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Abstract: As humans and climate change continue to alter the landscape, novel disease risk scenarios
have emerged. Sever fever with thrombocytopenia syndrome (SFTS), an emerging tick-borne infectious
disease first discovered in rural areas of central China in 2009, is caused by a novel bunyavirus (SFTSV).
The potential for SFTS to spread to other countries in combination with its high fatality rate, possible
human-to-human transmission, and extensive prevalence among residents and domesticated animals
in endemic regions make the disease a severe threat to public health. Because of the lack of preventive
vaccines or useful antiviral drugs, diagnosis of SFTS is the key to prevention and control of the SFTSV
infection. The development of serological detection methods will greatly improve our understanding
of SFTSV ecology and host tropism. We describe a highly sensitive protein detection method based on
gold nanoparticles (AuNPs) and enzyme-linked immunosorbent assay (ELISA)—AuNP-based ELISA.
The optical sensitivity enhancement of this method is due to the high loading efficiency of AuNPs
to McAb. This enhances the concentration of the HRP enzyme in each immune sandwich structure.
The detection limit of this method to the nucleocapsid protein (NP) of SFTSV was 0.9 pg mL−1

with good specificity and reproducibility. The sensitivity of AuNP-based ELISA was higher than
that of traditional ELISA and was comparable to real-time quantitative polymerase chain reaction
(qRT-PCR). The probes are stable for 120 days at 4 ◦C. This can be applied to diagnosis and hopefully
can be developed into a commercial ELISA kit. The ultrasensitive detection of SFTSV will increase
our understanding of the distribution and spread of SFTSV, thus helping to monitor the changes in
tick-borne pathogen SFTSV risk in the environment.

Keywords: SFTSV; nucleocapsid protein; gold nanoparticles; sandwich enzyme-linked
immunosorbent assay

1. Introduction

Between 2007 and 2010, a severe febrile illness was associated with gastrointestinal symptoms,
thrombocytopenia, leukocytopenia, and high mortality in the eastern and central regions of China [1,2].
This disease is called severe fever with thrombocytopenia syndrome (SFTS) and was caused by the
newly discovered bunyavirus (SFTSV) [3]. Subsequently, SFTS was confirmed in South Korea, Japan,
and Vietnam [4,5]. Ticks are the vectors for transmission of the virus to humans [6,7].
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SFTSV is a negative-chain segmental RNA virus consisting of three fragments (L, M, and S). The L,
M, and S segments encode RNA-dependent RNA polymerase, precursors of glycoproteins (Gn and Gc),
nucleocapsid (N) proteins, and nonstructural (NS) proteins, respectively [8].

The nucleocapsid protein (NP) is closely related to viral replication [9,10] and is highly
immunogenic and conserved. Therefore, NP is often selected as a target for antigen and antibody
detection [11].

Several methods of genomic amplification for SFTS diagnosis have been reported, including
qRT-PCR, reverse transcription-loop-mediated isothermal amplification assay (RT-LAMP), and reverse
transcription-cross-priming amplification coupled with vertical flow visualization [12,13]. However,
genome amplification techniques are limited by their need for expensive equipment and technical
expertise. The enzyme-linked immunosorbent assay (ELISA) is the most common immunoassay for
clinical biomarker detection because of its good specificity, low cost, and simple reading method.
Methods for the detection of viral antigens by Ag-capture sandwich ELISA have been described
previously, and the sensitivity of this assay is comparable to RT-PCR [14]. The limit of detection for
ELISA is 0.1 ng mL−1 to 1 µg mL−1 [15], and the sensitivity of traditional ELISA cannot screen for
ultra-low concentrations of biomarkers in the early stages of certain diseases. Therefore, there is an
urgent need to develop ultrasensitive detection methods for the different types of biomarkers.

In this context, nanotechnology offers many ways to improve detection sensitivity. Nanomaterials,
such as gold nanoparticles (AuNPs) [16], magnetic beads [17], graphene oxide [18], Polyamidoamine
dendrimer (PAMAM) [19], silica [20], and plasmonic nanoparticles [21] can be used for detection
applications [15]. AuNPs are distinguished from other nanoparticles and quantum dots containing
harmful heavy metal ions because of their simpler synthesis process and effective surface
modification [22]. Their high surface area can carry many biomolecules (such as antibodies, enzymes,
or DNA) to produce significant signal enhancement [23,24]. The most common enzyme that can be
coupled to AuNPs is horseradish peroxidase (HRP). This has been widely used for detection purposes
because of its small size and high stability of chemical modification [22].

AuNPs have been widely used in clinical diagnosis [15,25]. Ambrosi [23] directly conjugated
AuNPs with HRP-labeled anti-human IgG antibody and detected 50 pg mL−1 of human IgG—this value
is 50 times more sensitive than traditional ELISA. Jia [26] and Wu [27] developed a dual-modified gold
nanoprobes for enhanced immunoassay using the same experimental principle. In their experiments,
they used AuNPs as a bridge between the detection antibody and HRP. The methods they created were
one to three orders of magnitude higher than the classical method. The results described in these prior
studies all prove that AuNPs have a large capacity for carrying proteins—this is a great advantage in
the field of improving detection sensitivity.

A key step in obtaining the AuNP probes is the conjugation of biomolecules to AuNPs.
Several parameters, such as surface modification, pH, stabilizers, and addition processes, strongly
influence the final coverage and efficiency of biomolecules [28,29]. Studies by Ciaurriz [22] and
Aubin-Tam [30] have shown that direct adsorption is the most sensitive and easiest way to prepare
probes (the combination of AuNPs and antibodies occurs through noncovalent bonding, and no
chemical steps are required). It is more likely to retain the structure of biomolecules than covalently
link the proteins. In a study of Ni in 2013 [31], HRP retained only 30% of the catalytic activity after
immobilization on the surface of 25 nm AuNPs.

In this study, we used an enzyme-labeled antibody to label the AuNPs. Thus, the enzyme freely
moved in solution, which allowing the substrate to be close to the enzyme without encountering steric
hindrance from the AuNPs.
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2. Experimental Section

2.1. Materials

We purchased skim milk, bovine serum albumin (BSA), PEG 20000, tween-20,
and Tetramethylbenzidine single-component substrate solution (TMB) from Beijing Solarbio Science
& Technology Co., Ltd. (Beijing, China). HRP was purchased from Shanghai Yiji Industrial Co., Ltd.
(Shanghai, China). Gold (III) chloride trihydrate (HAuCl4·3H2O) was purchased from Sigma-Aldrich
(St. Louis, MO, United States). Sodium periodate, sodium borohydride, and trisodium citrate were
obtained from Shanghai Aladdin Industrial Corporation (Shanghai, China). All chemicals were
of analytical reagent grade and obtained from the commercial source unless mentioned otherwise.
Our laboratory prepared SFTSV recombinant N protein, mouse monoclonal antibody (McAb) (1A1,
1D8, 1H10, 4H1, 3A9), and rabbit polyclonal antibody to NP [32,33]. The NPs were aliquoted and
stored at −80 ◦C until use. HRP-labeled goat anti-mouse secondary antibody was purchased from
Tianjin Sanjian Biotechnology Co., Ltd. (Tianjin, China). A QIAamp Viral RNA Mini Kit was purchased
from Qiagen (Frankfurt, Germany). TransScript First-Strand cDNA Synthesis SuperMix and TransStart
Probe qPCR SuperMix were purchased from Beijing TransGen Biotech Co., Ltd. (Beijing, China).
Healthy human serum samples were provided by Weifang Medical University. Microdialysis bags
were from Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China). The 96-well polystyrene
plates were obtained from Corning Costar (NYC, USA).

We used the following buffers: (1) wash buffer: 0.01% Phosphate buffer solution (PBS) (pH 7.4);
(2) storage buffer: PBS with 0.5% BSA, 2.5% sucrose, 50% glycerin, and 0.1% PEG 20000; (3) blocking
buffer: PBS with 5% skim milk; and (4) probes dilution buffer: PBS with 5% BSA.

2.2. Instruments

We used a transmission electron microscopy (TEOL, JEM-1010, Tokyo, Japan), nanoparticle
size and zeta potential analyzer (Malvern Instrument Co., Ltd., Zetasizer nano ZS90, Malvern,
United Kingdom), multifunction microplate reader (PerkinElmer, EnSpire Multilabel Reader, Waltham,
MA, USA), microplate reader (Tecan, Infinite F50, Switzerland), ultra-small rotary incubator (Haimen
Qilin Bell Instrument Manufacturing Co., Ltd., QB328, Haimen City, Jiangsu, China), micro-refrigerated
centrifuge (Beckman Coulter, microfuge 22R, CA, USA), and real-time fluorescent quantitative PCR
instrument (Roche, LightCycler 96, Basel, Switzerland).

2.3. Preparation of Enzyme-Labeled Antibodies

We prepared the enzyme-labeled antibody as described [34]. We dissolved 0.5 mg of HRP in
200 µL of distilled water and added 20 µL of fresh 0.1 M NaIO4 solution to it. The mixture was
stirred at room temperature in the dark for 20 min. We dialyzed the solution in sodium acetate buffer
(pH 4.4) at 4 ◦C overnight and added 5 µL of 0.2 M carbonate buffer (pH 9.5) to raise the pH of the
above aldehyde-formed HRP to 9.0–9.5. Then, we immediately injected 1 mg of monoclonal antibody
(replaced the antibody buffer with 200 µL of carbonate buffer in advance) and gently stirred the mixture
for 2 h in the dark. We added 20 µL of fresh NaBH4 solution (4 mg/mL) and stirred at 4 ◦C for 2 h.
We dialyzed this solution in 0.01 M PBS (pH 7.4) at 4 ◦C overnight and added an equal volume of
saturated ammonium sulfate solution dropwise, which was mixed up and down. After 1 h at 4 ◦C,
the mixture was centrifuged at 3000 rpm for half an hour. We washed the precipitate twice with
half-saturated ammonium sulfate solution, and finally resuspended the precipitate with 200 µL 0.01 M
PBS (pH 7.4). This solution was dialyzed against 0.01 M PBS (pH 7.4) at 4 ◦C to remove ammonium
ions, and then the solution was centrifuged at 10,000 rpm for 30 min. The supernatant sucked out was
the enzyme conjugate.

The antibody had a maximum absorption peak at 280 nm, and HRP contained a hemin IX as a
prosthetic group with a maximum absorption peak at 403 nm [35]. We measured the optical density
(OD) at 280 nm and 403 nm with a Nanodrop. A high-quality equivalent of pure glycerin (50%) was
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added and stored at −20 ◦C. The freezing point of 50% glycerol was lower than −20 ◦C, which protected
the activity of the antibody by avoiding the repeated freezing and thawing of the antibody [36].

The molar ratio of HRP to antibody (E/P) was calculated as follows [34]:

HRP (mg/mL) = OD403 nm × 0.4; (1)

IgG (mg/mL) = (OD280 nm − OD403 nm × 0.3) × 0.62; (2)

E/P = (HRP × 4)/IgG. (3)

2.4. Indirect ELISA

We performed an indirect ELISA to determine the titer of the five McAb raised against NP. First,
we coated 100 µL of antigen (10 µg mL−1) into each well and incubated them overnight at 4 ◦C. We then
washed the wells six times with PBS. The wells were blocked with 200 µL of skim milk. After washing,
we added 100 µL of each dilution (1:1000, 1:4000, 1:16,000, 1:64,000, 1:256,000, 1:1,024,000) of five
monoclonal antibodies to each well. We then washed the wells six times with PBS. Next, we added
100 µL of the prepared HRP-conjugated goat anti-mouse antibody and incubated the samples at
37 ◦C for 60 min. After washing, we added 100 µL TMB solution to promote the reaction. Finally,
we measured the optical density using an ELISA reader after stopping the reaction with 100 µL 1 M HCl.

2.5. Synthesis and Characterization of AuNPs

Many studies have examined detection using antibody-modified AuNPs [22,37–39]: these AuNPs
usually have a plasmon absorption peak at 520 nm and a particle size of about 20 nm. The smaller
AuNP is too small to effectively conjugate enough antibody, whereas the larger AuNP is easy to
precipitate and difficult to wash off from the 96-well plate [40]. Therefore, we chose an AuNP particle
size of 20 nm based on previous experience. We prepared the 20 nm AuNPs using the Turkevich
method [41]. All glass was first immersed in aqua regia for 1 h, washed three times with deionized
water, and then dried at 150 ◦C. Next, 50 mL of 0.01% HAuCl4 solution was boiled, and 3.5 mL of 1%
trisodium citrate solution was quickly added to the boiling solution under rapid stirring (500 rpm/min).
The citrate ion acted as a reducing agent for the formation and stabilization of AuNPs, preventing
its aggregation. The solution was left to stir and cool when the solution turned dark red indicating
the formation of AuNPs. The quality of the particles was monitored by ultraviolet-visible (UV−vis)
spectrophotometer, zeta potential analysis, and transmission electron microscope.

2.6. Gold Aggregation Experiment

As mentioned previously [23], we adjusted the pH of 1 mL of the AuNPs solution to 8.0 with a
K2CO3 (0.1 M) solution and dispensed the AuNPs into a 96-well plate (200 µL). We added different
amounts of antibody to the AuNP solution at a final concentration of 10, 15, 20, 25, 30, 35, and 40µg mL−1.
This was then mixed and allowed to stand for 10 min. Next, 30 µL of 10% NaCl solution was added
and allowed to stand for 2 h. We measured the absorption spectrum of the AuNPs solution in each well
using a microplate reader. We then placed the 96-well plate on a piece of white paper and observed
the color change. As above, we adjusted the pH of the AuNPs solution to 7.0, 7.5, 8.0, 8.5, and 9.0
with 0.1 M K2CO3 and 0.1 M HCl. We then added the antibody to a final concentration of 12 µg mL−1.
The pH at which the color of the AuNPs remained red was the optimum pH.

2.7. Preparation of HRP-McAb-AuNPs Probes

We adjusted the pH value of the AuNP solution to 7.0–8.0. We added the McAb-HRP to the
previously noted AuNP solution to the final concentration of 12 µg mL−1. After that, the mixture was
agitated slowly overnight at 4 ◦C. PEG 20,000 was added to the resulting solution to a final concentration
of 0.1% and incubated for 30 min in room temperature. The solution was centrifuged for 40 min with a
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centrifugal force of 10,000 g to remove the unbound antibodies, HRP and PEG. The solution was stored
at −20 ◦C in a storing buffer for further use. We monitored the quality of the particles with UV−vis
spectrophotometer, zeta potential analyzer, and transmission electron microscopy.

We performed quantification of HRP immobilized on AuNP probes. To make a standard curve
of HRP, we incubated a series of HRP solutions (2 µL) at concentrations of 500, 250, 125, 62.5, 31.25,
15.6, and 7.8 ng mL−1 in 500 µL TMB solution for 3 min. Then we measured the absorbance value
at 450 nm after stopping the reaction with 500 µL 1 M HCl solution. We determined the amount of
HRP on the AuNP probes based on the standard curve of HRP. We calculated the concentration of the
AuNP probes by the following formula: c = A450/ε450 (c represents the concentration of the AuNP
probes, A450 represents the absorbance of AuNPs at 450 nm, and ε450 is the extinction coefficient of
AuNPs [42]). We calculated the number of HRP molecules on each AuNP by dividing the number of
HRP molecules by the number of AuNP.

2.8. AuNP-Based ELISA

We added 100 µL of rabbit polyclonal antibody against NP with a concentration of 40 µg mL−1 to
the wells of the plate. The plate was washed six times with PBS after being coated at 4 ◦C overnight.
We then added 200 µL of 5% skim milk to each well and blocked for 2 h at 37 ◦C. After washing six times
with PBS, we added 100 µL of different concentrations of NP to each well and incubated at 37 ◦C for 1 h.
Chicken IgG served as a negative antigen, and the plate was washed six times and then each well was
given 100 µL of 20-fold diluted AuNP probes and incubated at 37 ◦C for 1 h. After washing six times,
the wells were given 100 µL TMB solution for 13 min and protected from light at room temperature.
We then measured the absorbance at 450 nm after stopping the reaction with 100 µL 1 M HCl.

2.9. Detection of Authentic SFTSV by AuNP-Based ELISA

SFTSV at a known titer of 106 TCID50/mL were lysed with 1% Triton-X100 for 1 h to obtain NP.
The resulting virus lysate was then serially diluted and detected by AuNP-based ELISA. We used the
culture supernatant of Vero cells as a negative control and performed the same treatment as we had for
the virus sample.

2.10. Detection of Authentic SFTSV by qRT-PCR

We used the SFTSV culture supernatant for RNA extraction by the QIAamp Viral RNA Mini kit.
We used TransScript First-Strand cDNA Synthesis SuperMix and TransStart Probe qPCR SuperMix
for cDNA Synthesis and qRT-PCR, respectively. We performed the qRT-PCR method using qRT-PCR
primers and probe as previously described [13]. The cDNA was serially diluted to 1:101, 1:102, 1:103,
1:104, 1:105, 1:106, 1:107, and 1:108 before being detected with qRT-PCR. We analyzed results using the
2−∆∆Ct method [43,44].

3. Results and Discussion

3.1. Preparation and Identification of Enzyme-Labeled Antibodies

In the indirect ELISA test, the antibody in the sample was sandwiched between the antigen coated
on the 96-well plate and the enzyme-labeled secondary antibody. The higher the antibody content
was in the sample, the stronger the corresponding absorbance value. The indirect ELISA method was
suitable for determining the antibody levels in the samples. We used an indirect ELISA to titer five
McAbs. Figure 1A shows that the titer of 1A1, 3A9, 1H10, and 4H1 was 1:64,000, and the titer of 1D8
was 1:16,000, according to the principle of P/N ≥ 2.0 [45]. Antibodies with a higher dilution had a higher
titer, which meant they had a strong ability to bind antigen. We finally selected 1H10 for HRP labeling.

We labeled 1H10 with HRP using sodium periodate oxidation. The OD values of the McAb-HRP
at 280 nm and 403 nm were 0.120 and 0.0787, respectively. As discussed in Section 2.3, the molar ratio
of HRP to IgG was calculated to be 2.11. When the molar ratio was between 1 and 2, it was suitable
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for further use as reported [34], which proved that HRP could be successfully coupled to antibodies.
We determined the titer of McAb-HRP [46]. The assay result was still positive till at a dilution of
McAb-HRP of 1:64,000, which showed that this labeling method was gentle and McAb-HRP had good
enzyme and antibody activity.
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3.2. Preparation and Characterization of AuNPs Probes

Before we combined the antibody with the AuNPs, we had to determine the correct ratio between
the two because this related to the stability of the colloid. When pH > pI, the antibody was negatively
charged and repelled the AuNPs. Sufficient antibody could stabilize the AuNPs from 1% NaCl and it
would not flocculate, so the plasmon absorption peak of AuNPs could be stabilized at 520 nm, and the
absorbance value was also stable. Therefore, as the concentration of McAb-HRP increased, the AuNPs
became increasingly stable, and the absorbance value at 520 nm gradually increased and also tended to
be stable.

The minimum requirement for antibody concentration was the concentration at which gold
colloids could remain stable even with the addition of 1% NaCl. This is by far the best choice for the
highest efficiency-to-cost ratio in mass production [47]. When the concentration of McAb-HRP was
10 µg mL−1, the absorbance value of the AuNPs at 520 nm remained stable (Figure 2A) with no red shift
(Figure 2B), suggesting that 12 µg mL−1 antibody could stabilize the AuNPs in a high salt environment
without aggregation. Higher protein concentrations, however, may have caused crowding and thus
affected protein folding and activity [30], which may have caused spatial problems, such as blocking
substrate binding or AuNP aggregation [40]. Thus, the optimum antibody concentration for labeled
AuNPs was 12 µg mL−1. Figure 2C shows the optimized pH at an antibody concentration of 12 µg mL−1.
The colloidal gold had the highest absorbance value from pH 7.0–8.0, which was a suitable pH range.

We synthesized AuNPs with a particle size of 20 nm. We determined the dispersibility and
particle size of the AuNP probes by Transmission electron microscope (TEM) and Absorption spectrum.
Figure 3A shows that the plasmon absorption peak of the AuNPs was red shifted from 520 nm
before labeling the antibody to 529 nm after labeling. This spectral shift was caused by a local
refractive index change caused by the protein adhesion layer, which was consistent with previous
reports [48]. Figure 3B shows that the zeta potential of the AuNPs was negative (−39.6 mV), and this
occurred because the surface of the AuNPs was negatively charged. The absolute value of the AuNPs
became smaller after the antibody was attached (−1.96 mV). The TEM data (Figure 3C) showed that
the particles were spatially separated, and the average diameter of the AuNPs in the sample was
almost the same. We counted 270 nanoparticles and made histograms of particle size distribution
and particle size through the corresponding TEM images. The results showed that the average
particle size of the gold nanoparticles was 20.4 nm ± 1.6 nm (as shown in Figure 3D). The TEM data
(Figure 3E) showed a circle of material outside the AuNPs after the antibody was attached, which was
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consistent with the phenomenon observed by Woods [49]. The conjugates were homogeneous with
high reproducibility (see the adsorption peak in Figure 3A and narrow size distribution in Figure 3E).
These data demonstrated that the antibody was successfully coupled to AuNPs.
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Figure 3. (A) Absorption spectrum, (B) zeta potential distribution map, (C) TEM images of AuNPs,
and (E) AuNP probe. The 50 nm scale bar applies to all TEM images. (D) Statistical histograms
of particle size distribution and particle size through the corresponding (C) TEM images to obtain
the results as a rough approximation of the mean diameter ± the standard deviation. We measured
270 particles were measured for statistics. (F) Standard curves of HRP at concentrations of 500, 250, 125,
62.5, 31.25, 15.6, and 7.8 ng mL−1 diluted in PBS buffer. The data represent the average ±SD from at
least two independent assays.

The antibody loading density was an essential parameter for quantitative measurements. The HRP
standard curve in Figure 3F indicated that the concentration of HRP was 3.93 µg mL−1 (89.32 nM) on
the probes. The amount of IgG was approximately equal to 42.33 nM, and the molar concentration
of AuNPs was 2.15 nM. Therefore, there were approximately 19 IgG and 41 HRP per AuNPs
(i.e., AuNPs:IgG:HRP = 1:19:41), which proved that AuNPs could conjugate multiple enzyme-labeled
antibodies, leading to signal amplification.

3.3. AuNP-Based ELISA

We set the concentration of the coated antibody in the AuNP-based ELISA to 10, 20, and 40µg mL−1,
the antigen concentration was 1 ng mL−1, and the probes were diluted to 1:2.5, 1:5, 1:10, and 1:20.
When the dilution of McAb-HRP was 1:20 (Table 1) and the concentration of the coated antibody was
40µg mL−1, the P/N value peaked and stabilized. We optimized the coloration time of the ELISA, and the
results showed that the P/N value plateaued at 13 min (Figure 4A). Under these conditions, the 4 PL
model equation based on AuNP-based ELISA was Y = −1.06 + 1.751/(1 + 10ˆ((−0.5596 − X) * 0.6994))
with a coefficient correlation R2 = 0.9939 (Figure 4B). The detection limit of the method was 0.9 pg mL−1

based on LOD = X + 3SD, which was lower than the previously reported detection limits of traditional
ELISA (100 pg mL−1) [1]. This proved that AuNPs could carry more HRP molecules leading to greater
signal amplification. Ambrosi [24] directly conjugated AuNP with HRP-labeled anti-human IgG
antibody. His results showed that even coupling ten HRPs on AuNPs could increase the sensitivity by
50 times. Li [39] coupled five HRPs to AuNPs to increase sensitivity by 20-fold versus traditional ELISA.
We coupled 40 HRPs to AuNPs, and the sensitivity increased by 100 times. We also controlled the OD
value of the negative control below 0.1, which was one of the reasons for the increased sensitivity.

Table 1. The checkboard titration to determine the concentration of capture antibody and AuNP probes.
Comparison of P/N values of the capture antibody with different concentrations and AuNP probes
with different dilutions.

Concentration of Coated
Antibody (µg/mL)

Dilution of AuNPs Probes

1:20 1:10 1:5 1:2.5

10 1.63 1.49 1.49 4.90
20 12.40 12.73 8.15 7.54
40 13.41 a 10.75 8.50 1.13

Note: The table shows the positive per negative (P/N) ratio; a Represents the suitable P/N ratio from this study.
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Figure 4. AuNP-based enzyme-linked immunosorbent assay (ELISA). (A) Optimization of color
development time under optimized conditions in Table 1, and (B) calibration curve for the absorbance
versus concentration of NP from 0.00025 ng mL−1 to 1.0 ng mL−1. The absorbance intensity as
the ordinate and the concentration of NP as the abscissa. (C) Specificity test. The specificity test
was completed with NP (3.9 ng mL−1), BSA, skim milk, viral protein 1 of Enterovirus D68 (VP1),
and Hemagglutinin (HA) (200 ng mL−1). All samples were prepared in duplicate.

Two unrelated proteins (VP1 and HA) purified from Escherichia coli, skim milk, and BSA were
selected for specific detection. The concentration of these unrelated proteins was 200 ng mL−1, and the
concentration of NP was 3.9 ng mL−1. Figure 4C shows that although the concentration of the unrelated
protein was much larger than the concentration of NP, only the NP had a strong signal, indicating that
our method was highly specific for the detection of NP protein [27].

3.4. Detection of NP in Human Serum

We diluted the healthy human serum 100 times, which in turn reduced the sample amount
required for analysis [50]. We added three different amounts of NP antigen to the diluted serum
to give the different final concentrations; the recovery values are shown in Table 2. The recovery
rate was in the range of 80% to 120% [51] demonstrating that detection of NP in human serum was
feasible. The complex human serum with a mixture of proteins and other interfering substances did not
influence the NP detection. Therefore, the proposed probe could be used for NP-mediated detection in
clinical samples.

Table 2. Recoveries of NP from spiked human serum samples.

Samples a Spiked Concentration (ng/mL) Detected Concentration b Recovery (%)

1 0.06 0.05 83.30
2 0.25 0.29 116.00
3 1.0 0.88 88.00

Note: a Samples 1, 2, and 3 were human serum samples spiked with three different concentrations of NP: 0.06 ng mL−1,
0.25 ng mL−1, 1.0 ng mL−1, respectively. b Each sample was analyzed two times, and the results are the average values.
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3.5. Detection of Authentic SFTSV via a AuNP-Based ELISA and qRT-PCR

qRT-PCR is the most sensitive technique for gene detection and quantitation currently available.
We detected NP gene by qRT-PCR to validate presence and the titer of SFTSV in samples. After proving
that the method had a good recovery rate, we compared the sensitivity of the AuNP-based ELISA with
the sensitivity of qRT-PCR. In Figure 5A, the highest dilution of the lysate that could be detected was
1:163,840 according to LOD = X + 3SD. Figure 5B,C show that the highest dilution of the lysate that could
be detected by qRT-PCR was 1:100,000, according to LOD = LOB + 1.645σlow concentration sample [52].
Therefore, this new method was comparable to traditional qRT-PCR for detecting SFTSV. Meanwhile,
the main reagents and probes used in qRT-PCR were very expensive, and the main materials in the
AuNPs-based ELISA can be inexpensively prepared in the laboratory, so this method had obvious
Economic advantages. We also tried to detect the virus with commercial ELISA kits, but it failed,
which indirectly showed that our method was better than the commercially available kits.
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3.6. Repeatability and Stability Test

We detected different NP concentrations through the same and different batches of microplates.
The results are shown in Table 3. The coefficient of variation of each sample was less than 8%,
which indicated that the established sandwich ELISA method had good intragroup and good intergroup
repeatability [54]. We evaluated the stability of the probes as described [39,55]. The antigen (3.9 ng mL−1)
was detected by the probes, and the corresponding absorbance value remined stable after about four
months at 4 ◦C (Figure 6A) and for seven days at 37 ◦C (Figure 6B). The OD value of the unrelated
protein remained below 0.1. After nine days of storage at 37 ◦C, the detection effect was reduced to
81% of the original. We measured the absorption spectra of AuNPs probes stored at 37 ◦C for seven
days and 4 ◦C for four months. If particle size increases, the wavelength of surface plasmon resonance
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related absorption will shifts to longer, redder wavelengths. The plasmon absorption peaks of the two
probes were still at 529 nm (Figure 6C). It showed that the AuNPs probe had no obvious aggregation
phenomenon. We did not observe an aggregation of AuNPs probes with the naked eye under these
two temperature conditions. The solution remained translucent and red (Figure 6D), which indicated
that the probes were stable during storage.

Int. J. Environ. Res. Public Health 2020, 17, x 11 of 15 

 

protein remained below 0.1. After nine days of storage at 37 °C, the detection effect was reduced to 
81% of the original. We measured the absorption spectra of AuNPs probes stored at 37 °C for seven 
days and 4 °C for four months. If particle size increases, the wavelength of surface plasmon 
resonance related absorption will shifts to longer, redder wavelengths. The plasmon absorption 
peaks of the two probes were still at 529 nm (Figure 6C). It showed that the AuNPs probe had no 
obvious aggregation phenomenon. We did not observe an aggregation of AuNPs probes with the 
naked eye under these two temperature conditions. The solution remained translucent and red 
(Figure 6D), which indicated that the probes were stable during storage.  

  
(A) (B) 

  
(C) (D) 

Figure 6. Absorbance changes of the system for the detection of NP after the probe is placed at 4 °C 
(A) and 37 °C (B) for different days; (C) Absorption spectrum of AuNPs probes stored at 37 °C for 
seven days and 4 °C for four months. (D) Appearance of the AuNPs versus AuNPs probe. The dashed 
lines indicate the cut-off values (mean + 3 × SD) for each experiment. 

Table 3. Measurement of intra- and intergroup variations of the AuNP-based ELISA. 

Variation Concetration of NP (ng/mL) n CV% 

Intra-group variation 
1.0 8 6.62 

0.25 8 5.24 
0.06 8 7.12 

Inter-group variation 
1.0 8 3.49 

0.25 8 4.46 
0.06 8 3.77 

Note: n: number of replicates; CV: coefficient of variation. 

4. Conclusions 

AuNP-based ELISA is a highly sensitive protein detection method. In this study, we modified 
AuNPs with an HRP-labeled monoclonal antibody. We used AuNPs as both a carrier and an 
amplifier. The detection limit of this method for the NP of SFTSV was 0.9 pg mL−1, which was as 
sensitive as traditional ELISA, and the procedure for detection was as simple as traditional ELISA. 
The method established here also was comparable to traditional qRT-PCR method for detecting 

Figure 6. Absorbance changes of the system for the detection of NP after the probe is placed at 4 ◦C (A)
and 37 ◦C (B) for different days; (C) Absorption spectrum of AuNPs probes stored at 37 ◦C for seven
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Table 3. Measurement of intra- and intergroup variations of the AuNP-based ELISA.

Variation Concetration of NP (ng/mL) n CV%

Intra-group variation
1.0 8 6.62

0.25 8 5.24
0.06 8 7.12

Inter-group variation
1.0 8 3.49

0.25 8 4.46
0.06 8 3.77

Note: n: number of replicates; CV: coefficient of variation.

4. Conclusions

AuNP-based ELISA is a highly sensitive protein detection method. In this study, we modified
AuNPs with an HRP-labeled monoclonal antibody. We used AuNPs as both a carrier and an amplifier.
The detection limit of this method for the NP of SFTSV was 0.9 pg mL−1, which was as sensitive as
traditional ELISA, and the procedure for detection was as simple as traditional ELISA. The method
established here also was comparable to traditional qRT-PCR method for detecting authentic SFTSV.
The method provided a good standardization technique and proved to be simple and reliable.
No further sample preparation steps were required after the supernatant was collected. Furthermore,
this method could detect other antigens by altering the detecting antibody. The techniques described
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herein exhibited many desirable advantages, including sensitivity, accuracy, and no need for complex
equipment. Therefore, this technology demonstrated good potential for reliable early diagnoses of
diseases and will contribute to the prevention and control of tick-borne diseases.
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