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Abstract: Screening baggage against potential threats has become one of the prime aviation security
concerns all over the world, where manual detection of prohibited items is a time-consuming and
hectic process. Many researchers have developed autonomous systems to recognize baggage threats
using security X-ray scans. However, all of these frameworks are vulnerable against screening
cluttered and concealed contraband items. Furthermore, to the best of our knowledge, no framework
possesses the capacity to recognize baggage threats across multiple scanner specifications without
an explicit retraining process. To overcome this, we present a novel meta-transfer learning-driven
tensor-shot detector that decomposes the candidate scan into dual-energy tensors and employs
a meta-one-shot classification backbone to recognize and localize the cluttered baggage threats.
In addition, the proposed detection framework can be well-generalized to multiple scanner
specifications due to its capacity to generate object proposals from the unified tensor maps rather
than diversified raw scans. We have rigorously evaluated the proposed tensor-shot detector on the
publicly available SIXray and GDXray datasets (containing a cumulative of 1,067,381 grayscale and
colored baggage X-ray scans). On the SIXray dataset, the proposed framework achieved a mean
average precision (mAP) of 0.6457, and on the GDXray dataset, it achieved the precision and F1 score
of 0.9441 and 0.9598, respectively. Furthermore, it outperforms state-of-the-art frameworks by 8.03%
in terms of mAP, 1.49% in terms of precision, and 0.573% in terms of F1 on the SIXray and GDXray
dataset, respectively.

Keywords: aviation security; meta-transfer learning; one-shot learning; convolutional neural
networks; structure tensors; X-ray imagery

1. Introduction

Baggage threat recognition has gained the utmost attention due to increased terrorist activities,
especially in the last two decades. According to a recent survey, approximately 1.5 million
passengers are screened every day against weaponry in the United States [1]. To identify baggage
threats at the airport, malls, and cargoes, radiography is mainly used due to its reliability and
cost-effectiveness [2]. In addition, many researchers have quantitatively measured the detection
capacity of the security officers towards recognizing baggage threats through X-ray imagery via
receiver operator characteristics (ROC) curve [3]. However, manual screening of baggage content
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(within the X-ray scans) to identify potential threats is a time-consuming task [4]. Furthermore, it is
vulnerable to human errors caused due to fatigued work schedules [5]. Although, researchers have
reported the high capacity (and less false alarm rate) of sniffer dogs to detect suspicious items as
compared to humans. However, sniffer dogs can only work for an hour or so before they need rest [6].
Here, due to the capacity of autonomous frameworks to mass screen contraband items, many people
have encouraged their utilization [4]. In addition, they recommended manual supervision (towards
screening baggage threats) as a second-level inspection scheme to filter their erroneous detections [7].

For detecting objects from the RGB scans, many people have proposed one-staged and two-staged
object detectors that produce promising results. However, due to the inherent differences between
the X-ray and the RGB scans, these object detectors do not work well for identifying the baggage
threats (via X-ray imagery) [8–10], especially in extreme concealment and cluttered scenarios [5,11].
To overcome this, researchers have developed exclusive frameworks for detecting and classifying
baggage threats from the X-ray scans [12–14]. These frameworks can well recognize the visible and
partially occluded baggage threats from the X-ray scans [5,11,13]. However, they are still vulnerable
towards recognizing the extremely cluttered, concealed, and occluded objects [5,9] like, for example,
the guns in Figure 1A–F,I, the knives in Figure 1F–I, and the wrenches in Figure 1F.

Figure 1. ((A)–(I)) Baggage X-ray scans containing extremely cluttered and overlapping contraband
items such as guns, knives and wrenches. Row (a) shows the scans from the GDXray [15] dataset and
row (b) shows the scans from the SIXray [14] dataset.

2. Related Work

Baggage threat detection has been a widely researched area where researchers initially employed
conventional machine learning methods to recognize contraband items from the X-ray scan. Since the
classical methods are based on hand-engineered features, they are confined to limited datasets and
restricted experimental settings. More recently, deep learning has been employed for detecting
prohibited items, outperforming traditional schemes in terms of accuracy, speed, and robustness.
However, deep learning frameworks are still vulnerable to extreme occlusion, clutter, and diverse
scanner specifications. Although, recent developments in recognizing baggage threats managed to
address occlusion to some extent [5,13,14]. However, these frameworks are either tested on a single
dataset [13,14] or they require extensive (parameter) tuning for different scanner specifications [5].
Furthermore, to the best of our knowledge, there is no mechanism (based on meta-learning [16] or
meta-transfer learning [17]) to extend the capacity of these frameworks to generalize well across
diverse ranging scanners without an explicit retraining process. In this section, we first shed light on
some of the recent meta-learning (and meta-transfer learning [17]) frameworks, and then we discuss
some of the popular frameworks for recognizing baggage threats. For an exhaustive survey on baggage
threat recognition, we refer the readers to the work of [18–20].
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2.1. Meta-Learning Frameworks

Meta-learning, also known as “learning to learn”, is a concept of extending the capacity of the
deep neural networks to adapt (or generalize) to new tasks (or new domains) which have not been
encountered during the training time. Essentially, the underlying network is given an exposure to
learn from the large pool of experiences (during training), which they leverage on the set of unseen
examples during the test time (via few-shot or zero-shot training). The major benefit of meta-learning
over conventional transfer learning (or fine-tuning) approaches is that it allows the network to utilize
its pretrained weights to effectively predict the unseen examples of the new underlying task without
having to retrain on the large (and diverse) set of training examples for this current task to avoid
overfitting [17]. Meta-learning has not only been employed for the supervised classification [16]
and detection [21] tasks. It has also been used to acquire unlabeled data representation in an
unsupervised manner [22]. More recently, Sun et al. [17] proposed a meta-transfer learning approach in
which they transferred the pretrained weights of the deep neural networks for new tasks via few-shot
learning where they achieved state-of-the-art performance on the benchmarked few-shot datasets such
as miniImageNet [23] and Fewshot-CIFAR100 [24].

2.2. Traditional Machine Learning Methods

Initial solutions developed for baggage threat recognition involved classification [25],
segmentation [26], and detection [27] strategies. While many of these schemes utilized SURF [28],
and FAST-SURF [29] (coupled with Bag of Words), some of them also fused SIFT and SPIN
features in conjunction with the Support Vector Machines (SVM) for classifying baggage threats
from the multiview baggage imagery [8]. Moreover, Mery et al. proposed adaptive sparse
representation [30] and adapted implicit shape model (AISM) [31] schemes for detecting prohibited
baggage content. In another approach, they computed 3D feature points from the structure from motion
to accurately recognize baggage threat from the X-ray imagery. In addition to this, Heitz et al. [26]
proposed a region-growing technique coupled with SURF features to extract suspicious items from
baggage X-ray scans.

2.3. Deep Learning Methods

Recently, researchers have developed deep learning methods for detecting prohibited items from
the security X-ray scans. These methods have outperformed traditional approaches both in terms
of robustness and efficiency. To increase readability, we have broadly categorized the deep learning
methods (for screening baggage threats) as supervised and unsupervised approaches.

2.3.1. Supervised Approaches

The supervised deep learning methods to recognize baggage threats are based on object
detection [32–34], classification [35,36], and segmentation [11,37] schemes. The majority of these
methods also utilize one-staged [38] and two-staged [9] detectors such as YOLO [39], YOLOv2 [40],
RetinaNet [41], and Faster R-CNN [42]. Moreover, Akçay et al. used GoogleNet [43] for classifying
contraband items such as cameras, laptops, guns, gun components, and knives (particularly ceramic
knives) from their local X-ray dataset scans. Xiao et al. [44] developed a computationally efficient
variant of Faster R-CNN [42] (namely R-PCNN) for detecting prohibited items from TeraHertz (THz)
imagery. R-PCNN takes around 150 min on average for training and around 16 µs on average for
detecting objects. Gaus et al. [10] evaluated RetinaNet [41], Faster R-CNN [42] and Mask R-CNN [45]
backboned through ResNet-18 [46], ResNet-50 [46], ResNet-101 [46], SqueezeNet [47], and VGG-16 [48]
for screening baggage X-ray scans as benign or malignant [10]. Griffin et al. [36] classified unexpected
items within the bagging areas based upon their shape, texture, and density, and semantic appearances.
Moreover, Dhiraj et al. [33] evaluated the Faster R-CNN [42], YOLOv2 [40] and Tiny YOLO [40] to
detect contraband items such as shuriken, guns, knives, and razors from publicly available GRIMA
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X-ray Database (GDXray) [15]. Apart from this, Akçay et al. used AlexNet [49] as a features extractor
coupled with SVM for baggage threat identification. Furthermore, they compared Faster R-CNN [42],
sliding-window based CNN (SW-CNN), region-based fully convolutional networks (R-FCN) [50],
and YOLOv2 [40] for recognizing occluded contraband items from the X-ray imagery. More recently,
Wei et al. [13] proposed De-occlusion Attention Module (DOAM) module that can be integrated
with the deep object detectors to recognize occluded threatening items. DOAM was thoroughly
validated on a large-scale Occluded Prohibited Items X-ray (OPIXray) dataset, released publicly in [13].
Apart from this, Miao et al. [14] introduced one of the largest datasets for baggage threat detection,
namely, Security Inspection X-ray (SIXray) dataset, containing extremely occluded and overlapping
contraband items within highly imbalanced baggage X-ray scans. Furthermore, they proposed a
framework, dubbed class-balanced hierarchical framework (CHR), to recognize contraband items such
as guns, knives, wrenches, pliers, and scissors from different SIXray subsets indicating different levels
of class imbalance [14]. SIXray dataset has been used by [51] in conjunction with their nonpublicly
available dataset to analyze the transferability between different scanner specifications. Apart from
this, we have also proposed a novel detection strategy, dubbed Cascaded Structure Tensor (CST),
to recognize cluttered, occluded, and overlapping items from the SIXray [14] and GDXray [15] datasets.

2.3.2. Unsupervised Approaches

The majority of baggage screening systems employ supervised strategies to recognize threatening
items. However, researchers have also used unsupervised approaches (particularly adversarial
learning) to recognize baggage threats as anomalies. Akçay et al. pioneered this by first proposing
encoder-decoder-encoder topology coupled with adversarial learning, termed GANomaly [52].
Afterward, they employed skip-connections, yielding Skip-GANomaly [53], to derive better latent
representations to aid discriminator in accurately picking the threatening anomalies [53].

As evident from Table 1, baggage threat detection is an extensively researched area where
researchers have proposed different classification, detection, and segmentation approaches to recognize
prohibited items from the security X-ray scans. These frameworks, though, can autonomously
recognize the concealed contraband items under low or partial occlusion, but they are limited towards
recognizing highly cluttered (and occluded objects). Recently, some researchers have proposed
frameworks that address the problem of occlusion to some extent [5,13,14]. However, either these
methods are tested on a single dataset [13,14] or they require a lot of parameter tuning due to
nonadaptability [5]. Furthermore, to the best of our knowledge, all of the existing works require
an extensive amount of training data (for each scanner specifications) to perform acceptable results.
Procuring such large-scale data for training is not feasible, limiting the deployment of such frameworks
in the real world.



Sensors 2020, 20, 6450 5 of 25

Table 1. Summary of the state-of-the-art baggage threat detection frameworks *.

Literature Methodology Performance Limitations

Miao et al. [14] Developed CHR [14],
an imbalanced resistant
framework that leverages
reversed connections
class-balanced loss function
to effectively learn the
imbalanced suspicious
item categories in a highly
imbalanced SIXray [14]
dataset.

Achieved an overall mean
average precision score
of 0.793, 0.606, and 0.381
on SIXray10, SIXray100,
and SIXray1000 [14],
respectively when coupled
with ResNet-101 [46] for
recognizing five suspicious
item categories.

Although the framework is
resistant to an imbalanced
dataset, it is still tested only
on a single dataset.

Hassan et al. [11] Proposed a contour instance
segmentation framework for
recognizing baggage threats
regardless of the scanner
specifications.

Achieved a mean average
precision score of 0.4657 on a
total of 223,686 multivendor
baggage X-ray scans.

Built upon a conventional
fine-tuning approach that
requires a large-scale
training dataset.

Gaus et al. [51] Evaluated the transferability
of different one-staged and
two-staged object detection
and instance segmentation
models on SIXray10 [14]
subset of the SIXray [14]
dataset and also on their
locally prepared dataset.

Achieved a mean average
precision of 0.8500 for
extracting guns and knives
on SIXray10 [14] dataset.

Tested on only
one public dataset
i.e., the SIXray10 [14]
for only extracting guns
and knives.

Wei et al. [13] Proposed a plug-and-play
module dubbed DOAM [13]
that can be integrated with
the deep object detectors to
recognize and localized the
occluded threatening items.

Achieved the mean average
precision score of 0.740
coupled with SSD [54].

DOAM [13] is not tested
on publicly available
GDXray [15] and SIXray
[14] datasets.

Hassan et al. [5] Developed a CST framework
that leverages contours
of the baggage content to
generate object proposals
that are screened via a single
classification backbone.

Achieved a mean average
precision score of 0.9343 and
0.9595 on GDXray [15] and
SIXray [14] datasets.

CST, although, is tested
on two public datasets,
but it requires extensive
parameter tuning to work
well on both of them.

* For a detailed overview on the existing approaches, we refer the reader to the Supplementary Material of this article.

3. Contributions

This paper presents a novel meta-transfer learning-driven tensor-shot detector that recognizes
the baggage threats in extremely cluttered, concealed, and occluded environment. Furthermore,
due to its capacity to operate on the unified tensor maps rather than diverse raw scans, it can be
well-generalized across multiple scanner specifications via pretrained weights and single-shot learning.
Moreover, we rigorously evaluated the proposed framework on two (highly challenging) public
datasets where it achieves state-of-the-art performance. To summarize, the major contributions of this
paper are thus four-fold:

• A novel meta-transfer learning based single-shot detector capable of recognizing baggage threats
under extreme occlusion.

• A highly generalizable detection framework that leverages the proposed dual-tensor scheme to
localize and recognize the threatening items from the diverse ranging scans without retraining the
backbone on the large set of examples.
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• To the best of our knowledge, there is no generalized framework that leverages meta-transfer
learning to autonomously recognize concealed baggage threats from the joint (combined)
GDXray [15] and SIXray [14] datasets.

• The proposed tensor-shot detector has outperformed state-of-the-art frameworks by achieving
1.49% and 0.573% improvements over [33] in terms of precision and F1 scores on GDXray [15]
dataset and 8.03% improvements (in terms of mean average precision) over [14] on
SIXray [14] dataset.

The rest of the paper is organized as follows: Section 4 presents the proposed tensor-shot
framework. Section 5 contains a detailed description of the datasets, training, and evaluation protocols.
Section 6 contains the experimental results and comparison of the proposed framework against
state-of-the-art solutions and Section 7 presents a detailed discussion on the proposed framework and
also concludes the paper.

4. Proposed Framework

The block diagram of the proposed detection framework is shown in Figure 2. It is driven
through a novel dual tensor mechanism that exploits the transitional variations of baggage items
(with diversified spatial properties) by simultaneously generating the low and high energy tensor
representation of the candidate scan. These tensors are then accumulated together and are passed
through the edge suppression backbone which filters the irrelevant edge information and only retains
the boundaries of the potential threatening items. These filtered edges are then postprocessed,
upon which the bounding boxes (screened through through nonmaximum suppression [55]) are
fitted. Afterward, these bounding boxes are then used in crafting the object proposals which are further
screened through the meta-one-shot classifier (driven through the edge suppression backbone).

Figure 2. Block diagram of the proposed tensor-shot detector. First of all, we decompose the input scan
into high and low energy tensors, where the high tensors are generated directly from the input scan
(through the structure tensors [56]). Moreover, the low energy tensors are produced by first computing
the salient image features (through the proposed feature extractor) and then accumulating them with
the input scan. Both high and low energy tensors are then added together to produce a dual-energy
tensor representation of the input scan that is then passed to the edge suppressing backbone to
suppress the irrelevant baggage contours while simultaneously highlighting the threatening content.
Then, the resultant baggage content is postprocessed, and for each extracted object, a bounding box
is fitted to craft out its proposal that is passed to the meta-one-shot classifier for recognizing the
object class.
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4.1. Preprocessing

The input scan ξX is filtered through the anisotrophic diffusion filter. Afterward, we generate the
inconspicuous version of ξX to enhance the edges of the dulled baggage items.

Inconspicuous Edge Map Generation

To generate the inconspicuous edge map, we first compute the saliency map (representing set of
salient features) through the proposed salient feature extractor, and then eliminate these representations
from the original input scan to highlight the edges of the low contrast and low spectral baggage
items. The saliency map here showcases the items having the higher spectral components within
ξX, derived through the trainable edge-preserving kernels of the proposed salient feature extractor.
Moreover, the architecture of the feature extractor is intentionally kept shallow by deploying only
one input layer, three convolution layers, two batch normalization layers, three ReLUs, two max
pooling layer, one lambda layer (for resizing) and one addition layer (as shown in Figure 3) having a
total of 1601 learnable and 128 nonlearnable parameters. The reason for making the salient network
shallower is to preserve the shape of the prominent objects (having higher spectral components) that
are eliminated from ξX to retain the contours of the dulled items and also to avoid the generation of
false edges.

Figure 3. Salient network architecture. The abbreviations are Conv2D: 2D Convolution, BN: Batch
Normalization, and MP: Max Pooling.

From Figure 3, we can also observe that the proposed salient feature extractor contains three
salient blocks denoted by k = 0, 1, 2, wherein each block, the convolution and ReLU layers yields
f k(x, y, z) and f k

r (x, y, z) of size M1 ×M2 ×M3, respectively such that:

f k(x, y, z) =
N1

∑
i=1

N2

∑
j=1

N3

∑
h=1

wk(i, j) f k
m

(⌊
x− i + 2p1

s1

⌋
+ 1,

⌊
x− j + 2p2

s2

⌋
+ 1,

⌊
z− h + 2p3

s3

⌋
+ 1
)

(1)

and

f k
r (x, y, z) =

{
f k(x, y, z) f k(x, y, z) ≥ 0
0 otherwise

(2)

wk denotes the window of N1 × N2 × N3 dimension (containing the trainable weights), p1,2,3 denotes
the input padding, s1,2,3 denotes the stride rate, and f k

m denotes the input feature maps. It should be
noted here that for k = 0, f 0

m(x, y, z) = ξX , i.e., the input to the first convolution layer is the input scan
ξX. Moreover, after extracting f k

r (x, y, z), it is normalized through the batch normalization layer as
expressed below:

gk(x, y, z) =
M1

∑
i=1

M2

∑
j=1

M3

∑
h=1

f k
r (i, j, h)− µ( f k

r )√
σ( f k

r )
(3)
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where µ( f k
r ) and σ( f k

r ) represent a mean and variance of the feature maps in kth block i.e., f k
r ,

respectively. Then, gk(x, y, z) is passed through the max pooling layer, producing gk
m(x, y, z) such that:

gk
m(x, y, z) = max

∆x∈
−K1

2 ,..., K1
2 ,∆y∈

−K2
2 ,..., K2

2 ,∆z∈
−K3

2 ,..., K3
2

gk(x + ∆x, y + ∆y, z + ∆z) (4)

K1, K2 and K3 here denotes the pooling dimensions and the operations described in Equations (12)–(16)
are performed in a cascaded fashion for k = 1, 2 as well. However, for k = 2, the input to the
convolution layer is a fusion between resized high resolution features ( f 0

r (x, y, z)′), and the output of the
previous salient block i.e., f 2(x, y, z) = g1

m(x, y, z) + f 0
r (x, y, z)′. In addition, the batch normalization

and pooling operations are not performed at k = 2, rather, the network outputs f 2
r (x, y, z) as the

salient features. Afterward, the inconspicuous edge map (generated by accumulating the saliency
features f 2

r (x, y, z) with the input scan) is decomposed into a low energy tensor, which is further added
with its high energy counterpart to generate a dual-tensor map. Here, contrary to the recent data
fusion approaches (which use additional thermal [57] or depth [58] encoders), our approach utilizes a
single lightweight feature extractor (containing only 1729 parameters) to produce good salient feature
representations as evident from Figure 6 in Section 6.

4.2. Proposed Dual Tensor Scheme

After obtaining the inconspicuous edge map, we decompose it (along with the original input scan)
into the low and high energy tensors to reveal the transitional variations of all the baggage content
irrespective of their spatial characteristics. The motivation for proposing the dual-energy tensors stems
from the fact that objects within the baggage X-ray scans exhibit different spatial characteristics.
Some are composed of higher spectral bands whereas others blend more with the background
(see, for example, the shuriken and razors in Figure 2). Therefore, such objects cannot be picked
in one-go (especially through the trivial edge detection and representation methods). The proposed
dual-tensor scheme amplifies the transitional variations of the cluttered items as compared to the
state-of-the-art methods [5], leading towards more robust identification of the cluttered baggage threats.
This dual-tensor decomposition within the proposed framework is performed through structure
tensor [56], which in its simplest form a 2× 2 symmetric matrix computed (pixel-wise) by taking an
outer product of image gradients (defined by the neighborhood of each pixel within the candidate
scan) [56], as expressed in Equation (5).

=S =

[
ϕ ∗ (∇X.∇X) ϕ ∗ (∇X.∇Y)
ϕ ∗ (∇Y.∇X) ϕ ∗ (∇Y.∇Y)

]
(5)

where each outer product ϕ ∗ (∇i.∇j), dubbed tensor, denotes the outer product of image gradients∇i
and∇j oriented at direction i and j, respectively. ϕ denotes the Gaussian diffusion filter responsible for
removing noisy outliers while retaining the transitional information of all the objects. It is computed
through Equation (6):

ϕ = ∑
s∈ωx

∑
t∈ωy

1
2πσ2 e−

s2+t2

2σ2 I(i, j; k) (6)

I(i, j; k) = ∑
nk∈<ωx ,ωy>

1
nk!Γ(nk + k + 1)

(
i + j

2

)2nk+k
(7)

where I(i, j; k) denotes the modified Bessel function of kth order and Γ(.) represents the gamma
function, i.e., Γ(k) = (k− 1)!, ∀k /∈ C. The block matrix in Equation (5) yields four outer products
(tensors) from the candidate scan, where only three of them are unique (since this matrix is symmetric).
Afterward, we add these tensors together to generate a single high energy tensor map (containing
objects with the higher frequency components) and a single low energy tensor (depicting dulled
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baggage content). These low and high energy tensors are further added together to generate a
dual-energy tensor representation of the candidate scan as shown in Figure 2.

4.3. Edge Suppressing Backbone

The dual-energy tensor map emphasizes the edge representation of the dulled contraband items
while retaining the prominent features of the baggage scans. However, before fitting the bounding
boxes to localize the threatening items, we pass the dual-tensor map through the edge suppression
backbone, trained via meta-transfer learning [17], to strain the irrelevant boundaries of the normal
baggage content while only preserving the edges of the threatening items. The choice of the backbone
network is extensively discussed in the ablation study (Section 6.1). In addition, the training of the
backbone network via meta-transfer learning is presented in Section 4.5. Moreover, the processed
tensor (obtained by multiplying the dual-energy tensor with the output of the backbone network)
is then binarized from which the bounding boxes are fitted to localize the contraband items.
The duplicate and redundant bounding boxes are removed through the nonmaximum suppression [55].
Afterward, these bounding boxes are utilized in cropping the object proposals from ξX which are then
recognized via the meta-one-shot classifier.

4.4. Meta-One-Shot Classifier

Due to the capacity of the edge suppressing backbone network to differentiate between the
contours of the threatening items and the normal baggage content, we also deploy it in conjunction with
the fully connected layers to recognize the localized threatening items. Here, we fine-tune the backbone
network (coupled with the fully connected layers) to recognize contraband items within the cropped
object proposals via a single training example of each suspicious item category (i.e., we perform
one-shot learning to recognize the proposals of the contraband items).

4.5. Training via Meta-Transfer Learning

In order to generalize the proposed tensor-shot detector to extract the contraband items
irrespective of the scanner specifications, and also to avoid the requirement of large and well-annotated
data for fine-tuning the pretrained weights of the backbone, we adopted meta-transfer learning [17]
strategy as described in Algorithm 1. Here, ”task” refers to the correct identification of each suspicious
item category, and the meta-transfer learning (for the proposed tensor-shot detector) is performed in
an iterative manner where, in the first iteration, we trained the backbone model on the dual-energy
tensors (obtained from the joint GDXray [15] and SIXray [14] datasets) to suppress the contours of
normal baggage content while retaining the edges of the prohibited items. Moreover, in the second
iteration, we take the model weights (θ) (updated in the first iteration) and fine-tune them through the
single-shot training to classify the localized proposal categories. The network weights (θ) learned in
the first iteration enables the network to effectively recognize the baggage items (within each proposal)
without retraining the whole network again for each dataset separately. Even fine-tuning on the single
example of each category (in the second iteration) is optional as the proposed detector also produces
decent performance with the zero-shot classifier (please see Section 6.5 for more details). Apart from
this, the complete implementation details of the proposed detection framework are presented in
Section 5.2.
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Algorithm 1: Meta Transfer Learning Algorithm

1 Input: model with θ weights (Mθ), epochs (E ), data batch (Db), learning rate (lr)
2 Output: updated weights
3 S , T = preprocessData(Db) // get the samples and tasks from Db
4 foreach epoch in E do
5 Tl = 0 // cumulative loss for all the tasks in each epoch
6 foreach task t in T do
7 St = filter samples (S) w.r.t t
8 Compute loss for the current task Lt(Mθ) using St examples
9 Evaluate ∇θLt(Mθ)

10 Compute adapted weights: θt = θ − lr∇θLt(Mθ)

11 Tl = Tl + Lt(Mθt)

12 end
13 Update: θ = θ − lr∇θTl

14 end
15 return θ

4.6. Loss Function

The dual-tensor map contains imbalanced ratio of normal and threatening items contours.
Therefore, penalizing the backbone model through the conventional cross-entropy loss function
would make it biased towards producing more false positives (and false negatives as well). Therefore,
in order to effectively train the model to distinguish between normal and threatening baggage content,
we employ a focal loss function [41] within the proposed tensor-shot framework, as expressed below:

L = − 1
bs

bs−1

∑
i=0

c−1

∑
j=0

α(1− p(li,j))γti,j log(p(li,j)) (8)

where bs is the batch size, c denotes the total number of classes, ti,j indicates whether or not the ith
training example is from the jth class, p(li,j) represents the probability of the logit li,j (generated by the
network) for the ith training example belonging to the jth class, the expression α(1− p(li,j))γ depicts
the scaling factor [41]. The values for the focal loss parameters are determined empirically through
rigorous experimentation, as reported in the ablation study (Section 6.1.1).

5. Experimental Setup

In this section, we present a detailed description of the datasets, the implementation details
as well as the evaluation metrics, which we used to compare the proposed framework with the
state-of-the-art solutions.

5.1. Datasets

The proposed framework has been extensively evaluated on publicly available GRIMA X-ray
database (GDXray) [15] and Security Inspection X-ray (SIXray) [14] dataset. GDXray [15] is the widely
used dataset containing high resolution texture-less grayscale X-ray scans [15]. Moreover, SIXray [14]
is the recently introduced large-scale dataset for baggage threat detection and to date it contains the
most challenging colored X-ray scans. The detailed description of each dataset is presented below:

5.1.1. GRIMA X-ray Database

GDXray [15] is the widely used public dataset for baggage threat detection and also for the
nondestructive testing (NDT) [15]. GDXray [15] is unique as it is the only public dataset containing the
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19,407 texture-less grayscale scans in which it contains the baggage items that are heavily occluded
as shown in Figure 1. Moreover, the scans within GDXray [15] are highly annotated and arranged
within five categories, i.e., welds, baggage, nature, casting, and settings. The baggage groups (which is the
only relevant category for this study) contain 8150 grayscale X-ray scans in which the suspicious items
such as handguns, razors, shuriken, and knives have been marked by the security experts. Apart from
this, we have marked the suspicious items in the original dataset (like chip and mobile phones) to
further validate the performance of the proposed framework. To make things even more challenging,
we have separated the original handgun category as pistol and revolver, to further test the capacity of
the proposed detection framework in individually recognizing these items.

5.1.2. Security Inspection X-ray Dataset

SIXray [14] is the largest and, to the best of our knowledge, the most challenging dataset for the
extraction and identification of baggage items from the colored X-ray images [14]. The dataset contains
1,059,231 scans having heavily occluded and cluttered items in which the suspicious items are grouped
into six categories, i.e., knives, guns, wrenches, scissors, pliers, and hammers. Furthermore, the dataset
has been organized into various subsets containing a highly imbalanced combination of positive and
negative scans (positive means scan having one or more suspicious item and negative means scan
having no suspicious item) to meet the real-world scenario. These subsets are named as SIXray10,
SIXray100, and SIXray1000, respectively [14]. Apart from this, the dataset contains highly detailed
annotations of baggage items that were marked by the security experts. These annotations served as
ground truth for us to validate the performance of the proposed framework.

Here, we further want to highlight that both of these datasets contain a wide range of forbidden
items that have been identified by the European Commission in this report [59].

5.2. Implementation Details

The proposed detection framework has been implemented on MATLAB R2020a using the deep
learning, computer vision, and image processing toolbox on a machine with Intel Core i5, 16 GB RAM,
and NVIDIA RTX 2080 GPU (with compute compatibility v7.5). For a fair comparison with the existing
solutions, the scans used for training and testing the proposed tensor-shot detector were honored as
per each dataset standard. First of all, we trained the salient network for 5 epochs on each dataset.
Afterward, we conducted meta-transfer learning for 10 epochs (in the first iteration) to generalize the
backbone network in distinguishing the edge representation of the normal and threatening baggage
content based upon the 848,172 dual-energy tensors obtained from the training scans of combined
GDXray [15] and SIXray [14] datasets. Moreover, in the second iteration, the meta-transfer learning was
conducted for 2 epochs in which we trained the meta-one-shot classifier (with a single training example
of each contraband item proposal) to effectively recognize them. Apart from this, we employed the
stochastic gradient descent as an optimizer with a momentum of 0.9 and a static learning rate (lr)
of 0.001. These hyperparameters are determined empirically for both datasets through conventional
grid search optimizations [60,61], where the learning rate was varied from 0.1 to 0.0001 by the drop
factor of 1

10 , and momentum was varied from 0.5 to 0.95 in the step of 0.05.

5.3. Evaluation Metrics

To evaluate the performance of the proposed framework and also to compare it with the
state-of-the-art solution, we have used the following metrics:
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5.3.1. Intersection-over-Union

Intersection over Union (IoU), also known as Jaccard’s similarity index measures the capacity of
the framework that how well it has extracted the object of interest as compared to its ground truth.
The IoU is computed through [62]:

IoU =
Tp

Tp + Fp + Fn
(9)

where Tp denotes the true positives, Fp represents false positives, and Fn denotes the false negatives.
Moreover, the mean IoU score, showcasing the overall object extraction performance of the proposed
framework, is computed by taking an average of IoU score for each suspicious item category.

5.3.2. Dice Coefficient

Dice Coefficient (DC) also illustrates how accurately the proposed framework can extract the
object regions and it is computed by measuring a degree of similarity between the extracted object
regions with respect to their ground truths as expressed in Equation (10) [63]:

DC =
2Tp

2Tp + Fp + Fn
(10)

Moreover, the mean DC is computed by taking the average of DC scores for all the suspicious
items categories. The difference between IoU and DC is that DC gives more weight towards the
accurate extraction of the contraband items (true positives) as compared to the IoU.

5.3.3. Mean Average Precision

The performance of the proposed framework for accurately detecting the prohibited items is
measured by the mean average precision (mAP) scores. Here, the mAP scores are measured by taking
the mean of average precision (AP) scores computed at an IoU ≥ 0.5 for each suspicious item category.

mAP =
nc−1

∑
k=0

AP(k) (11)

where nc denotes the total number of contraband item categories.

5.3.4. Confusion Matrix

Apart from evaluating the detection performance of the proposed framework using mAP. We also
validated its capacity to classify the baggage scan as threatening or nonthreatening using the confusion
matrix and standard classification metrics such as accuracy, true positive rate (TPR), false positive rate
(FPR), positive predicted value (PPV), and the F1 score as expressed below:

Accuracy =
Tp + Tn

Tp + Fn + Fp + Tn
(12)

TPR =
Tp

Tp + Fn
(13)

FPR =
Fp

Fp + Tn
(14)

PPV =
Tp

Tp + Fp
(15)

F1 = 2× TPR× PPV
TPR + PPV

(16)
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where Tn denotes the true negatives.

5.3.5. Mean Squared Error

To further show the statistical significance of the proposed framework compared to the
state-of-the-art solutions on both GDXray [15] and SIXray [14] dataset. We have used the mean
squared error (MSE) scores. MSE, in this study, is computed for each contraband item class through
Equation (17) [64]:

MSE =
1
nt

nt

∑
i=1

(yi − ŷi)
2 (17)

where yi denotes the ground truth values for each item, ŷi denotes the predicted values of each
contraband item, and nt denotes the total number of instances of the respective item within the dataset.
Here, it should be noted that the predicted values for each item are taken as their mAP scores, and their
ground truth values represent ideal mAP performances, i.e., 1.

5.3.6. Qualitative Evaluations

Apart from quantitative evaluations, we also demonstrate the capacity of the proposed framework
for accurately detecting the cluttered, concealed, and overlapping contraband items through extensive
qualitative examples.

6. Results

In this section, we present a thorough evaluation of the proposed framework on two publicly
available datasets. Furthermore, we showcase its detailed comparison with the state-of-the-art
frameworks against various metrics. We also present an ablation study here through which we
determined the optimal parameters for the focal loss function [41] and the backbone model for
detecting the baggage threats.

6.1. Ablation Study

Before discussing the experimental results of the proposed framework, we present an ablation
study where we determined the optical parameters for the focal loss function [41] and best backbone
network for edge suppression and object proposals classification.

6.1.1. Determining the Focal Loss Parameters

The scaling factor within the focal loss function [41] consists of two hyperparameters, i.e., the α and
the γ parameter. α represents the balancing factor that penalizes the network towards accurately
recognizing the imbalanced classes, and γ is the focusing parameter that allows the network to
down-weight the accurate recognition of easy examples to emphasize on the hard one. Here, we varied
the value of α as 0.25 ≤ α ≤ 0.75, and the value of γ as 1 ≤ γ ≤ 5 for both GDXray [15] and SIXray [14]
datasets according to the grid search scheme [60,61]. From Table 2, we can observe that for GDXray [15]
dataset, varying the value of α and β does not affect much the overall detection performance of the
proposed framework. This is because GDXray [15] does not contain highly imbalanced contraband
item classes. However, on SIXray [14], we see significant variations in the detection performance
while varying α and γ, i.e., we achieved the maximum mAP score of 0.6457 on SIXray [14] dataset
with α = 0.25, γ = 2, and a minimum mAP score of 0.4926 with α = 0.75, γ = 1. Here, it should also
be noted that increasing the value of γ penalizes the proposed framework to focus more on the hard
examples, whereas decreasing the value of α ensures high resistance to the imbalanced classes.
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Table 2. Effect of varying focal loss parameters on the detection performance (in terms of mAP) on
GDXray [15] and SIXray [14] dataset. Bold indicates the optimal performance.

GDXray [15] α

0.25 0.5 0.75

γ

1 0.9059 0.8742 0.8693
2 0.9162 0.8916 0.8869
3 0.9143 0.8882 0.8807
4 0.9017 0.8834 0.8762
5 0.9064 0.8763 0.8691

SIXray [14] α

0.25 0.5 0.75

γ

1 0.5483 0.5140 0.4926
2 0.6457 0.6283 0.6182
3 0.6283 0.6036 0.5874
4 0.6156 0.5709 0.5370
5 0.6083 0.5472 0.5198

Scores for the SIXray dataset represent the average of SIXray10, SIXray100, and SIXray1000 subset.

6.1.2. Determining the Classification Backbone

To determine the best backbone model, we tested the tensor-shot detector with ResNet-50 [46],
ResNet-101 [46] and VGG-16 [48], where the detection performance with each of the backbones is
reported in Table 3. We can observe here that although the best detection results are achieved with
ResNet-101 [46] on both datasets, the choice of backbone does not significantly affect the overall
detection performance of the proposed framework, e.g., the worse detection performance with
VGG-16 [46] only lags by 5.14% on GDXray [15] and 5.83% on SIXray10 [14] from the best performing
ResNet-101 [46] backbone.

Table 3. Performance of proposed detection framework in terms of mAP on GDXray [15] and SIXray [14]
datasets using different classification backbones. Bold indicates the best performance.

Network GDXray [15] SIXray10 [14] SIXray100 [14] SIXray1000 [14] SIXray [14] *

VGG-16 [48] 0.8691 0.7583 0.5721 0.4126 0.5810
ResNet-50 [46] 0.8917 0.7826 0.6284 0.4392 0.5915

ResNet-101 [46] 0.9162 0.8053 0.6791 0.4527 0.6457

* Average of SIXray10, SIXray100 and SIXray1000 subset.

6.2. Evaluations on GDXray Dataset

The first dataset on which we evaluated the proposed framework is the GDXray [15] dataset.
The detection performance of the proposed framework on GDXray [15] is shown in Table 4.
Here, we can observe that the proposed framework achieved the mean IoU, mean DC and the mAP
score of 0.9118, 0.9536, and 0.9162, respectively. Furthermore, it outperformed [33] by achieving 1.49%
improvements in terms of PPV and 0.573% improvements in terms of F1 score. However, it lags
from [33] by 0.397% in terms of TPR and 2.90% in terms of accuracy. With that said, since F1 is a better
score than accuracy especially for the imbalanced data and considering the fact that the proposed
framework is also validated using standard mAP metric (where it achieved the score of 0.9162),
we believe that the performance of the proposed framework is significant.
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Table 4. Detection performance of the proposed framework on the GDXray [15] and the SIXray [14]
dataset. Bold indicates the best performance while the second-best performance is underlined.
’-’ denotes that the metric is not computed.

Dataset Metric Proposed [14] [51] [33] [31] [65] [66]

GDXray [15] mean IoU 0.9118 - - - - - -
mean DC 0.9536 - - - - - -

mAP 0.9162 - - - - - -
Accuracy 0.9554 - - 0.9840 0.9500 - -

TPR 0.9761 - - 0.9800 - 0.8900 0.9430
TNR 0.9305 - - - 0.9140 - 0.9440
FPR 0.0694 - - - 0.0860 - 0.0560
PPV 0.9441 - - 0.9300 - 0.9200 -
F1 0.9598 - - 0.9543 - 0.9047 -

SIXray [14] * mean IoU 0.9238 - - - - - -
mean DC 0.9603 - - - - - -

mAP 0.6457 0.5938 0.8500 - - - -
Accuracy 0.8949 0.4577 - - -

TPR 0.8127 - - - -
TNR 0.8956 - - - -
FPR 0.1043 - - - -
PPV 0.0621 - - - -
F1 0.1153 - - - - - -

* Average of SIXray10, SIXray100, and SIXray1000 subset.

In addition to this, Table 5 reports the statistical analysis of the proposed framework in terms of
MSE scores. Here, to make the fair comparison with state-of-the-art frameworks, we only extracted the
originally marked contraband items from the dataset i.e., handguns, knives, razors, and shuriken. We can
observe from Table 5 that the proposed framework statistically outperforms the second-best [5] by
40.05% that is quite significant, especially because the framework in [5] is a fully supervised framework
trained via conventional fine-tuning. However, the proposed framework employs meta-transfer
learning for detecting suspicious baggage items.

Table 5. Statistical significance of the proposed framework compared to the state-of-the-art solutions
in terms of MSE. Bold indicates the best results, while the second-best performances are underlined.
’-’ indicates that the metric is not computed. Scores for the SIXray dataset represent the average of
SIXray10, SIXray100, and SIXray1000 subset.

Dataset Items Proposed [14] [51] [5]

GDXray [15] Handguns 0.001436 - - 0.008082
Knives 0.002683 - - 0.000030
Razors 0.007586 - - 0.013782

Shuriken 0.001459 - - 0.000068
Mean 0.003291 - - 0.005490
STD 0.002530 - - 0.005802

SIXray [14] Guns 0.021874 0.018496 0.006400 0.000079
Knives 0.030905 0.021432 0.044100 0.004264

Wrenches 0.060614 0.101251 - 0.000072
Scissors 0.134762 0.166219 - 0.000038
Pliers 0.087971 0.030241 - 0.005372
Mean 0.067225 0.067528 0.025250 * 0.001965
STD 0.041015 0.057959 0.018850 * 0.002355

* These results are computed by only considering guns and knives items from SIXray10 [14] subset.

Apart from this, we also present the qualitative evaluation of the proposed detection framework
in Figure 4 where we can observe how effectively the proposed tensor-shot detector recognizes the



Sensors 2020, 20, 6450 16 of 25

concealed and cluttered contraband items. For example, see the detection of concealed pistol in (B and
F), concealed pistol and a laptop (chip) in (J), the cluttered pistol and knife in (R), cluttered revolver in (L),
and low contrasted razor in (T).

Figure 4. Qualitative performance of the proposed framework on the GDXray [15] dataset for detecting
contraband items such as pistols, revolvers, razors, chips, mobile phones, and knives as shown in (A–T).
Moreover, first and third row show the original scans. We can appreciate the detection of concealed
pistol in (B,F), concealed pistol and a laptop (chip) in (J), the cluttered pistol and knife in (R), cluttered
revolver in (L), and low contrasted razor in (T).

6.3. Evaluations on SIXray Dataset

The second dataset on which we have evaluated the proposed framework is the SIXray [14]
dataset. SIXray [14] to the best of our knowledge is the largest and most challenging baggage X-ray
dataset to date [14]. The detection performance of the proposed framework can be seen in Table 4
where we can observe that the proposed detector achieved an mAP score of 0.6457, outperforming [14]
by 8.03%. Although it lags from [51] by 24.03%. However, this comparison is not fair because the
authors in [51] only utilized SIXray10 subset of the SIXray dataset for extracting only the guns and
knives. However, we evaluated the proposed framework on all the three subsets of the SIXray [14]
dataset for extracting all the originally marked prohibited items [14]. Apart from this, we achieved an
F1 score of 0.1153 on SIXray [14] dataset. We can notice here the substantial gap of 87.11% between the
performance of the proposed framework in terms of accuracy and the F1 score. This is due to the fact
that all the subsets of SIXray [14] dataset are extremely imbalanced [14]; therefore, we got an excessive
number of false positives compared to the true positives (causing a very low precision and F1 score).

In another experiment, we quantified the capacity of the proposed framework to detect contraband
items under various degrees of clutter and concealment. For this, we divided the positive scans within
SIXray [14] dataset into three disjoint sets. The first set contains only those examples which contain
contraband items under the low concealment. The second set contains examples with partially cluttered
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suspicious objects, and the third set contains extremely cluttered and concealed contraband items.
Please note that these sets are prepared by us just to give the quantitative representation on how well
the proposed framework is resistant to the level of clutter, and we also want to highlight these sets
are not present within the original SIXray [14] dataset. Furthermore, we performed this experiment
only on the SIXray [14] dataset because SIXray [14] is, to the best of our knowledge, the largest and
most challenging dataset designed for detecting baggage threats under the highly imbalanced scenario.
GDXray [15], although, contains texture-less grayscale scans making the detection of contraband
items (in some scans) difficult. However, overall, comparing the complexity of GDXray [15] with
SIXray [14], SIXray [14] presents more challenging cases. The quantitative evaluation of the proposed
framework for this experiment is shown in Table 6. Here, we can observe how effectively the proposed
framework recognizes the suspicious items regardless of the clutter, occlusion, or concealment. Even in
an extremely cluttered scenario, the performance of the proposed framework only deteriorates by
33.45%, which is 4.40% better than [14].

Table 6. Quantitative evaluation of the proposed framework and other state-of-the-art frameworks
on SIXray [14] dataset towards detecting contraband items exhibiting different level of clutter and
concealment.

Level of Clutter and Concealment Proposed [14]

Low 0.7816 0.7453
Partial or mild 0.6593 0.5918
Full or extreme 0.5201 0.4632

Moreover, Table 5 reports the statistical significance of the proposed framework in terms of
MSE. Here, we have excluded the extraction of hammers to maintain consistency with the dataset
standard [14] and the CHR [14] framework. From Table 5, we can see that although the proposed
framework lags from [5]. However, because it utilizes meta-one-shot learning to recognize contraband
items and still able to achieve comparable performance with the fully supervised frameworks (trained
on the large-scale datasets), we believe that the performance of the proposed framework is promising.
In addition, it should be noted that the comparison of the proposed framework with second-best [51]
is not fair because they only studied SIXray10 [14] subset of the SIXray dataset [14] in their study for
extracting only the guns and knives.

Apart from this, the capacity of the proposed framework to localize and detect the baggage threat
can be seen in Figure 5. Here, we can observe how remarkably the extremely cluttered contraband
items have been detected, e.g., see the detected gun, knife, and wrenches in (D), a cluttered knife in
(H and L), the overlapping guns and a knife in (J). This is due to the fact that the proposed tensor-shot
detector can suppress the unwanted edges while emphasizing the threatening regions within the
candidate scan through its backbone.
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Figure 5. Qualitative performance of the proposed framework on the SIXray [14] dataset for detecting
contraband items such as knives, guns, and wrenches as shown in (A–L). Moreover, first and third row
show the original scans. These samples showcase the effectiveness of the proposed framework in
detecting gun, knife, and wrenches in (D), a cluttered knife in (H,L), and the overlapping guns and a
knife in (J).

6.4. Qualitative Analysis

Figure 6 shows the saliency maps obtained from the proposed salient network. Although,
due to its shallow architecture, the salient model cannot generalize well against the diverse ranging
X-ray scanners. Nevertheless, it can robustly pick the high transitional objects and suppress them for
generating the low-energy tensors, e.g., see the extracted knives and guns in Figure 6 (L, P, and T) despite
the extreme clutter. Moreover, the proposed dual-energy tensor scheme can reveal the boundaries
of the low and high spectral threatening items; it also amplifies the transitions of normal baggage
content (e.g., see the second and fifth columns in Figure 7). Here, to suppress the irrelevant edges,
we employ a meta-transfer learning-driven backbone network (as discussed in Section 4.5) that is
trained on the large-scale generalized dual-tensor representations of the grayscale and color X-ray
scans. Furthermore, this backbone network is fine-tuned via single-shot training to recognize different
contraband item proposals. The suppressed edges (computed by the generalized backbone model)
can be seen in Figure 7. Here, we can appreciate its capacity to effectively strain the irrelevant edges
regardless of the scanner specifications. Although, compared to GDXray [15], the backbone model
produces better edge representations for the SIXray [14] dataset scans. This is because the backbone
network is more biased towards SIXray [14] scanner as compared to the GDXray [14] due to the
imbalanced ratio of the training scans within both datasets. However, this situation can be easily
handled by employing different binarization thresholds (for each dataset) during postprocessing.
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Figure 6. Saliency maps produced by the proposed salient feature extractor on both GDXray [15] and
SIXray [14] datasets are shown in (A–T). Also, the first and third row show the original scans.

Figure 7. Irrelevant edge suppression through the proposed meta-transfer learning-driven tensor-shot
detection framework are shown in ((A)–(AD)). Also, the first and fourth column show the original
scans.

Despite the weak edge representations obtained for the GDXray [15] scans, the capacity of the
generalized backbone model for edge suppression can be appreciated in Figure 7 (AA), where it has
effectively retained the razor while suppressing all the irrelevant edges regardless of their prominence
in the scan. Moreover, in Figure 8, we report some of the failures cases of the proposed tensor-shot
detector on both datasets. The first failure is related to the incapacity of the edge suppression backbone
to eliminate the irrelevant boundaries of the baggage content that produces multiple bounding
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boxes for the same item e.g., see the twice detected shuriken in (B). Although, we handled such
failures by applying nonmaximum suppression [55] as a postprocessing step. Still, because of the
fixed overlapping threshold (in the nonmaximum suppression [55]), we rarely observed these errors.
Although, we can avoid them by further decreasing the overlapping threshold. In addition, the other
failure related to nonmaximum suppression [55] is the generation of loose bounding boxes, e.g., see the
bounding box of a cluttered knife in (J). These loose boxes are generated by merging the multiple
overlapping boxes (representing the same item). Although such errors are not drastic (as the framework
is correctly detecting the item), such loose boxes can lead towards a low quantitative performance
when compared to the ground truth. Moreover, the proposed framework also misses some extremely
dulled and occluded objects, e.g., the razor in (B and F) (also in Figure 4P), and a gun in (H). These types
of failures are related to the inability of the saliency model to accurately differentiate the low contrasted
(and overlapping) objects within the low-energy tensor. Although we observed very few of these cases,
they can be easily addressed by amplifying the dual-energy tensors before edge suppression. The last
failure which we observed is the inability of the proposed tensor-shot detector to accurately detect
all the overlapping instances of the same time in extremely challenging scenario, e.g., see the missed
knife on top of chopper in (D), and the missed wrenches in (L), even the bounding box of the detected
knife is not accurate. While we concur that the proposed framework is limited towards these false
negatives (only if the scans are extremely challenging like Figure 8C,K), we can still appreciate the
overall detection performance of the proposed framework given the fact that it is highly generalizable,
and yet, produces decent detection results (even in cluttered scenarios), e.g., see the detected knife in
(L) and the cluttered knife in (D).

Figure 8. Failure cases on the GDXray [15] and SIXray [14] dataset are shown in (A–L). Moreover,
the first and third column show the original scans.

6.5. Generalizability Assessment

To further test the generalizability of the proposed tensor-shot detector, we conducted another
experiment where we trained the edge suppression backbone network (ResNet-101 [46]) on the
dual-tensor representations of the training scans (of both datasets) and utilized a zero-shot classifier
(driven through the generalized backbone model) to classify the proposals of contraband items.
The detection performance of the proposed framework for this experimentation is shown in
Table 7. Here, we can see that the proposed zero-shot tensor-shot driven detector achieved an mAP
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score of 0.8069 on GDXray [15], and 0.4690 on SIXray [14] using ResNet-101 [46] as a backbone.
In addition, the proposed framework achieved an mAP score of 0.6528, 0.4379, and 0.3164 on SIXray10,
SIXray100, and SIXray1000 subset, respectively. Although, on average, the performance of the zero-shot
detector lags by 11.50% on GDXray [15] and 27.36% on SIXray [14] dataset as compared to the one-shot
detector but still the performance of the zero-shot detector is appreciable given the fact that the classifier
does not require any fine-tuning even on single training examples.

Table 7. Detection performance of a zero-shot classifier (in terms of mAP) driven through the
generalized edge suppression backbone.

Network GDXray [15] SIXray10 [14] SIXray100 [14] SIXray1000 [14] SIXray [14]

ResNet-101 [46] 0.8069 0.6528 0.4379 0.3164 0.4690

7. Discussion and Conclusions

This paper presents a meta-transfer learning-based tensor-shot detection framework that can
recognize highly concealed and cluttered baggage threats from the security X-ray scans. The proposed
framework has been thoroughly tested on the two publicly available datasets (i.e., the SIXray [14]
and the GDXray [15]). In addition, it has been extensively compared with the existing state-of-the-art
solutions where it achieved 0.573% improvements (in terms of F1 score) over [33] on GDXray [15]
dataset and 8.03% improvements (in terms of mAP) over [14] on the SIXray [14] dataset.

Furthermore, through both quantitative and qualitative evaluations, we have demonstrated the
capacity of the proposed framework for detecting the extremely cluttered contraband items on both
grayscale and colored X-ray scanners. For instance, see the extraction of cluttered (and occluded) pistol
and revolver in Figure 4D,F,J,L. In addition, in Figure 5, see the extraction of extremely occluded gun,
wrench and knife in (D), a knife in (H and L). Moreover, Tables 4 and 6 further showcase the capacity of
the proposed framework towards recognizing contraband items regardless of the occlusion, baggage
clutter, and concealment.

Apart from this, the proposed framework is, to the best of our knowledge, the first baggage
threat detector that is invariant to the scanner specifications and can work on any grayscale or colored
X-ray scan for recognizing the potential threats. This is due to its capacity to transform the candidate
scan into novel dual-energy tensors from which it identifies the threatening items even in extreme
clutter and concealment. In addition, the proposed framework can be practically deployed in the real
world for mass screening baggage threats (including the cluttered ones which, although, modern X-ray
scanners can reveal, yet they can be missed by the security officers during the manual inspection due
to the rush hours and tiring work schedule).

In future, the proposed tensor-shot framework can be utilized in detecting 3D printed and
dismantle items from the baggage X-ray scans which are barely visible even to the human
observers. Furthermore, it can also be tested on normal RGB scans for detecting concealed, cluttered,
and occluded objects.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1. Summary of
existing works related to autonomous baggage threat detection.
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