oxytocin and vasopressin can alter this balance by acting on
interneurons. Aberrant functional and structural connectivity in
ASD has been detected using various neuroimaging modalities
and both oxytocin and vasopressin may be able to alter
connectivity within brain social networks. Although at
present, data do not appear to suggest that disruption of
the oxytocin or vasopressin systems necessarily contributes to
the etiology of ASD (e.g., only a single case of a rare variant
disrupting OXTR has been described), these molecules do
seem to impact on social functioning, presenting a potential
therapeutic target.

In the context of advancing technology, important next steps
for this field include determining more precisely the anatomic
location of CNS receptor expression via radiolabeled ligands, in
typical individuals, and importantly, in those with ASD and other

neurodevelopmental disorders. While rodent models permit
elegant proof of concept experiments, results must be confirmed
and replicated in primates, if not humans. For example, a
recent neuroimaging paper in macaques provided evidence of
functional overlap with humans in brain activation patterns in
response to oxytocin (Liu et al., 2015). Quantification of the
level of inter individual variation in receptor expression will be
important as well. Characterization of the three dimensional and
long-range patterns of receptor expression within nervous tissue
in humans may prove informative, and may be possible with
novel techniques (Chung et al., 2013). Functional connectivity
analyses focusing on brainstem and forebrain regions, at
different and more proximal time point following peptide
administration may help to better characterize the sequence of
changes taking place in the CNS. Investigations to support or
refute an interneuron mediated increase in the signal to noise
ratio in specific networks in humans in response to peptide
administration will prove interesting and informative to the field.
Excitingly, emerging research efforts are underway hoping to
harness the therapeutic potential of these molecules with respect
to treating social deficits in neurodevelopmental disorders. Given
that peptide penetrance of the blood brain barrier has proven
to be a challenge, exploration of other compounds that act
on peptide receptors may also prove beneficial. Additionally,
it is hoped that clinical biomarkers within this system (e.g.,
common genetic receptor subtypes) may be able to predict
variable subgroup responses, in order to optimize the therapeutic
potential of these peptides.
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