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30 Abstract
31 Background: Post COVID-19 condition (PCC) is known to affect a large proportion of COVID-

32 19 survivors. Robust study design and methods are needed to understand post-COVID-19 

33 diagnosis patterns in all survivors, not just those clinically diagnosed with PCC.

34

35 Methods: We applied a case-crossover Phenome-Wide Association Study (PheWAS) in a 

36 retrospective cohort of COVID-19 survivors, comparing the occurrences of 1,671 diagnosis-

37 based phenotype codes (PheCodes) pre- and post-COVID-19 infection periods in the same 

38 individual using a conditional logistic regression. We studied how this pattern varied by COVID-

39 19 severity and vaccination status, and we compared to test negative and test negative but flu 

40 positive controls.

41

42 Results: In 44,198 SARS-CoV-2-positive patients, we found enrichment in 

43 respiratory, circulatory, and mental health disorders post-COVID-19-infection. Top hits included 

44 anxiety disorder (p=2.8e-109, OR=1.7 [95%CI: 1.6-1.8]), cardiac dysrhythmias (p=4.9e-87, 

45 OR=1.7 [95%CI: 1.6-1.8]), and respiratory failure, insufficiency, arrest (p=5.2e-75, OR=2.9 

46 [95%CI: 2.6-3.3]). In severe patients, we found stronger associations with respiratory and 

47 circulatory disorders compared to mild/moderate patients. Fully vaccinated patients had mental 

48 health and chronic circulatory diseases rise to the top of the association list, similar to the 

49 mild/moderate cohort. Both control groups (test negative, test negative and flu positive) showed 

50 a different pattern of hits to SARS-CoV-2 positives. 

51

52 Conclusions: Patients experience myriad symptoms more than 28 days after SARS-CoV-2 

53 infection, but especially respiratory, circulatory, and mental health disorders. Our case-

54 crossover PheWAS approach controls for within-person confounders that are time-invariant. 

55 Comparison to test negatives and test negative but flu positive patients with a similar design 

56 helped identify enrichment specific to COVID-19. This design may be applied other emerging 

57 diseases with long-lasting effects other than a SARS-CoV-2 infection. Given the potential for 

58 bias from observational data, these results should be considered exploratory. As we look into 

59 the future, we must be aware of COVID-19 survivors’ healthcare needs.

60

61

62

63
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67 1. Introduction
68 Though most patients with Coronavirus Disease 2019 (COVID-19) recover1, many survivors 

69 report symptoms long after disease onset, a condition commonly referred to as “long COVID” or 

70 “post COVID-19 condition” (hereinafter abbreviated as PCC).2–4 While initially the names and 

71 definitions of PCC were highly heterogeneous, the consensus clinical case definition3 proposed 

72 by the WHO in October 2021 represented a significant step towards reaching global 

73 consistency. A recent meta-analysis estimated that 43% (95%CI: 39%-46%) of COVID-19 

74 survivors experience at least one lingering condition post-COVID-19.5 This, paired with 

75 estimates for global COVID-19 reported case counts6, the estimated prevalence of PCC among 

76 initially asymptomatic cases7, and the fraction of unreported COVID-19 infections8,9, forms the 

77 basis that hundreds of millions of people may have or have had post-COVID-19-related health 

78 complications. 

79 Female sex, older age, severe COVID-19, and comorbidities such as asthma are claimed to be 

80 associated with PCC.5 Common symptoms include fatigue, brain fog/memory issues, headache, 

81 heart conditions, respiratory conditions, sleep disorders, and mental health conditions,4 but PCC 

82 symptomatology still remains heterogeneous. Recent research has shown that COVID-19 may 

83 increase risk for cardiovascular events, kidney-related outcomes, and diabetes sometimes long 

84 after infection10–12 and that PCC can persist for months after infection13,14. Regardless of a 

85 formal diagnosis, several surveys indicated that post-COVID-19-related disabilities have 

86 affected a large proportion of the population 15–17. 

87 However, there are also skepticisms and contradictions in the literature. One recent study 

88 suggested that not every new or persistent symptom post-infection can be attributed to a 

89 confirmed COVID-19 diagnosis.18 Another important question is whether vaccination or later 

90 SARS-CoV-2 variants reduces PCC development. To date, results have been inconsistent, with 

91 some studies finding vaccination to confer a protective effect, but others finding the contrary.19–

92 22 

93 While a proper population-based survivorship cohort with adequate follow-up time is the ideal 

94 study design to understand post-COVID-19 clinical outcomes, electronic health records (EHRs) 

95 offer snapshots of patients’ health status and thus allow comparisons of the medical phenome 

96 of COVID-19-positive patients before and after COVID-19 diagnosis. EHRs are easily 

97 accessible and enabled many studies on post COVID-19 complications.10–12,14,23,24 Phenome-

98 Wide Association Studies (PheWAS) are an increasingly common EHR-based method to 

99 agnostically find associations between hundreds of phenotypes and some other health-related 

100 factor.25 Recently, PheWAS have been used to understand the genetic and phenotypic risk 
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101 factors for COVID-19 outcomes.26–29  Such studies can be error-prone due to lack of a suitable 

102 control group or confounding due to differences in other patient characteristics determining who 

103 is getting tested and diagnosed for COVID-19 as well as who is seeking post-COVID-19 care. 

104 Researchers may consider matching, weighting or regression adjustment as potential remedies 

105 to this problem, but these methods are only able to adjust for a limited set of measured 

106 confounders.30,31

107 The case-crossover design is an elegant design-based solution which reduces potential 

108 confounding by using events observed for the same person during suitably defined case and 

109 control periods.32,33 This design can be thought of as a matched case-control design that 

110 controls for both observed and unobserved person-level confounders that are invariant over the 

111 case and control windows. Case-crossover designs have been used to study early COVID-19 

112 detection and post-COVID-19-vaccination cerebral venous thrombosis.34,35 One particular study 

113 used claims data to estimate the association between patient diagnoses and the time period 

114 after COVID-19 infection,36 and another used EHR data to conduct a post-COVID-19 

115 PheWAS.37 

116

117 In October 2021 a new diagnosis code specifically for PCC was introduced38, thus facilitating 

118 the clear identification of PCC patients, but in this study we took an agnostic look across 

119 hundreds of diagnoses to understand which ones are more commonly seen post-COVID-19 

120 using a case-crossover design with more than two years of follow-up data. We conduct 

121 analyses stratified by COVID-19 severity and vaccination status. We compare these results to 

122 the results of the same analysis applied to test negative controls and a test negative flu positive 

123 cohort to discern unique contributions of COVID-19. Using this approach, we aim to improve our 

124 understanding of post-COVID-19 diagnosis patterns and consequently to advance healthcare 

125 and societal support for all COVID-19 survivors. 

126
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127 2. Methods
128 2.1 COVID-19-positive Cohort

129 Data were extracted retrospectively from EHRs for patients in the Michigan Medicine (MM) 

130 health system. Ethical review and approval were waived for this study due to its qualification for 

131 a federal exemption as secondary research for which consent is not required. Determination for 

132 exemption was made by the University of Michigan Medical School Institutional Review Board 

133 (study ID: HUM00180294). Individual-level data included de-identified information regarding 

134 reverse transcription polymerase chain reaction (RT-PCR) testing for SARS-CoV-2, patient 

135 demographics, diagnoses, vaccinations, hospitalizations, ICU admission, and death. We 

136 included all adult individuals with either 1) positive RT-PCR test result or 2) diagnosis of COVID-

137 19 infection based on International Classification of Disease (ICD)-10-CM codes U07.1 or U07.2 

138 between March 10, 2020, to August 1, 2022. We defined the date of the first positive test or 

139 diagnosis as the index test date for each patient. For patients with multiple positive tests, we 

140 considered their first positive test as the index test date. Patients with missing test dates were 

141 excluded from this analysis. 

142

143 2.2 Test Negative Controls

144 We also measured test negative controls - patients tested, but who never received a positive 

145 RT-PCR result nor a COVID-19 diagnosis. We matched negative to positive patients at a 4:1 

146 ratio on age, gender, and Charlson Comorbidity Index39. The index test date for negative 

147 patients who were tested multiple times was defined as the date of their first COVID-19 test to 

148 ensure sufficient follow-up post-test. A sub-cohort of test negative patients who were diagnosed 

149 with other forms of the flu (defined using PheCode 481; PheCode system described below) 

150 during the same period were also measured, where the date of flu diagnosis (if multiple, one 

151 was randomly chosen) served as their index date for choosing the case-control windows.

152

153 2.3 Study Design

154 We used a case-crossover design where each COVID-19-positive case served as its own 

155 control. We defined three time periods relative to the index test date (time zero): “pre-COVID-19 

156 period” (-2 years to -14 days), “acute and short COVID-19 period” (-14 days to +28 days), and 

157 “post-COVID-19 period” (+28 days to +1 year; Figure 1). Thus, the “post-COVID-19 period” did 

158 not include the acute phase of COVID-19. We included 14 days prior to the index test date in 

159 the “acute and short COVID-19 period” to account for individuals who may have had COVID-19 
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160 and related symptoms before testing positive. Patients were included in the study if they had at 

161 least one EHR encounter with a diagnosis in both the “pre-” and “post-COVID-19 period.” 

162

163 We implemented two sampling schemes to be used in the case-crossover design-based 

164 PheWAS. Primarily, we used a random L:M case:control window ratio (CCWR) design in which 

165 we randomly sampled (without replacement) up to L case windows (“cases”) and up to M control 

166 windows (“controls”), each S days in length, from each study participant’s “post-COVID-19 

167 period” and “pre-COVID-19 period”, respectively (termed random L:M CCWR S-day analysis; 

168 Figure 1A). Windows of length S days were selected by randomly choosing window start dates. 

169 We also used a fixed window design where we selected 1 case and 1 control window (of length 

170 S days) from a fixed start date, defined as the date most proximal to the index test (termed fixed 

171 S-day analysis; Figure 1B). 

172

173 2.4 Demographic and Clinical Variables

174 Age, gender, race, and Body Mass Index (BMI) were reported from patients’ EHRs. Patients 

175 aged >= 90 years were coded as being exactly 90 years old for confidentiality reasons. A patient 

176 was considered a MM primary care patient if they received primary care at MM in the last two 

177 years. We also computed the Charlson Comorbidity Index using pre-existing conditions 14 days 

178 prior to the index date.

179

180 2.5 COVID-19 Severity

181 COVID-19-related hospital and ICU admission were defined for COVID-19 positive patients as 

182 having each respective outcome within 30 days following the index test date.40 COVID-19-related 

183 death was defined as death within 60 days following the index test date. These outcomes describe 

184 30-day all-cause-hospitalization and 60-day all-cause-mortality following a COVID positive test. 

185 We define the composite outcome as “severe COVID-19” if a COVID-19 patient experienced a 

186 COVID-19-related hospitalization, ICU admission, or death as defined above. A patient is 

187 considered “mild/moderate COVID-19” otherwise. See eFigure 1 for details.

188
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189

190

191 Figure 1. Sampling Schematic for Case-Crossover Design. Panel A depicts the random L:M CCWR (Case:Control 
192 Window Ratio) sampling design used in our primary analysis, wherein we randomly sampled L=1 case window and 
193 M=4 control windows (by randomly choosing a window start date), each with S=90 days in length. A patient’s index test 
194 date is denoted by the red line. The “Acute and Short COVID-19 period” is from -14 days to +28 days, the “post-COVID-
195 19 period” is from +28 days to +1 year, and the “pre-COVID-19 period” is from -14 days to -2 years from the index test 
196 date. In this instance, one 90-day case window is randomly selected from the “post-COVID-19 period,” and four 90-day 
197 control windows are selected from the “pre-COVID-19 period.” Panel B depicts the fixed scheme where two windows 
198 of S=90 days length are selected from each of the periods with fixed start dates.
199

200

201

202

203

204
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205 2.6 COVID-19 Vaccination

206 The date on which a person was considered fully vaccinated was after either 1) two doses of 

207 Moderna, Pfizer-BioNTech, or Astrazeneca or 2) one dose of Johnson and Johnson - Janssen 

208 vaccine, and 21 or more days had elapsed after their last dose.41 Patients were considered 

209 unvaccinated if they had exactly zero or an unknown number of doses at index test date. Partially 

210 vaccinated patients were not included in the stratified analysis but were included in the overall 

211 analysis. We note that MM’s vaccine eligibility criteria changed over time and mirrored the CDC’s 

212 recommendations. Thus, most patients diagnosed before 2021 were unvaccinated at their index 

213 test date. eFigure 2 details how vaccination status was determined.

214

215 2.7 Diagnosis Code Mapping

216 ICD diagnosis codes were extracted for each patient and mapped to their corresponding 

217 PheCodes according to the PheWAS catalog ICD maps.42 Standard PheCode exclusions were 

218 applied, and one observed PheCode during a corresponding time window was considered the 

219 presence of a diagnosis. The totality of observed PheCodes for an individual was termed their 

220 “phenome.” We grouped PheCodes into symptom groups as defined in the PheWAS catalog.43 

221

222 2.8 Descriptive Analysis of Diagnosis Patterns

223 We tabulated presence of any new PheCodes (and PCC-related PheCodes as defined in eTable 
224 1)4 as well as the number of new PheCodes received during the “post-COVID-19 period.” A 

225 PheCode was considered new if it was present in the “post-COVID-19 period” but not present 

226 during the “pre-COVID-19 period.” Additionally, we counted visits per month and follow-up time 

227 (in weeks) during both the “pre-“ and “post-COVID-19 periods”. A visit was defined as any unique 

228 day on which at least one diagnosis was recorded, and follow-up time was computed by taking 

229 the difference between the date most proximal to the index test date for a period (-14 days for 

230 “pre-COVID-19 period”, +28 days for “post-COVID-19 period”) and the most distal date on which 

231 they received a diagnosis in their “pre-“ and “post-COVID-19 periods” (up to -2 years for “pre-

232 COVID-19 period”, up to +1 year for “post-COVID-19 period”).

233

234 2.9 Statistical Analysis for PheWAS

235 We used a PheWAS approach with a case-crossover design. To account for the within-subject 

236 matched analysis, conditional logistic regression was used to model the association between 

237 case and control windows and patients’ phenomes. Let us consider a 1:M case-crossover 

238 design with N patients analyzing K PheCodes. Let  index patients,  𝑖 = 1,2,...,𝑁 𝑗 = 1,2,…,𝑀 + 1
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239 index case and control windows of a patient, and  index Phecodes. Patient i’s case 𝑘 = 1,2,...,𝐾

240 window ( ) is matched to multiple randomly selected control windows ( ). For 𝑗 = 1 𝑗 = 2,…,𝑀 + 1

241 each PheCode , we fit the following model:𝑘

242 𝑙𝑜𝑔𝑖𝑡[𝑃𝑟𝑜𝑏(𝑊𝑖𝑛𝑑𝑜𝑤𝑖𝑗 = 𝑐𝑎𝑠𝑒∣𝑃ℎ𝑒𝐶𝑜𝑑𝑒𝑘
𝑖𝑗)] = 𝛽𝑘

0𝑖 + 𝛽𝑘
1𝑃ℎ𝑒𝐶𝑜𝑑𝑒𝑘

𝑖𝑗

243 where  is an indicator for whether PheCode  is present in window  of patient  and 𝑃ℎ𝑒𝐶𝑜𝑑𝑒𝑘
𝑖𝑗 𝑘 𝑗 𝑖

244  denotes the case/control window for patient i. The conditional logistic regression 𝑊𝑖𝑛𝑑𝑜𝑤𝑖𝑗

245 conditions on the matched design or the fact that  is a case window and 𝑊𝑖𝑛𝑑𝑜𝑤𝑖1 𝑊𝑖𝑛𝑑𝑜𝑤𝑖2

246  are control windows for the same individual , such that the patient-specific ,…,𝑊𝑖𝑛𝑑𝑜𝑤𝑖𝑀 + 1 𝑖

247 intercept  is eliminated and the conditional likelihood only retains , the coefficient of 𝛽𝑘
0𝑖 𝛽𝑘

1

248 PheCode  shared by all patients. The resulting conditional likelihood for PheCode k takes the 𝑘

249 following form:

250                                                    𝐿𝑘
𝐶𝐿𝑅 = ∏𝑁

𝑖 = 1 [
𝑒𝑥𝑝(𝛽𝑘

1𝑃ℎ𝑒𝑐𝑜𝑑𝑒𝑘
𝑖1)

𝛴𝑀 + 1
𝑗 = 1 𝑒𝑥𝑝 (𝛽𝑘

1𝑃ℎ𝑒𝑐𝑜𝑑𝑒𝑘
𝑖𝑗)

]

251 For a model to be run, we specified that at least 10 subjects (5 for cohorts with <5,000 subjects) 

252 in the analytic dataset should have a given PheCode in their case (control) periods. We used 

253 Manhattan plots to visualize the p-values corresponding to the null hypotheses 𝐻0𝑘: 𝛽𝑘
1

254 and the directions of the association. = 0 ,𝑘 = 1, …,𝐾 

255

256 For each sampling scheme, a PheWAS was run on the entire COVID-19-positive cohort (termed 

257 “overall” cohort) and several subgroups – severe, mild/moderate, fully vaccinated, and 

258 unvaccinated patients. Random 1:4 CCWR 90-day sampling was used in the primary analysis. 

259 We chose 90 days as it aligns with the WHO’s PCC case definition as well as recent research.3,5 

260 Sensitivity analyses regarding the length of the window and the case:control ratio included fixed 

261 90-day, fixed 30-day, random 1:2 CCWR 180-day, random 2:4 CCWR 90-day. We also 

262 conducted a random 1:4 CCWR 90-day analysis on test negative and test negative but flu 

263 positive controls, and random 1:4 CCWR 90-day analysis stratified by year of infection (2020, 

264 2021, 2022). For test negative controls, we performed PheWAS on controls matched to the 

265 overall cohort and to the severe cohort. We formally compared cohorts by testing for a 

266 difference in effect sizes (eMethods 1).

267

268 All analyses were performed in R (version 4.1.2)44, and the PheWAS package was used.45 

269 Summary statistics are reported as median (interquartile range [IQR]) for continuous variables 

270 or n (%) for categorical variables. Odds Ratios (ORs) with Wald-type 95% Confidence Intervals 

271 (CIs) and p-values are reported from each conditional logistic regression model. Phenome-wide 
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272 significance (“hits”) was determined by the Holm-Bonferroni method.46 We reported on both the 

273 Bonferroni and Holm-Bonferroni hits in PheWAS plots. 
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275 3. Results
276 3.1 Cohort Description

277 Between March 10, 2020 and August 1, 2022, 353,648 patients were tested or diagnosed for 

278 COVID-19 at MM. Of these, 44,198 COVID-19-positive patients were included in our study, to 

279 which 160,399 test negative controls were matched. In addition, 1,328 test negative patients 

280 with an index flu infection during the same period were also included as a second set of controls 

281 (see eFigure 1 for a flow diagram defining the analytic cohort). Median (IQR) age was 48 (31-

282 63) and 61% of the cohort was female (Table 1). Of the positive patients, 2,569 (5.8%) patients 

283 experienced severe COVID-19, and 41,629 (94.2%) had mild/moderate COVID-19. 16,468 

284 (37%) patients were fully vaccinated and 25,736 (58%) were unvaccinated at their index test 

285 date. 

286

287 3.2 Descriptive Diagnosis Patterns

288 Both COVID-19-positive (Table 2) and COVID-19-negative patients (eTable 2) received a 

289 similar number and rate of diagnoses in the “post period”, and we saw a similar trend even 

290 when looking only at PCC-related diagnoses (eTable 1). The flu positive cohort had an 

291 increased number and rate of diagnoses in the “post period” (eTable 3). Increasing COVID-19 

292 severity led to increased numbers and rates of diagnosis (i.e., 90% of severe vs. 79% of 

293 mild/moderate with 1+ new diagnosis). Positives and negatives (including the flu positive cohort) 

294 both most commonly received circulatory, mental, and digestive disorders in the “post period” 

295 (eTables 4-6).
296

297

298

299

300

301

302

303

304
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Variable Overall 
(n=44,198)

Fully Vaccinated 
(n=16,468) a

Unvaccinated 
(n=25,736) a,b

Age 48 (31, 63) 51 (34, 65) 45 (29, 61)

Gender

     Female 26,880 (61%) 10,148 (62%) 15,544 (60%)
     Male 17,316 (39%) 6,320 (38%) 10,191 (40%)
     (Missing) 2 (<0.1%) 0 (0%) 1 (<0.1%)
Race

     African American 4,926 (11%) 1,429 (8.7%) 3,262 (13%)
     Asian 1,574 (3.6%) 790 (4.8%) 706 (2.7%)
     Caucasian 34,579 (78%) 13,132 (80%) 19,927 (77%)
     Other 1,919 (4.3%) 631 (3.8%) 1,206 (4.7%)
     (Missing) 1,200 (2.7%) 486 (3.0%) 635 (2.5%)

BMI 28 (24, 33) 28 (24, 33) 28 (24, 34)
     (Missing) 2,624 (5.9%) 677 (4.1%) 1,835 (7.1%)

Charlson Comorbidity 

Index 1.00 (0.00, 3.00) 1.00 (0.00, 4.00) 1.00 (0.00, 3.00)
     (Missing) 1,114 (2.5%) 535 (3.2%) 498 (1.9%)

Primary Care Patientc 23,871 (54%) 9,940 (60%) 12,928 (50%)

COVID-19 Severityd

     Mild/Moderate 41,629 (94.2%) 15,784 (95.8%) 23,989 (93.2%)
     Severe 2,569 (5.8%) 684 (4.2%) 1,747 (6.8%)
a 1,994 partially vaccinated patients not represented
b Includes those with unknown vaccination status
c  Received primary care at MM in last 2 years
d Severe if experienced COVID-19-related hospitalization, ICU admission or death; mild/moderate otherwise

305
306 Table 1. Cohort Summary. Summary statistics for the cohort are presented as median (IQR) for 
307 continuous variables and n (%) for categorical variables. The table is stratified by vaccination status at 
308 index test date. Missing values are reported for each variable. 
309
310
311
312
313
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Overall (n=44,198)a Fully Vaccinated (n=16,468)a Unvaccinated (n=25,736)a,b

Outcome Cohort Pre-COVID-19 Post-COVID-19 Pre-COVID-19 Post-COVID-19 Pre-COVID-19 Post-COVID-19

Overall (n=44,198) 90.86 (59.04, 99.71) 25.14 (13.29, 41)
94.29 (67.43, 
100.29)

17.71 (7.43, 
25.29)

88 (54.29, 
99.14)

34.71 (19.29, 
44.86)

Mild/Moderate (n=41,629) 90.43 (58.86, 99.57) 25 (13.29, 40.57)
94.07 (67.29, 
100.29)

17.57 (7.43, 
25.14)

87.29 (53.86, 
98.86)

34.57 (19.29, 
44.71)

Severe (n=2,569) 96.43 (66.86, 101) 29.71 (14.14, 45.29)
98.07 (70.82, 
101.29)

19.14 (6.82, 
27.57)

95.71 (64.71, 
100.86)

38.14 (19.29, 
46.43)

   Hospitalized, No ICU (n=1,900) 96.14 (66.68, 101) 29.36 (15.71, 45)
97.86 (69.04, 
101.14)

20.29 (7.71, 
27.57)

95.29 (64.71, 
100.86)

38.14 (20.29, 
46.29)

   Hospitalized and ICU (n=588)
97.71 (70.32, 
101.14) 35.71 (15.11, 46.43)

98.71 (81.79, 
101.29)

18.86 (6.43, 
30.21)

97.43 (68.29, 
101.14) 41.57 (21.43, 47)

Follow-up 
Time (Weeks)

   Deceased (n=136)
96.64 (64.64, 
101.43) 2.29 (0.86, 4.46)

99.64 (69.96, 
101.82)

1.79 (0.75, 
3.11)

96.43 (60.89, 
101.07) 2.43 (0.86, 5.57)

Visits Per 
Month Overall (n=44,198) 0.64 (0.25, 1.44) 0.54 (0.18, 1.26) 0.93 (0.42, 1.91)

0.45 (0.18, 
0.99)

0.51 (0.21, 
1.15) 0.54 (0.18, 1.35)

Mild/Moderate (n=41,629) 0.59 (0.25, 1.36) 0.45 (0.18, 1.17) 0.89 (0.38, 1.83)
0.45 (0.18, 
0.99)

0.47 (0.17, 
1.06) 0.54 (0.18, 1.26)

Severe (n=2,569) 1.44 (0.59, 3.06) 1.44 (0.54, 3.25) 2.17 (0.98, 3.95)
1.35 (0.45, 
2.64)

1.27 (0.51, 
2.55) 1.53 (0.54, 3.43)

   Hospitalized, No ICU (n=1,900) 1.44 (0.59, 2.93) 1.26 (0.45, 2.8) 2.08 (0.98, 3.66)
1.13 (0.45, 
2.37)

1.23 (0.51, 
2.42) 1.35 (0.45, 2.89)

   Hospitalized and ICU (n=588) 1.61 (0.64, 3.65) 2.75 (0.99, 5.33) 2.85 (0.91, 5.10) 2.53 (0.9, 4.69) 1.4 (0.55, 3.23) 2.89 (0.99, 5.6)

   Deceased (n=136) 1.36 (0.51, 3.53) 1.9 (0.95, 4.99) 2.61 (1.2, 3.95)
2.85 (0.95, 
12.83)

1.13 (0.47, 
3.45) 0.95 (0.95, 4.51)

1+ New 
Diagnosisc Overall (n=44,198) 34,257 (79%) 11,917 (75%) 20,809 (82%)

Mild/Moderate (n=41,629) 31,950 (79%) 11,324 (74%) 19,222 (82%)
Severe (n=2,569) 2,307 (90%) 593 (87%) 1,587 (91%)
   Hospitalized, No ICU (n=1,900) 1,682 (89%) 454 (86%) 1,127 (90%)
   Hospitalized and ICU (n=588) 567 (97%) 126 (97%) 421 (97%)
   Deceased (n=136) 101 (76%) 24 (73%) 70 (76%)
Overall (n=44,198) 16,205 (59%) 5,469 (51%) 9,930 (64%)1+ New PCC-

Related Mild/Moderate (n=41,629) 14,784 (58%) 5,128 (51%) 8,930 (63%)
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Severe (n=2,569) 1,421 (71%) 341 (63%) 1,000 (74%)
   Hospitalized, No ICU (n=1,900) 1,005 (68%) 251 (59%) 692 (71%)
   Hospitalized and ICU (n=588) 403 (80%) 86 (77%) 303 (81%)

Diagnosisc

   Deceased (n=136) 29 (49%) 9 (43%) 16 (48%)
Overall (n=44,198) 0.36 (0.09, 0.90) 0.27 (0, 0.72) 0.36 (0.09, 0.90)
Mild/Moderate (n=41,629) 0.27 (0.09, 0.81) 0.27 (0, 0.72) 0.36 (0.09, 0.90)
Severe (n=2,569) 0.99 (0.27, 2.26) 0.9 (0.27, 2.08) 1.08 (0.36, 2.44)

   Hospitalized, No ICU (n=1,900) 0.81 (0.27, 1.90)
0.63 (0.18, 
1.62) 0.9 (0.27, 1.90)

   Hospitalized and ICU (n=588) 2.17 (0.90, 4.06)
2.17 (0.90, 
3.81) 2.17 (0.95, 4.15)

New 
Diagnoses 
Per Month

   Deceased (n=136) 1.9 (0.95, 13.31) 6.65 (0, 19.01) 0.95 (0.95, 10.69)
Overall (n=44,198) 0.09 (0, 0.18) 0.09 (0, 0.18) 0.09 (0, 0.18)
Mild/Moderate (n=41,629) 0.09 (0, 0.18) 0.09 (0, 0.18) 0.09 (0, 0.18)
Severe (n=2,569) 0.09 (0, 0.27) 0.09 (0, 0.18) 0.09 (0, 0.27)
   Hospitalized, No ICU (n=1,900) 0.09 (0, 0.27) 0.09 (0, 0.18) 0.09 (0, 0.27)

   Hospitalized and ICU (n=588) 0.18 (0.09, 0.36)
0.18 (0.09, 
0.36) 0.18 (0.09, 0.36)

New PCC-
Related 
Diagnoses 
Per Month

   Deceased (n=136) 0 (0, 1.90) 0 (0, 1.90) 0 (0, 0.95)
a Median (IQR) or Frequency (%)
b Includes those with unknown 
vaccination status
c In the ~11 month-long “post-COVID-19 
period”

314
315 Table 2. Summary of Diagnosis Patterns. This table includes six outcomes: follow-up time in weeks, visits per month, individuals with at least 
316 one new diagnosis in the “post-COVID-19 period,” individuals with at least one new PCC-related diagnosis in the “post-COVID-19 period,” the 
317 number of new diagnoses per month in the “post-COVID-19 period,” and the number of new PCC-related diagnoses per month in the “post-
318 COVID-19 period.” Each outcome is stratified by both COVID-19 severity, “pre-“/”post-COVID-19 period,” and vaccination status. Statistics are 
319 presented as median (IQR) for continuous variables and n (%) for categorical variables, and sample sizes for cohorts are provided.  
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320 3.3 Overall Case-Crossover PheWAS Analysis

321 1,671 PheCodes were evaluated in the primary analysis for the overall cohort (Figure 2A), and 

322 a total of 372 PheCodes reached phenome-wide significance according to Holm-Bonferroni 

323 multiple testing rule. We saw the highest proportion of phenome-wide significant hits in 

324 circulatory (73 hits/total of 171 circulatory codes; 43%), mental disorders (24/76; 32%), and 

325 respiratory (27/85; 32%; Table 3). The top hits in each of these groups were anxiety disorder 

326 (p=2.8e-109, OR=1.7 [95%CI: 1.6-1.8]), cardiac dysrhythmias (p=4.9e-87, OR=1.7 [95%CI: 1.6-

327 1.8]), and respiratory failure, insufficiency, arrest (p=5.2e-75, OR=2.9 [95%CI: 2.6-3.3]).

328

329 3.4 Stratified Analyses

330 3.4.1 By COVID-19 Severity Status: Top groups for the mild/moderate cohort (Figure 2B) 

331 were circulatory system (58/171; 34%), mental disorders (22/76; 29%), and pregnancy 

332 complications (12/46; 26%, Table 3). Essential hypertension (p=2.6e-59, OR=1.5 [95%CI: 1.4-

333 1.5]), anxiety disorder (p=2.7e-96, OR=1.6 [95%CI: 1.6-1.7]), and infectious and parasitic 

334 complications affecting pregnancy (p=2.4e-91, OR=9.8 [95%CI: 7.8-12.2]) were top hits in these 

335 groups. For the severe cohort, we saw a different pattern of hits (Figure 2C), with respiratory 

336 conditions being a top category (21/85; 25%). Other top groups include circulatory system 

337 (36/171; 21%) and mental disorders (15/76; 20%), and the top hit from these groups were 

338 respiratory failure, insufficiency, arrest (p=4.2e-65, OR=6.3 [95%CI: 5.1-7.7]), cardiac 

339 dysrhythmias (p=2.4e-25, OR=2.3 [95%CI: 1.9-2.6]), and neurological disorders (p=4.6e-23, 

340 OR=2.8 [95%CI: 2.3-3.4]). 

341

342 3.4.2 By Vaccination Status: Among those fully vaccinated at index test date (Figure 2D), we 

343 saw circulatory system (51/171; 30%), mental disorders (17/76; 22%), and pregnancy 

344 complications (9/46; 20%, Table 3). Essential hypertension (p=6.3e-37, OR=1.6 [95%CI: 1.5-

345 1.7]), major depressive disorder (p=2.3e-60, OR=0.4 [95%CI: 0.3-0.4]), and infectious and 

346 parasitic complications affecting pregnancy (p=1.3e-44, OR=12.8 [95%CI: 8.9-18.2]) were top 

347 hits in these groups. The unvaccinated cohort (Figure 2E) was largely similar to the overall 

348 cohort with circulatory (45/171; 26%), mental disorders (18/76; 24%), and respiratory (18/85; 

349 21%) being the top groups. Top hits in these groups were cardiac dysrhythmias (p=1.5e-39, 

350 OR=1.6 [95%CI: 1.5-1.7]), anxiety disorders (p=3.2e-51, OR=1.6 [95%CI: 1.5-1.7]), and 

351 respiratory failure, insufficiency, arrest (p=1.1e-43, OR=2.9 [95%CI: 2.5-3.3]). 

352
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353 3.4.3 Summary of Comparison Between Severity and Vaccination Subgroups: A large 

354 proportion of circulatory hits was common across all cohorts. The most striking observation is 

355 the strength of association for respiratory conditions in the severe cohort. Comparing the top 20 

356 hits from each subgroup revealed septicemia and protein-calorie malnutrition were unique to the 

357 severe cohort in addition to several severe respiratory disorders; shortness of breath was 

358 unique to those unvaccinated (eFigure 3). Bearing in mind that p-value magnitudes are directly 

359 influenced by sample sizes (which are dissimilar across cohorts), we note that the p-value 

360 ranks/patterns of the mild/moderate, fully vaccinated, and unvaccinated subgroups appeared 

361 similar to the overall cohort, but the unvaccinated group was largely driving the strongest 

362 associations, and the top enriched categories in the unvaccinated were identical to the overall 

363 cohort as well.  

364

365

366

367

368

369

370

371
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372
373 Figure 2. Random 1:4 CCWR 90-day analysis Manhattan plots. Panel of PheWAS Manhattan plots 
374 showing overall (panel A) and stratified by COVID-19 severity (panels B and C) and vaccination status 
375 (panels D and E). PheCodes (grouped by category) are on the x-axis and the -log10(p-value) is on the y-
376 axis. The Bonferroni-adjusted p-value threshold line (in red) is shown, and the nominal p-value threshold 
377 (0.05) is also shown in blue. For each panel, the number of hits at the Bonferroni, Holm-Bonferroni and 
378 nominal p-value threshold are provided. Some of the top hits for each plot are annotated. For each hit, an 
379 upward pointing triangle represents a positive association (OR>1), and a downward facing triangle 
380 represents a negative association (OR<1). 
381
382 Note: The following two PheCodes were removed from plots for better visualization due to their extreme 
383 p-values: “Other infectious and parasitic diseases” (p = 1.2e-119 in overall cohort) and “Other headache 
384 syndromes'' (p=1.9e-139 in overall cohort). The former is a PheCode connected to COVID-19 infection 
385 and sequelae47, so its low p-value is unsurprising. The extreme association seen for “Other headache 
386 syndromes'' is somewhat more surprising because it had a negative association with the “post-COVID-19 
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387 period”, perhaps relating to patients being less willing to visit the doctor for a “mild” symptom like 
388 headache during a pandemic.
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Phenome-Wide Significant Hits a,b

Symptom Group

Total 
PheCodes 
in Group c

Overall 
(n=44,198)

Mild/Moderate 
(n= 41,629)

Severe 
(n= 2,569)

Fully 
Vaccinated 
(n= 16,468)

Unvaccinated 
(n= 25,736)

Negative 
(n= 
160,399)

Flu (n= 
1,328)

circulatory system 171 73 (43%) 58 (34%) 36 (21%) 51 (30%) 45 (26%) 121 (71%) 1 (1%)
congenital anomalies 56 5 (9%) 3 (5%) - - - 7 (12%) -
dermatologic 95 10 (11%) 15 (16%) 2 (2%) 6 (6%) 7 (7%) 35 (37%) -
digestive 162 26 (16%) 20 (12%) 9 (6%) 12 (7%) 21 (13%) 88 (54%) -
endocrine/metabolic 169 43 (25%) 28 (17%) 26 (15%) 17 (10%) 31 (18%) 97 (57%) -
genitourinary 173 27 (16%) 21 (12%) 3 (2%) 15 (9%) 16 (9%) 71 (41%) -
hematopoietic 62 13 (21%) 7 (11%) 9 (15%) 5 (8%) 10 (16%) 31 (50%) -
infectious diseases 69 16 (23%) 8 (12%) 8 (12%) 10 (14%) 7 (10%) 33 (48%) -
injuries & poisonings 122 13 (11%) 6 (5%) 7 (6%) 7 (6%) 6 (5%) 45 (37%) -
mental disorders 76 24 (32%) 22 (29%) 15 (20%) 17 (22%) 18 (24%) 52 (68%) -
musculoskeletal 132 11 (8%) 12 (9%) 4 (3%) 9 (7%) 9 (7%) 53 (40%) -
neoplasms 141 39 (28%) 32 (23%) 7 (5%) 22 (16%) 23 (16%) 72 (51%) -
neurological 85 18 (21%) 14 (16%) 5 (6%) 9 (11%) 14 (16%) 46 (54%) -
pregnancy complications 46 13 (28%) 12 (26%) - 9 (20%) 9 (20%) 19 (41%) -
respiratory 85 27 (32%) 13 (15%) 21 (25%) 8 (9%) 18 (21%) 52 (61%) -
sense organs 127 8 (6%) 9 (7%) 1 (1%) 5 (4%) 4 (3%) 24 (19%) -

symptoms 46 6 (13%) 5 (11%) 4 (9%) 3 (7%) 3 (7%) 26 (57%) -
a n (% of total PheCodes in group)
b According to the Holm-Bonferroni method
c Not every available PheCode was evaluated in each PheWAS due to case/control thresholds. 

389
390 Table 3. PheWAS Hits by Symptom Group. The first and second columns gives PheCode symptom groups as defined by the PheWAS catalog 
391 and the total number of PheCodes in each group. The other columns give the number of phenome-wide significant hits and the proportion of hits 
392 to the total number of PheCodes in each symptom group for each cohort in the primary analysis including the two control cohorts.
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393 3.5 Comparison with Test Negative Controls

394 Circulatory (121/171; 71%), mental disorders (52/76; 68%), and respiratory (52/85; 61%) were 

395 the top groups in the PheWAS analysis for the test negative cohort (Table 3, eFigure 4). Top 

396 hits in these groups were cardiac dysrhythmias (p=3.3e-254, OR=1.7 [95%CI: 1.6-1.7]), anxiety 

397 disorders (p=9.8e-221, OR=1.5 [95%CI: 1.4-1.5]), and respiratory failure, insufficiency, arrest 

398 (p=2.5e-129, OR=2.4 [95%CI: 2.3-2.6]). 

399

400 The top symptom groups in negatives were similar to that seen in the overall and unvaccinated 

401 cohort. Viral pneumonia, disturbances of the sensation of smell and taste, and chronic fatigue 

402 syndrome were hits in the positive but not negative cohort (eFigure 5). 
403

404 3.6 Comparison with Test Negative Flu Positive Controls

405 Ischemic heart disease (p=1.6e-5, OR=2.5 [95%CI: 1.7-3.9]), a circulatory disease (Table 3), 

406 was the sole phenome-wide significant hit in the flu positive cohort (eFigure 6).

407

408 Depression and sleep apnea were in the top 20 phenotypes for the COVID-19-positive but not 

409 the flu positive cohort, while ischemic heart disease, calculus of the kidney and gout were seen 

410 in the flu positive cohort (eFigure 7). 

411

412 Details regarding odds ratios and p-values for the test negative PheWASs as well as other 

413 PheWASs from the primary analysis are in eTable 7.

414

415 3.7 Sensitivity Analyses

416 We also conducted several sensitivity analyses to evaluate the effect our design and analytic 

417 choices made on the primary analysis. Increasing the number of cases and controls used 

418 resulted in higher power (more phenome-wide significant hits; eFigures 8-9). Using the fixed 

419 sampling scheme resulted in lower power and a different pattern of hits, although respiratory 

420 and circulatory conditions still gave a strong signal (eFigure 10-11). Those diagnosed in 2021 

421 and beyond closely resembled the fully vaccinated cohort, as severe respiratory illnesses 

422 waned, and common chronic diseases became more pronounced over time (eFigure 12). 

423

424 3.8 Formal Comparison of Effect Sizes

425 3.8.1 By Severity and Vaccination Status: The severe cohort had larger effect sizes than the 

426 mild/moderate cohort for the vast majority of PheCodes (eFigure 13A). Groups that tended to 
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427 exhibit very large differences include respiratory (OR:6.2 vs 2.0 for respiratory failure, 

428 insufficiency, arrest; p=9.6e-19) and circulatory system (OR:7.4 vs 2.3 for acute pulmonary 

429 heart disease; p=2.2e-7). When looking at vaccination status (eFigure 13B), those 

430 unvaccinated were more likely to be diagnosed with shortness of breath (OR:1.7 vs 1.2; p=2.4e-

431 6) and immunity deficiency (OR:3.7 vs 1.7; p=4.0e-14) in the “post-COVID-19 period.” 

432

433 eFigures 13C, 13D, and 14 give the results of an effect size comparison between COVID-19 

434 positives and negatives, COVID-19 positives and the test negative flu positive cohort, and the 

435 COVID-19-positive severe cohort and test negatives matched to the severe cohort, respectively. 

436 Briefly, respiratory and mental disorders generally have larger effect sizes in the COVID-19-

437 positive cohort, and endocrine/metabolic and circulatory disorders have similar effect sizes 

438 between COVID-19 positives and negatives. eTable 8 gives full details of the effect size 

439 comparisons.
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
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463 4. Discussion
464 4.1 Strengths and Principal Findings

465 In this study, we present a case-crossover PheWAS approach to characterize changes in 

466 diagnosis patterns after a COVID-19 infection. Our results show that the “post-COVID-19 

467 period,” defined as +28 days to +1 year from a positive COVID-19 test or diagnosis, is 

468 associated with a wide variety of diagnoses across many organ systems. Despite our analysis 

469 being an agnostic screen, results are remarkably congruent with existing PCC literature in that 

470 we found respiratory, circulatory, and mental health disorders to be highly enriched post-

471 COVID-19-infection in COVID-19 positives, but also in negatives. Patients with severe COVID-

472 19 were more likely to receive a wide variety of diagnoses, but particularly respiratory and 

473 circulatory diagnoses, in the “post-COVID-19 period,” compared to those with mild/moderate 

474 COVID-19. Fully vaccinated patients were more likely than those unvaccinated to be diagnosed 

475 with chronic conditions like hypertension in the “post-COVID-19 period.” This MM cohort has 

476 been extensively studied in the past26,40,48–50 , but the current study provides the longest follow-

477 up time (over 2 years) to date and includes a “post-COVID-19 period.”

478

479 Our approach offers an advantage over traditional case-control PheWAS methods in that it 

480 controls for time-invariant confounding. Our results generally concur with those reported in a 

481 similar post-COVID-19 PheWAS without a case-crossover design37, but mental health 

482 conditions appear more prominently in our results. Future research may use and refine this 

483 approach to continue studying post-COVID-19 manifestations, but this pre/post design could be 

484 applied to any event, not just a SARS-CoV-2 infection. This method could prove useful in 

485 elucidating long-lasting sequelae for future emerging infectious diseases, especially in the early 

486 stages where such consequences are poorly understood, and data warehouses are being used 

487 to tease out post-infection patterns in an agnostic way. A case-crossover design may also be 

488 applied to other EHR-enabled association studies such as LabWAS and DrugWAS.

489

490 4.2 Contextualization of Results

491 Healthcare utilization metrics (Table 2, eTable 2-3) were very similar between COVID-19 

492 positives, negatives, and the test negative flu positive cohort. However, SARS-CoV-2 positives 

493 were receiving different categories of diagnoses than both the control cohorts. We observed that 

494 post-flu manifestations were distinct from post-COVID-19 manifestations during the same time 

495 period, but this comparison was severely limited by sample size. We observed much stronger 

496 effect sizes for many respiratory and mental diagnoses in COVID-19 positives compared to 
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497 negatives. Further, as results for the overall cohort are the composition of distinct association 

498 patterns of the subgroups therein, we note that strong respiratory signals we observed appear 

499 to have been driven by those with severe COVID-19. Severe patients also had stronger effect 

500 sizes for respiratory conditions than their matched controls. The common hits between COVID-

501 19 positives and negatives, including many endocrine/metabolic and circulatory hits, may be a 

502 result of our design’s inability to control for time-varying factors, such as pandemic-driven 

503 changes in health-related behavior and the effects of aging. These findings highlight the need 

504 for strict diagnostic criteria for PCC such that coincidental diagnoses are not attributed to the 

505 COVID-19 infection. However, the current lack of understanding about the causal mechanisms 

506 of PCC hampers such a clear differentiation.

507

508 We found fully vaccinated patients with breakthrough infections had similar association patterns 

509 to the mild/moderate cohort, likely due to significant overlap between these groups. Many 

510 phenotypes with large effect sizes for fully vaccinated individuals (hypertension, anxiety 

511 disorder) were chronic disorders common across all included patients (eTables 4-6) and may 

512 be more related to willingness to see a physician and healthcare access over time rather than 

513 COVID-19 disease. It is worth noting that the COVID-19 virus itself was also different over time. 

514 During 2020, the Alpha variant was dominant, while in 2021 and 2022 (when vaccines were 

515 widely available in the US) the Delta and Omicron variants were dominant. Temporal variation in 

516 symptomatology may be because different variants attack different parts of the body.51 

517

518 It is interesting to note that allergies were strongly associated with the “post-COVID-19 period” 

519 in all cohorts including COVID-19-negative patients. Some new evidence suggests PCC 

520 responds to treatment with antihistamines.52 Our finding that mental health disorders were 

521 highly enriched in the “post-COVID-19 period” in positives and negatives is consistent with the 

522 notion that the COVID-19 pandemic introduced new mental health challenges, partly due to 

523 social changes and partly due to how COVID-19 affects the brain.53,54 The negative cohort 

524 showed a pronounced effect for cancer-related diagnoses, perhaps pointing to the reality that 

525 cancer treatment was delayed for many, especially high-risk patients, during the pandemic.55 

526 Some research proposes a link between influenza infection and ischemic heart disease, the top 

527 hit in the influenza cohort.56

528

529

530
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531 4.3 Limitations

532 This study is limited by the implicit assumption in a case-crossover design that there exists no 

533 within-person time-varying confounders. However, many aspects of human behavior changed 

534 during the COVID-19 pandemic. For example, health-seeking behavior decreased after the 

535 pandemic started due to fear of the virus, government restrictions, and lack of healthcare 

536 resources.57 The presence of this specific type of time-varying confounding, especially for those 

537 diagnosed early in the pandemic, could bias our results against seeing an effect because this 

538 confounding would result in a relative reduction in diagnoses during the “post-COVID-19 

539 period”. This effect may be less pronounced for those diagnosed in the later stages of the 

540 pandemic. Our analysis stratified by year also gives us confidence that this method is picking up 

541 a true signal. The fact that our fixed 30-day results are similar to the fixed 90-day results might 

542 suggest time trends play a relatively small role in this analysis. Some alternative solutions could 

543 be to add time-varying covariates to the models (i.e. prevalence of cases during the period), 

544 confidence interval calibration58, and a case-time-control design which can account for time-

545 varying confounding59. 

546

547 We focused on individuals tested for COVID-19, but there exists a well-documented testing bias 

548 which could make our cohort non-representative, especially considering that testing at the 

549 beginning of the pandemic was restricted to symptomatic or at-risk individuals.60 Additionally, 

550 some cases in our cohort presented for COVID-19 symptoms (“for COVID-19”), but others 

551 presented for something else and just happened to have COVID-19 (“with incidental COVID-

552 19”), which may help explain the strong effect sizes we observed for pregnancy complications 

553 and congenital anomalies. We treated unknown vaccination status as being unvaccinated, but 

554 some patients may have received vaccination outside of the MM system from which the 

555 vaccination data came.40 By requiring included patients to have encounters both pre- and post-

556 COVID-19, we may have selected MM primary care patients or patients with more complex 

557 health history than the general population of those tested for COVID-19, hampering 

558 generalizability. We hoped to alleviate some of this concern by matching positives and 

559 negatives on Charlson Comorbidity Index. Test negative controls are a useful, but imperfect 

560 method of control given the potential baseline differences between COVID-19 positives and 

561 negatives. The flu positive cohort represents a more suitable control group, but we were 

562 unfortunately underpowered to detect associations using this group. EHRs are also prone to 

563 selection and classification bias.61 

564
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565 Our analysis involved choosing the values for several design parameters including the CCWR, 

566 the minimum case/control count, and the window size. It is difficult to know whether the 

567 parameters we chose were “correct,” but sensitivity analyses show our matching scheme is 

568 robust to the CCWR and window size. We chose to censor diagnosis records at -2 and +1 years 

569 from the index test date, but it is possible that even if an individual has a healthcare visit during 

570 the follow-up, the diagnosis codes received during the visit do not comprehensively reflect their 

571 health state. We chose not to censor the small number of patients with multiple COVID-19 

572 infections, which potentially added noise to our results. Further, diagnosis codes may be poor 

573 reflections of the course of disease. Finally, some spurious associations potentially appeared in 

574 our results due to biases we discussed, despite applying the Holm-Bonferroni correction. 

575

576 For the above reasons, this analysis should be considered exploratory, and no causal 

577 conclusions can be deduced. We propose that future investigations can further explore the 

578 validity and applicability of this approach and replicate our findings under a similar design in 

579 other analytical cohorts.

580
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599 5. Conclusions
600 We present a case-crossover PheWAS framework as a plausible agnostic screen that can be 

601 used to identify phenotypes associated with the “post-COVID-19 period” while controlling for 

602 time-invariant confounders. We discussed several potential sources of bias in our analyses. 

603 Consequently, the results should be considered exploratory. Future investigations may to refine 

604 and improve this approach to address such biases and replicate our findings. Epidemiologic 

605 studies that translate data into actionable clinical knowledge are crucial to advancing the field of 

606 biomedical informatics. Future research should investigate the mechanisms by which COVID-19 

607 sequelae can occur and the myriad factors that might put a patient at risk of new post-COVID-

608 19 symptoms. 
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