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Introduction
We have suggested that the abnormal behavioural profile of mice 
with functional ablation of the neurokinin-1 receptor (Nk1r) gene 
(NK1R-/-) is analogous to that of a subgroup of attention deficit 
hyperactivity disorder (ADHD) patients with polymorphism(s) 
of the TACR1 gene (the human equivalent of Nk1r; Sharp et al., 
2014; Yan et al., 2010). This proposition is based on our evidence 
that male NK1R-/- mice express locomotor hyperactivity com-
pared with their wild types (Fisher et al., 2007; Herpfer et al., 
2005; Porter et al., 2015a, 2015b), which is diminished by treat-
ment with d-amphetamine or methylphenidate (Yan et al., 2009). 
These mutant mice also display impaired cognitive performance 
and response control in the 5-Choice Serial Reaction Time Task 
(5CSRTT). Typically, they score more % premature responses 
(an index of impulsivity) and % omissions (an index of inatten-
tiveness) than wild types (Dudley et al., 2013; Porter 2015a, 
2015b; Yan et al., 2011), especially when tested for the first time 
(Weir et al., 2014). It is striking that these three behavioural 
abnormalities meet the diagnostic criteria for ADHD in humans.

All the drugs that are licensed to treat ADHD come from 
three generic groups (Bolea-Alamañac et al., 2014; Heal et al., 
2009). Amphetamine (together with its pro-drug, lisdexamfeta-
mine) and methylphenidate are competitive substrates for 
noradrenaline/dopamine transporters and are classified as psy-
chostimulants. Guanfacine and clonidine are α2-adrenoceptor 
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agonists, while atomoxetine is a selective noradrenaline reup-
take inhibitor. Prompted by evidence outlined above, we have 
compared the effects of drugs from all three classes on the 
behaviour of NK1R-/- mice and their wild type counterparts. So 
far, we have reported that the locomotor hyperactivity of 
NK1R-/- mice was prevented by both d-amphetamine and 
methylphenidate (Yan et al., 2010); their inattentiveness (% 
omissions) in the 5CSRTT was reduced by a low dose of guan-
facine (Pillidge et al., 2014a); and their impulsivity (% prema-
ture responses) was reduced by atomoxetine (Pillidge et al., 
2014b). Guanfacine also reduced premature responses, but only 
at a high dose that diminished the incidence of this behaviour in 
wild types as well (Pillidge et al., 2014a).

Recently, we compared the behaviour of NK1R–/- mice and 
their wild types in the 5-Choice Continuous Performance Test 
(5C-CPT; Porter et al., 2016). This procedure is regarded as an 
analogue of those used to study human cognitive performance 
because it incorporates both ‘no-go’ (non-target) and ‘go’ (target) 
light signals, unlike the 5CSRTT, which uses only the latter sig-
nal/response contingency. This refinement enables the scoring of 
both false alarms (response disinhibition) and premature 
responses (waiting/motoric impulsivity): these are two different 
aspects of impulsive behaviour (Evenden, 1999), which are 
mechanistically dissociable (Young et al., 2011). Another advan-
tage of the 5C-CPT is that it not only scores subjects’ total target 
responses (hit rate), but also enables the evaluation of subjects’ 
ability to distinguish between target and non-target stimuli (i.e. to 
respond to ‘go’ but not to ‘no-go’ signals; Sensitivity Index [SI]), 
as well as their innate bias to respond versus to withhold a 
response (‘caution’; Responsivity Index [RI]; see Young et al., 
2009).

Here, we compared the effects of methylphenidate on atten-
tional performance and response control of NK1R-/- mice and 
their wild types in the 5C-CPT. Because NK1R-/- mice com-
pleted more trials (‘total trials’) than wild types in our previous 
study using this procedure (Porter et al., 2016), we also compared 
the effects of methylphenidate on this measure of ‘productivity’ 
in the two genotypes.

Despite the undisputed benefits of methylphenidate in treat-
ing ADHD (Epstein et al., 2014; Faraone et al., 2006; Grizenko 
et al., 2013; Spencer et al., 2005), approximately 35% of patients 
do not respond to this drug (Hodgkins et al., 2012). An objective 
of this study was to establish whether wild type and NK1R-/- 
mice differ in their behavioural response to methylphenidate in 
the 5C-CPT. If so, this would suggest that the status of the TACR1 
gene and/or TACR1 receptor could similarly influence the effi-
cacy of this drug treatment in ADHD patients, and that 
polymorphism(s) of TACR1 could serve as a biomarker for this 
subgroup of patients.

Method

Apparatus

The apparatus (Med Associates, St. Albans, VT) was controlled 
by a Smart Ctrl Package 8IN/16OUT and an interface (MED-PC 
for Windows) with software that had been modified to incorpo-
rate ‘no-go’ as well as ‘go’ signals during Stages 3 and 4 of train-
ing and the extended test trial of the 5C-CPT (see Young et al., 
2009).

Animals

All experimental procedures complied with the Animals 
(Scientific Procedures) Act (UK) [2010/63/EU] and received 
local ethical approval at University College London. The proto-
col for training mice in the 5C-CPT is explained fully elsewhere 
(Porter et al., 2016; Young et al., 2009), but essential elements of 
the procedure are reported below.

Twelve inbred male mice of each genotype were used. These 
mice express all abnormalities seen in ADHD (locomotor hyper-
activity, impulsive behaviour, inattentiveness and perseveration), 
whereas their excessive impulsivity (but none of their other 
abnormal behaviours) seems to arise from an interaction between 
a deficit of functional NK1R and the breeding environment 
(Porter et al., 2015b). All were six to seven weeks of age at the 
start of training, and they shared the same genetic background 
(129/Sv×C57BL/6J, crossed with outbred MF1 mice, many 
(>10) generations ago; de Felipe et al., 1998). The wild types 
(weight 30–34 g) were taken from two litters, and NK1R-/- mice 
(weight 29-31 g) from three litters. Only littermates were group 
housed in each home cage (two to five per cage). The cages were 
cleaned twice weekly (bedding; 3Rs Bedding Pty Ltd) and 
offered environmental enrichment comprising cardboard tunnels 
and nesting material. The environment was held at 21±2°C, 
45±5% humidity and a 12-hour light/dark cycle (increased in 
steps from 07.00-8.00 hours and reduced in steps from 19.00-
20.00 hours). The mice had free access to water, but food (2018 
global Rodent Diet, Harlan) was restricted to maintain their body 
weight at 90% free-feeding baseline. If, at the start of any day, the 
body weight of a mouse had fallen below 90%, they were allowed 
some free feeding time that day to restore their body weight.

The animals were fed immediately after training/testing 
(Monday to Friday). At weekends, they were given half the daily 
quota in the morning and the remainder in the afternoon (after 
16.00 hours).

Training and testing in the 5C-CPT

Each mouse was assigned to one of four test chambers, which 
were counterbalanced for genotype, time of day (for training/test-
ing) and litter. Training took place every weekday (described 
fully in Porter et al., 2016; Young et al., 2009). Half the animals 
were trained/tested in one of three morning sessions, between 
10.00 and 12.00 hours; the remainder were trained/tested in one 
of three afternoon sessions, between 13.00 and 15.00 hours. Each 
animal was trained/tested at the same time each day. The criteria 
for graduation through each of the four stages of training are 
explained in full in Young et al. (2009) with modifications speci-
fied in Porter et al. (2016).

On the first Friday after matching the criteria for graduation in 
the final stage of training, the performance of treatment-naïve 
animals was evaluated in a single, extended test session (i.e. no 
injection: ‘NI-1’). Full details of the test parameters are given in 
Porter et al. (2016). In brief, the number and duration of the series 
of trials was 250 trials or 60 minutes, whichever occurred first. 
The ratio of target to non-target signals was 5:1, and the range of 
the variable inter-trial intervals (VITIs) was 7-11 seconds. 
Delivery of all these variables was automated and fully ran-
domised. The performance of the mice during each stage of train-
ing and in this NI-1 test are reported in Porter et al. (2016).
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Treatments

Starting one week after this test, the mice were retested once 
weekly on Fridays, 30 minutes after treatment with either meth-
ylphenidate hydrochloride (Sigma Aldrich; 3, 10 or 30 mg/kg, 
intraperitoneally [i.p.]; 10 mL/kg; ‘MPH3,’ ‘MPH10’ and 
‘MPH30’), vehicle (0.9% sterile saline, i.p.: 10 mL/kg; ‘VEH’) 
or in a second (baseline) test session with no injection (here 
referred to as ‘NI-2’). Each mouse received each test condition 
only once, and the sequence for each of the five test conditions 
was counterbalanced across subjects (defined by a pseudo-Wil-
liams’ Latin square). Between test days, the mice were retrained 
in order to re-establish pretest baseline performance.

The choice of drug doses was informed by a pilot dose-range 
test, carried out at the end of a previous experiment on a different 
batch of mice, together with published reports of its effects on 
locomotor activity and cognition (e.g. Beaulieu et al., 2006; Keck 
et al., 2013; Siesser et al., 2005; Yan et al., 2010). Detailed phar-
macokinetic considerations of what doses are therapeutically 
equivalent to those in humans cannot be certain. For instance, 
false alarms in a visual discrimination test of rats were dimin-
ished by an oral dose of 0.5 mg/kg methylphenidate (Berridge 
et al., 2006), but 2 mg/kg i.p. in rats was optimal for improve-
ment in a working memory test of cognition (Spencer et al., 
2015). The latter finding suggests that the range of doses used in 
this study was appropriate for detecting changes in cognition, 
given that higher doses would normally be needed in mice than in 
rats, but lower oral doses than those given i.p. This inference is 
also consistent with a report that oral administration of 3 mg/kg 
racemic methylphenidate to B6C3F1 mice produced a plasma 
concentration (Cmax) within the therapeutic range in ADHD 
patients (6–40 ng/mL; Manjanatha et al., 2008). A further factor 
is that compared with oral administration, i.p. injection of meth-
ylphenidate causes a more prolonged plasma elimination time 
and locomotor response, which is arguably more therapeutically 
relevant (Gerasimov et al., 2000).

The behavioural data were captured and stored online. One 
wild-type mouse was withdrawn from this study for reasons 
unrelated to the procedure. No data from this animal were 
included in the analysis.

Performance variables and statistical 
analysis

As in the 5CSRTT, we scored the following aspects of the ani-
mals’ performance: % accuracy, % omissions, % premature 
responses and perseverative responses, latency to correct 
response and latency to collect the reward. We further calculated 
the proportion of false alarms (an index of response disinhibi-
tion), the latency to false alarms; the hit rate (animals’ total 
responses to target trials), RI (an index of an animal’s biased ten-
dency to respond to a signal, whether appropriate or not) and SI 
(an index of an animal’s attentional performance responding to 
the target versus non-target signals). Details of these calculations 
are specified in Young et al. (2009, 2011, 2013b).

InVivoStat (v2.3.0.0; Clark et al., 2012) was used to analyse 
the data. Diagnostic plots were constructed routinely to check for 
normality of the data-set and equality of the variance of the sam-
ples. When necessary, the data were √(score)-, Log10(score+1)-, or 
rank-transformed to optimise the homogeneity of variance across 

the experimental groups before proceeding with subsequent para-
metric statistical analyses. Mead’s resource equation was used to 
confirm that sample sizes were adequate to detect statistical sig-
nificance, which was set at p<0.05.

Statistical analysis of the data used mixed model analysis of 
variance. We first compared all five experimental groups (NI-2, 
VEH, MPH3, MPH10 and MPH30) to look for overall differ-
ences in the main (between subjects) factors, genotype and time 
of day, and the within-subjects factor, drug. Unlike behaviour 
during NI-1 (reported in Porter et al., 2016), there were neither 
main effects of time of day nor any interactions between time of 
day and other factors of interest, and so the data for all experi-
mental groups were collapsed across this factor. Comparison of 
NI-2 and VEH was carried out to look for changes arising from 
the stress of the i.p. injection, which is often regarded as a control 
procedure (but see Stanford, 1996; Stanford et al., 1984). The 
effects of methylphenidate (drug and drug×genotype) are based 
on comparisons with those of the vehicle injection, but compari-
sons with uninjected mice (NI-2) were carried out when appro-
priate. The post hoc least significant difference test was used to 
compare paired groups of data.

We also used the number of perseverative responses by indi-
vidual mice as the covariate in an analysis of covariance of 
latency to collect the reward in order to establish whether a geno-
type difference in perseveration could account for any group dif-
ferences in this measure.

Results

Methylphenidate reduced impulsive 
behaviours by NK1R-/- and wild-type mice

Methylphenidate had no overall effect on the RI of the two geno-
types (F[1, 21]=3.18; p=0.089; Figure 1(a)); that is, it did not affect 
the tendency of the two genotypes to respond to either light signal.

NK1R-/- mice carried out proportionately fewer false alarms 
than wild types overall (F[1, 21]=9.15; p=0.006]. The incidence 
(%) of false alarms by NK1R-/- mice was lower than in wild 
types after treatment with any dose of methylphenidate. The 
intermediate drug dose of methylphenidate (10 mg/kg) reduced 
% false alarms by NK1R-/- mice only (VEH vs. MPH10: 
p=0.005), but the highest dose reduced this behaviour in both 
genotypes (F[3, 63]=41.11; p<0.001: VEH vs. MPH30; WT: 
p<0.001; KO: p<0.001; Figure 1(b)). However, there was no 
interaction between drug treatment and genotype.

Methylphenidate reduced premature responses in both geno-
types overall (F[3, 63]=18.95; p<0.001), but unlike % false 
alarms, there was no genotype difference in the incidence of pre-
mature responses after any dose of drug. Compared with vehicle, 
the intermediate dose (10 mg/kg) reduced % premature responses 
in NK1R–/– mice only (VEH vs. MPH10: p=0.021]. However, 
the highest dose (30 mg/kg) reduced % premature responses in 
both genotypes (VEH vs. MPH30, WT: p<0.001; KO: p<0.001; 
Figure 1(c)). Again, there was no interaction between drug treat-
ment and genotype.

The intermediate dose of methylphenidate (10 mg/kg) reduced 
the hit rate by wild types only, but the highest dose reduced this 
behaviour in both genotypes (VEH vs. MPH30: F[3, 60]=53.73; 
p<0.001; Figure 1(d)). However, there was no interaction between 
drug treatment and genotype.
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Attention and vigilance, but not accuracy, 
were reduced by methylphenidate

Methylphenidate increased % omissions in both genotypes overall 
(F[3, 63]=143.19; p<0.001; Figure 2(a)), but there was no genotype 
difference in this measure of inattentiveness after any drug dose. 
After treatment with the intermediate dose (10 mg/kg), a small 
increase was evident in wild types (VEH vs. MPH10: p=0.026), but 
not NK1R–/– mice (VEH vs. MPH10: p=0.402). The highest dose 
(30 mg/kg) increased % omissions in both genotypes (VEH vs. 
MPH30, WT: p<0.001; KO: p<0.001]. Nevertheless, there was no 
interaction between drug treatment and genotype.

An overall genotype difference in the SI suggested that 
NK1R-/– mice were more vigilant than wild types (F[1, 21]=5.02; 
WT vs. KO: p=0.036), especially after treatment with the inter-
mediate dose of methylphenidate (10 mg/kg; Figure 2(b)) 
However, methylphenidate reduced the SI overall (F[3, 60]=3.57; 
p=0.019), and there was no interaction between drug treatment 
and genotype. Finally, methylphenidate did not affect % accuracy 
of either genotype (Figure 2(c)).

Perseveration by NK1R-/- mice, but not wild 
types, is prevented by methylphenidate

Perseveration by NK1R–/– mice was higher than that of wild 
types overall (F[1, 21]=8.31; p=0.009), especially during NI-2 
(p=0.008) and after vehicle injection (p=0.001; Figure 3). All 
doses of methylphenidate blunted this behaviour in NK1R-/- 
mice (F[3, 63]=11.29; p<0.001; VEH vs. MPH3: p=0.017; 
MPH10: p=0.003; MPH30: p<0.001), but none affected the 
wild types, most likely because of a floor effect. Nonetheless, 
an interaction between the drug treatment and genotype just 
missed the criterion for statistical significance (genotype×drug: 
F[3, 63]=2.71; p=0.053).

The effect of methylphenidate on response 
latencies differed in the two genotypes

The latency to correct response was longer in NK1R–/– mice 
than in wild types overall (F[1, 21]=20.29; p<0.001; Figure 4(a)). 

Figure 1. Methylphenidate did not affect the Responsivity Index of the two genotypes (a), but the highest dose (30 mg/kg) reduced % false 
alarms (b), % premature responses (c) and the hit rate (d) by both genotypes. Bars show mean±standard error of the mean (SEM) score for the five 
test conditions. White bars: wild types; shaded bars: NK1R-/- mice; NI-2: no-injection (results for NI-1 are reported in Porter et al., 2016); VEH: 
vehicle; MPH3, MPH10 and MPH30: methylphenidate 3, 10 and 30 mg/kg, respectively. Lines linking pairs of data indicate a statistically significant 
difference between the two genotypes at p<0.05 at least. *p<0.05, by comparison with vehicle injection test condition. Details of exact p-values are 
given in the text. N=11 or 12 per group.
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The highest dose of methylphenidate increased this latency in 
wild types but not in NK1R-/- mice (genotype×drug: F[3, 
60]=4.84, p=0.004; VEH vs. MPH30, WT: p<0.001; KO: 
p=0.461). As a consequence, the genotype difference in this per-
formance measure was abolished by the highest dose of drug.

By contrast, methylphenidate reduced the latency to collect 
the reward overall (F[3, 60]=7.92; p<0.001], especially in  
NK1R-/- mice (Figure 4(b)). Whereas the 10 mg/kg dose reduced 
this latency in both genotypes (VEH vs. MPH10, WT: p=0.002; 
KO: p<0.001), the lower (3 mg/kg) and higher (30 mg/kg) doses 
reduced this measure for NK1R-/– mice only (VEH vs. MPH3: 
p=0.040; MPH30: p<0.001). Nevertheless, there was no interac-
tion between drug treatment and genotype. The genotype differ-
ence in the latency to collect the reward was not evident when 
perseveration was treated as a covariate in the statistical analysis 
(F[1, 21]=1.03; p=0.322]; that is, the delay incurred by perse-
veration accounted for the longer latency of NK1R–/- mice. 
However, methylphenidate still caused an overall reduction in 
this measure (F[3, 59]=4.24; p=0.009).

Latency to false alarms was higher in NK1R–/– mice than 
wild types overall (F[1, 21]=11.33; p=0.003; Figure 4(c)). 
Methylphenidate had different effects on the two genotypes 
(genotype×drug: F[3, 56]=2.75; p=0.050). Whereas there was an 
increase when wild types were given either 10 mg/kg or  
30 mg/kg (VEH vs. MPH10: p=0.050; MPH30: p=0.048), this 
was not the case for NK1R-/- mice.

Methylphenidate differentially affected, by 
dose, total trials completed by NK1R-/- mice 
and wild types

Total trials completed was higher for NK1R–/– mice than it was 
for wild types overall for the series of five test conditions (F[1, 
21]=4.61; p=0.044; Figure 5). Methylphenidate affected total tri-
als in a genotype-dependent manner (genotype×drug: F[3, 
63]=12.58; p<0.001). Compared with vehicle-treated mice, both 
3 mg/kg and 10 mg/kg increased (7.5% and 21.4%, respectively) 
total trials completed by wild types, but not those completed by 
NK1R-/- mice (VEH vs. MPH3: p=0.049; MPH10: p<0.001). By 
contrast, the highest drug dose (30 mg/kg) reduced (-36.7% cf. 
vehicle) this measure for NK1R-/- mice but not for wild types 
(VEH vs. MPH30: p<0.001). At this dose, the score for wild 
types was higher than that for NK1R-/- mice (F[3, 63]=10.11; 
p<0.001).

Discussion
We have proposed that behavioural abnormalities of NK1R-/- 
mice resemble those of ADHD patients who have functional dis-
ruption of the TACR1 gene (the human equivalent of Nk1r; Sharp 
et al., 2014; Yan et al., 2010, 2011). Although the locus of the 
TACR1 polymorphism and its functional consequences have yet 
to be defined, this proposal could be important in light of con-
firmed associations between TACR1 polymorphisms, ADHD and 
other co-morbidities. For instance, there is evidence for an asso-
ciation between alcohol misuse and TACR1 polymorphism(s) 
(see Blaine et al., 2013), which could help explain why ADHD is 
a risk factor for co-morbid alcohol misuse (Wilens et al., 2011). 
Similarly, there is confirmed association between both TACR1 

Figure 2. % omissions (a), Sensitivity Index (b) and % accuracy  
(c) did not differ in the two genotypes during NI-2. Bars show 
mean±SEM score for the five test conditions. White bars: wild types; 
shaded bars: NK1R-/- mice; NI-2: no-injection (results for NI-1 are 
reported in Porter et al., 2016); VEH: vehicle; MPH3, MPH10 and 
MPH30: methylphenidate 3, 10 and 30 mg/kg, respectively. The highest 
dose of methylphenidate increased % omissions in both genotypes, but 
caused an overall reduction in the Sensitivity Index (b) and did not 
affect accuracy (c). Lines linking pairs of data indicate a statistically 
significant difference between the two genotypes at p<0.05 at least. 
*p<0.05, by comparison with vehicle injection test condition. Details of 
exact p-values are given in the text. N=11 or 12 per group.
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polymorphism(s) (Sklar et al., 2008; see Sharp et al., 2014) and 
ADHD (Torres et al., 2015) with bipolar disorder.

In a previous study, the locomotor activity of NK1R-/- mice in 
a light/dark exploration box was blunted by the psychostimulant, 
methylphenidate, which is a first-line treatment for ADHD (Yan 
et al., 2010). Here, we investigated whether methylphenidate 
reduced inattentiveness and impulsive behaviour (premature 
responses and false alarms) by NK1R-/- mice in the 5C-CPT. This 
test emulates procedures used to evaluate attentional performance 
and response control in humans, including ADHD patients.

The first point to note is that neither inattentiveness nor the 
impulsive behaviour of the two genotypes differed when they 
experienced the baseline (treatment-free NI-2) test. In the 
5CSRTT, NK1R-/- mice are typically more inattentive and 
impulsive than wild types when tested for the first time, but these 
differences dissipate with repeated experience of the test (Weir 
et al., 2014). However, in the 5C-CPT, neither inattentiveness nor 
impulsivity of the mice differed, even when they were tested for 
the first time (see Porter et al., 2016). We have suggested that this 
is because, in the 5C-CPT, the mice experience the VITI during 
the latter stages of training, as well as during the test phase. As a 
consequence (unlike the 5CSRTT), they become familiar with 
the VITI schedule and expect the latency of the light cue to be 
unpredictable. If so, this points to unexpected uncertainty in 
respect of the latency of the light signal as a key factor for detect-
ing behavioural deficits in NK1R-/- mice (Porter et al., 2016). 
Another could be that the range of latencies of the VITIs in this 
5C-CPT test differed from those used in the 5CSRTT, which 
could give an important clue to the optimal ITI for distinguishing 
behavioural deficits in the NK1R-/- genotype.

Despite the lack of any differences in attentiveness or 
impulsive behaviour, there were interesting differences in the 

effect of methylphenidate on the behaviour of the two geno-
types. The highest dose of methylphenidate reduced premature 
responses and false alarms in both genotypes. However, the hit 
rate was also reduced and % omissions were increased, sug-
gesting that this dose of methylphenidate caused a non-specific 
blunting of motor responses. By contrast, the intermediate dose 
of methylphenidate (10 mg/kg) reduced both premature 
responses and false alarms by NK1R-/- mice only, without 
affecting the number of target response trials, indicative of a 
selective effect in these mice. Although additional test groups 
are needed to confirm whether NK1R-/- mice are more sensi-
tive to methylphenidate than wild types, it is clear that this 
response to methylphenidate does not require NK1R and, in 
fact, a lack of NK1R may mediate heightened sensitivity to 
methylphenidate. Therefore, importantly, given the lack of a 
concurrent reduction in hit rate and the lack of an increase in 
the latency to correct response, latency to collect the reward, 
latency to false alarms or % omissions, this dose of methylphe-
nidate seems to have a specific effect on impulsive aspects of 
behaviour in NK1R–/– mice.

About 70% of ADHD patients show improved response con-
trol, over a wide range of tests, after treatment with methylpheni-
date (reviewed by Pietrzak et al., 2006). However, there are many 
reports that methylphenidate does not reduce ‘commission errors’ 
(i.e. false alarms plus premature responses) by ADHD patients in 
CPTs (Slama et al., 2015), except at doses that disrupt other 
behaviours (Sunohara et al., 1999). This response profile reflects 
that of wild types after drug treatment in this study. Conversely, 
there are several reports that a low dose of methylphenidate 
reduces commission errors without affecting omission errors 
(Aggarwal and Lillystone, 2000; Aman et al., 1984; Bron et al., 
2014; O’Toole et al., 1997; reviewed by Riccio et al., 2001), 
which matches the response profile for NK1R-/- mice. 
Collectively, these findings lead to the prediction that impulsive 
behaviour of ADHD patients with TACR1 polymorphism(s), but 
not that of other subjects, might be diminished by a dose of meth-
ylphenidate that does not impair their attention.

We are aware of only one other study of the effects of methyl-
phenidate on the behaviour of rodents in the 5C-CPT (Tomlinson 
et al., 2014). An important finding was that methylphenidate 
reduced the impulsivity of high-impulsive rats (for an equivalent 
observation in humans, see Aman et al., 1984), but increased it in 
low-impulsive rats. Nevertheless, it is unlikely that individual 
differences in baseline performance in the present study con-
strained the effects of methylphenidate on false alarms at least. 
This interpretation is based on our evidence that the incidence of 
false alarms tended to be higher in wild types, at baseline, and yet 
the intermediate dose of methylphenidate blunted this behaviour 
only in NK1R-/- mice.

Regarding measures of attention, the low and intermediate 
doses of methylphenidate did not reduce baseline % omissions 
by either genotype, possibly because of a floor effect (see below). 
Some human studies have noted an improvement in attention 
after treatment with this drug (Bédard et al., 2015; Rubia et al., 
2009; Schachar et al., 2008). Presumably, these are subjects with 
high inattentiveness at baseline (see also Tomlinson et al., 2014). 
However, our findings are consistent with reports that methyl-
phenidate does not improve attention of ADHD patients in CPTs 
(e.g. Aggarwal et al., 2000; O’Toole et al., 1997; Slama et al., 
2015). The increase in % omissions, in both genotypes, following 

Figure 3. Perseveration by NK1R–/– mice was higher than for wild 
types. All doses of methylphenidate reduced this behaviour in NK1R-/- 
mice but not wild types. Bars show mean±SEM score for the five test 
conditions. White bars: wild types; shaded bars: NK1R-/- mice; NI-2: 
no-injection (results for NI-1 are reported in Porter et al., 2016);  
VEH: vehicle; MPH3, MPH10 and MPH30: methylphenidate 3, 10 and  
30 mg/kg, respectively. Lines linking pairs of data indicate a 
statistically significant difference between the two genotypes at p<0.05 
at least. *p<0.05, by comparison with vehicle injection test condition. 
Details of exact p-values are given in the text. N=11 or 12 per group.
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treatment with the highest drug dose evidently does not depend 
on activation of, or a lack of, NK1R.

The low % omissions of NK1R-/- mice in this study contrasts 
with our findings from studies using the 5CSRTT, in which this 
genotype typically expressed excessive omission errors, when 
tested with a prolonged but fixed inter-trial interval (‘LITI’; 
Dudley et al., 2013; Porter et al., 2015a; Yan et al., 2011). We 
have not carried out a randomised, head-to-head comparison of 
the two genotypes in the 5CSRTT and 5C-CPT. However, our 
findings so far suggest that the longer LITI, used in the 5CSRTT, 
is more effective than the protocol in this 5C-CPT for discerning 
a higher proportion of omission errors in NK1R–/– mice than in 
wild types (Porter et al., 2015a; Weir et al., 2014; Yan et al., 2011; 
see also Porter et al., 2016).

None of the doses of methylphenidate improved % accuracy, 
an index of selective attention, in this 5C-CPT. It is evident that 
the effects of methylphenidate on different aspects of attention in 
this 5C-CPT (% accuracy and % omissions) are strongly dissoci-
ated. Although the lack of any response to methylphenidate could 
be explained by the high baseline accuracy of untreated mice 
(close to 100% at baseline), there are reports that methylpheni-
date has no effect on the % accuracy of rats in the 5CSRTT, 
despite their high incidence of incorrect responses at baseline 
(Paterson et al., 2011). However, methylphenidate can increase 
accuracy in human CPTs (Heiser et al., 2004; Klorman et al., 
1991), especially when the task is made more challenging (Coons 
et al., 1981). In that context, it is interesting that NK1R-/- mice 
were less accurate than wild types at the onset of Stage 1 of train-
ing in the 5C-CPT (Porter et al., 2016), suggesting that habitua-
tion to the task eliminates any genotype difference in this 
measure.

The only behaviour to show a marked genotype difference in 
NI-2 was perseveration, an abnormality that is also prominent in 
both NI-1 of this test (Porter et al., 2016) and the 5CSRTT 
(Dudley et al., 2013; Weir et al., 2014; Yan et al., 2011; Porter 
et al., 2015a; but see Porter et al, 2015b). Evidently, a deficit in 
functional NK1R can exacerbate this behaviour. All doses of 
methylphenidate attenuated perseveration by NK1R–/– mice 
(even the lowest dose, which did not affect any other behaviour), 
but none affected wild types, possibly because of a floor effect, a 
pattern that is consistent with impulsivity-relevant behaviours in 
the study by Tomlinson et al. (2014). It follows that although a 
lack of functional NK1R exacerbates perseveration, its reduction, 
following drug treatment, does not involve activation of NK1R. 
It is interesting that in the 5CSRTT, d-amphetamine similarly 
reduced perseveration by NK1R–/– mice but not by wild types 
(Yan et al., 2011), suggesting that the blunting of this behaviour 
by these two drugs might share a common mechanism. Given 
that they are both psychostimulants, an obvious primary candi-
date is an increase in neurotransmission from noradrenergic and/
or dopaminergic neurones.

This methylphenidate-induced reduction in perseveration is 
striking because most compulsive behaviours in ADHD patients 
are exacerbated by psychostimulants (e.g. Borcherding et al., 
1990; Graham and Coghill, 2008; but see Tannock and Schachar, 
1992). However, perseveration, in the form of ‘compulsive 
checking’ in ADHD patients, might be an exception (Gürkan 
et al., 2010). This possibility that perseveration by mice in the 
5C-CPT and 5CSRTT is analogous to this ‘checking’ behaviour 
in ADHD merits further investigation using a recently developed 
‘checking task’ for rodents (Eagle et al., 2014).

Figure 4. Latency to correct response (a) was higher in NK1R–/– mice 
than in wild types. The highest dose of methylphenidate (MPH30) 
increased this measure in wild types only. Methylphenidate reduced the 
latency to collect the reward (b), especially in NK1R-/- mice, but only 
the intermediate dose affected both genotypes. The intermediate and 
highest dose of methylphenidate increased the latency to false alarms 
(c) for wild types only. Bars show mean±SEM score for the five test 
conditions. White bars: wild types; shaded bars: NK1R-/- mice; NI-2: 
no-injection (results for NI-1 are reported in Porter et al., 2016); VEH: 
vehicle; MPH3, MPH10 and MPH30: methylphenidate 3, 10 and  
30 mg/kg, respectively. Lines linking pairs of data indicate a statistically 
significant difference between the two genoptypes at p<0.05 at least. 
*p<0.05, by comparison with vehicle injection test condition. Details of 
exact p-values are given in the text. N=11 or 12 per group.
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The neurobiological explanation for this form of persevera-
tion and its prevention by methylphenidate is unknown. However, 
there are many reports that perseveration is exacerbated by 
lesions of mesocorticolimbic dopaminergic neurones (Pioli et al., 
2008; Schwabe et al., 2004). The DRD2/DRD3 receptor agonist, 
quinpirole, which reduces extracellular dopamine in the nucleus 
accumbens at least (Escobar et al., 2015), provokes a similar 
response (e.g. Alkhatib et al., 2013). Many reports indicate that a 
lack of functional NK1R can diminish dopaminergic transmis-
sion in the brain (Anderson et al., 1994; Brimblecombe and 
Cragg, 2015; Kombian et al., 2003; Loonam et al., 2003; Zocchi 
et al., 2003) especially during heightened arousal (Hutson et al., 
2004; Renoldi and Invernizzi, 2006; Yan et al., 2011). It is pos-
sible that amelioration of this deficit by methylphenidate, which 
is a dopamine reuptake inhibitor, helps to prevent perseveration 
by these mice.

A final finding was that total trials completed by NK1R-/- mice 
was consistently higher than that by wild types, as in NI-1 (Porter 
et al., 2016), suggesting that a lack of functional NK1R increases 
this measure of ‘productivity’. The highest dose of methylpheni-
date diminished total trials, especially in NK1R-/- mice. However, 
the substantial fall in the hit rate in both genotypes at this dose 
points to a non-specific impairment of performance, which does 
not involve NK1R. In fact, functional NK1R in wild types might 
even have ameliorated the response to this drug.

The lower doses of methylphenidate (3 and 10 mg/kg) slightly 
increased total trials completed by wild types, but did not affect 
NK1R-/- mice. This genotype difference was not due to a ceiling 
effect for NK1R-/- mice. It is also unlikely to be explained by a 

drug-induced increase in the motivation, or the ability, of wild 
types to perform the task because neither their latency to correct 
response nor latency to false alarms was reduced. We can also 
exclude a non-specific increase in the animals’ response to the 
light stimuli because the hit rate and % false alarms for wild types 
was reduced, rather than increased, by this drug. Overall, the 
increase in total trials by wild types, induced by low doses of 
methylphenidate, seems to be explained by enhancement of 
another as yet unidentified aspect of their engagement with the 
task that requires functional NK1R.

To the best of our knowledge, the effect of methylphenidate on 
the productivity of humans in a CPT has not been reported. This 
remains unknown because human CPTs have a set number of tri-
als that are computer initiated whereas, in the 5C-CPT, all trials 
are initiated by the mice. Nevertheless, our findings lead us to 
propose that there could be interesting differences between ADHD 
patients with polymorphism(s) of TACR1 and other groups of sub-
jects, both at baseline and after treatment with methylphenidate. 
Assessment of the performance of patients and mice, along with 
the effects of methylphenidate, in cross-species, effort-related 
tasks (Horan et al., 2015; Orsini et al., 2015; Young and Markou, 
2015) could provide further support for our premise that although 
a deficit of functional TACR1/NK1R apparently improves pro-
ductivity at baseline, these receptors are needed to facilitate the 
increase in productivity induced by methylphenidate.

Conclusions
Each aspect of the cognitive performance and response control of 
wild type and NK1R-/- mice in the 5C-CPT is affected by meth-
ylphenidate in a different way. However, the role of NK1R in the 
response to methylphenidate had no bearing on the influence of 
these receptors on baseline behaviour. This disparate drug/
response profile could help to explain why hitherto it has not 
been possible to predict whether individual ADHD patients will 
respond to treatment with methylphenidate (e.g. DuPaul et al., 
1994; Elliott et al., 2014; Johnston et al., 2015; Kim et al., 2015). 
The findings from this study lead us to predict that a subgroup of 
ADHD patients, with a deficit in functional TACR1, will be more 
productive (i.e. complete more trials) and express a higher inci-
dence of perseveration than other patients do and that these dif-
ferences would be diminished by methylphenidate. Moreover, 
this drug might also reduce false alarms and premature responses 
by this group of patients at doses that do not disrupt other aspects 
of their cognitive and motor performance. Identifying and testing 
ADHD patients with a deficit in functional TACR1 gene and 
being treated with methylphenidate in the reverse-translated 
human 5C-CPT (Van Enkhuizen et al., 2013; Young et al., 2013a) 
would enable these hypotheses to be interrogated.
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