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ABSTRACT
Despite the advantage of neuroimaging-based machine learning (ML) models as pivotal tools for investigating brain-
behavior relationships in neuropsychiatric studies, these data-driven predictive approaches have yet to yield sub-
stantial, clinically actionable insights for mental health care. A notable impediment lies in the inadequate accom-
modation of most ML research to the natural heterogeneity within large samples. Although commonly thought of as
individual-level analyses, many ML algorithms are unimodal and homogeneous and thus incapable of capturing the
potentially heterogeneous relationships between biology and psychopathology. We review the current landscape of
computational research targeting population heterogeneity and argue that there is a need to expand from brain
subtyping and behavioral phenotyping to analyses that focus on heterogeneity at the relational level. To this end, we
review and suggest several existing ML models with the capacity to discern how external environmental and soci-
odemographic factors moderate the brain-behavior mapping function in a data-driven fashion. These heterogeneous
ML models hold promise for enhancing the discovery of individualized brain-behavior associations and advancing
precision psychiatry.

https://doi.org/10.1016/j.bpsgos.2024.100397
Relating individual differences in brain function and structure
as recorded by neuroimaging, e.g., anatomical, diffusion, and
functional magnetic resonance imaging (fMRI), to phenotypic
data such as cognitive performance, behaviors, and psychi-
atric symptoms is a fundamental pursuit of human neurosci-
ence (1–4). Identifying accurate brain-behavior relationships
and generalizable neuroimaging biomarkers can elucidate the
pathophysiology underlying psychiatric symptoms (5,6) and, in
turn, point to neurobiological targets that inform treatment
design, early interventions such as behavioral therapy or
neurostimulation (7,8), and risk assessment for future symptom
onset and recovery (9–11). An emerging approach to probing
brain-behavior mapping is data-driven machine learning (ML)
(4,12,13). In particular, ML models are trained to predict the
psychiatric phenotypes of an individual from their neuro-
imaging data (e.g., fMRI). Based on the trained model, a
model-explanation procedure generates neuroimaging bio-
markers by identifying specific brain circuits, regions, or
measurements that drive the model prediction (14).

As brain-based predictive modeling attracts growing
attention in various clinical contexts (3,10,15), a critical point
often overlooked is how ML research meets the increasingly
recognized challenge of population heterogeneity in human
neuroimaging studies (16–19). While much research has
focused on analyzing heterogeneity in neural and behavioral
data (e.g., neural subtyping or behavioral phenotyping), we
argue that a key factor limiting the predictive accuracy and
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clinical impact of current brain-based ML models may be their
inability to capture the heterogeneous mapping function be-
tween neuroimaging measurements and psychiatric pheno-
type (i.e., heterogeneity in the relationship). In particular, most
brain-based ML models strive to find a single universal pattern
that is applicable to most of the data but fail to account for how
the brain-behavior mapping itself may vary according to
environmental and sociodemographic factors. To overcome
this challenge, we outline potential strategies to build ML
models that capture such relationship-level heterogeneity and
discuss some bottlenecks in model development and
deployment. We envision that only by expanding heterogeneity
analysis from the data level to the relationship level can ML
truly unleash its power to derive neuroimaging biomarkers that
can inform customized prevention, intervention, and treatment.

FAILURE OF HOMOGENEOUS AND UNIMODAL ML IN
NEUROPSYCHIATRIC RESEARCH

Despite recent advances in ML, a notable limitation is that
brain-based predictive modeling often has low accuracy (4,15).
When applying a trained model to an independent, out-of-
sample population, the predicted phenotypic measure can
significantly deviate from the observed value. Reviews on fMRI
studies commonly report ,70% accuracy in predicting diag-
nosis outcome of patients with various behavioral and mental
health disorders (10,20). These accuracy scores, although
higher than random chance, are lower than the 91% average
y of Biological Psychiatry. This is an open access article under the
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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accuracy of 503 medical imaging–based artificial intelligence
(AI) models (for all types of medical diagnostics) found in a
recent meta-analysis (21). In addition to the low accuracy, the
compromised interpretability of these models is another critical
concern (22). When interpreting a model with a 70% classifi-
cation accuracy, neuroimaging biomarkers identified from the
training samples do not apply to approximately 30% of the
unseen population, suggesting a potential room for improve-
ment in the generalizability and translational potential of cur-
rent brain-based ML models.

There has been a rich discussion on the various reasons for
low prediction accuracy (4,15), with increasing attention being
paid to the issue of population heterogeneity (17,23–25).
Complex demographic, socioenvironmental, physiological,
and clinical factors can influence brain development, behav-
iors, and cognition, such that no single brain-behavior map-
ping likely fits all (26,27). Thus, population heterogeneity is one
of the many reasons why models trained on large, consortia-
sized samples (e.g., the Adolescent Brain Cognitive Develop-
ment [ABCD] Study) (28) achieved notably lower accuracy than
those on smaller homogeneous datasets (4,10,29–32). Indeed,
existing predictive analyses in neuropsychiatric research are
often unimodal and homogeneous: one universal mapping
function is learned to predict the target behavioral phenotype
solely based on neuroimaging data and, furthermore, is ex-
pected to generalize across populations. This conceptual gap
between homogeneous and heterogeneous mapping might
result in the ML models being accurate only for a substratum of
the population. Moreover, the interpretation of homogeneous
models tends to identify neuroimaging biomarkers shared
across individuals (33,34), which may as well be identified
through group-level statistical tests. In fact, in many ML ana-
lyses, the prescreening or post hoc validation of neuroimaging
biomarkers in turn resorts to group analysis (35,36), thus
trapping what seems to be an individual-level ML analysis into
a group-level analysis in disguise.
BEHAVIORAL AND NEURAL HETEROGENEITY

The concept of population heterogeneity is not new. Re-
searchers have been mostly studying the heterogeneity issue
from two perspectives: precision behavioral phenotyping
(Figure 1A) and neural subtyping (Figure 1B). Precision
behavioral phenotyping aims to improve the understanding of
behavioral heterogeneity underlying traditional clinical diag-
nosis: individuals meeting the criteria for a particular disorder
codified by DSM exhibit significant variations in clinical
symptoms, progression, and prognosis (18,24). Thus, re-
searchers have explored alternative frameworks to harness
dimensions of cognitive and behavioral constructs that com-
plement existing diagnostic categories, enhance clinical pre-
dictions, and clarify etiology. For example, the Research
Domain Criteria initiative (37) uses expert-defined dimension-
ally distributed quantitative traits to replace the traditional
taxonomic structure of mental disorders, exploiting symptom
variation across the full spectrum of severity. Beyond multidi-
mensionality, the Hierarchical Taxonomy of Psychopathology
consortium (38) identifies categorical hierarchically organized
levels of diagnosis from the p factor model (39). The hierarchy
encompasses both broad transdiagnostic psychopathology
2 Biological Psychiatry: Global Open Science January 2025; 5:100397
and narrow symptom components and thus provides a more
precise and granular description of an individual’s behavioral
and mental health profile. Other than factor models, various
clustering and dimension reduction approaches (40–43) are
used for analyzing phenotypic data across multiple domains
(e.g., psychopathology, personality, cognition, social func-
tioning) to identify stable transdiagnostic clusters that cut
across traditional diagnostic labels. These data-driven sub-
types may exhibit greater reproducibility than those derived by
hypothesis-driven methods, which could be biased by existing
theories and prior assumptions.

Another type of heterogeneity analysis focuses on identi-
fying neurobiological subtypes that support dimensions of
psychopathology within a board diagnostic category. As
normative modeling studies (44) of diverse brain disorders
have repeatedly suggested, the specific location in the brain
that indicates differences between cases and controls varies
considerably across individuals with the same diagnosis
(25,45). Thus, unsupervised or weakly supervised clustering is
often used for revealing categorical neural subtypes (46–48),
where each person is assigned to one subgroup that has more
homogeneous neuropathological patterns than the overall
diseased population. Alternative to categorical subtypes,
neural heterogeneity can also be formulated as dimensional
subtypes (e.g., by canonical correlation analysis) (49–51),
where multiple constellations of neuropathological compo-
nents are linked to continuous scores of specific behavioral
dimensions. These biological subtypes (or subdimensions)
were shown to have high correlation with within-diagnosis
heterogeneity of symptom profiles (52) and have distinct
treatment responses (53,54).
RELATIONSHIP-LEVEL HETEROGENEITY IN
BRAIN-BASED PREDICTIVE ML

Despite the improved understanding of behavioral (Figure 1A)
and neural (Figure 1B) heterogeneity, another type of hetero-
geneity that is often overlooked in building brain-based pre-
dictive ML models is the nonuniform neurobehavioral mapping
(Figure 1C). In other words, the heterogeneity of interest lies
not only in the neural and behavioral data themselves but also
in the mapping function between them. Such mapping can
reflect distinct biological mechanisms underlying the same
disorder or the natural variation in brain-behavior relationships
across individuals. For example, in a post hoc analysis of a
single classification model that predicts cognitive test scores
from fMRI data, Greene et al. (26) found that sociodemographic
factors (e.g., race or level of education) are one of the main
factors affecting the predictive accuracy of the model across
subpopulations, an effect that was replicated in multiple
datasets. In another study of 2262 children from the ABCD
Study and 752 young adults from the Human Connectome
Project (55), researchers show that network features predicting
33 internalizing (e.g., anxiety) and externalizing (e.g., rule
breaking) behaviors were distinct across children and adults,
suggesting that brain-based predictors of behaviors may
change across the life span. Besides demographic constructs,
environmental factors can also affect physiological functions of
the brain and its ability to counteract pathological changes
(56–58). A study analyzing resting-state fMRI of 6839 children
www.sobp.org/GOS
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Figure 1. Data heterogeneity refers to categorical or dimensional subtypes of (A) psychopathology or (B) neural biology, whereas relationship-level het-
erogeneity examines (C) the nonuniversal mapping function between brain and behavioral phenotype.
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from the ABCD dataset found that the correlation pattern be-
tween selective brain networks and cognitive performance
varies as a function of a child’s environment (59). While better
cognitive performance among children from high-income
households correlated with weaker coupling between the
lateral frontoparietal network and default mode network, the
direction of association was reversed for children from low-
income households. Taking all the evidence above, we argue
that brain-based ML research may benefit from explicitly
incorporating external sociodemographic and environmental
factors to gain insights into multiple causal pathways from the
brain to behavior.

To capture such relationship-level heterogeneity, some
existing solutions rely on training, comparing, and interpreting
separate models in each subcohort (27,60). For example, one
can train sex-specific models (61–63) to predict disease
outcome and examine whether there exist connectome pat-
terns that are uniquely associated with males or females. While
being a simple and interpretable approach, training separate
models would require subcohort division based on an a priori
identified categorical factor. As such, one caveat might be that
model training becomes unreliable as the number of sub-
cohorts exponentially grows with the number of considered
factors and the number of samples in each subcohort drasti-
cally decreases. The separately trained ML models are more
likely to overfit these smaller subcohorts (64). Alternative to
defining subcohorts a priori is to first use data-driven
Biological Psychiatry: Glo
approaches to subtype the data and then derive subtype-
specific predictive models (65–67). For example, Drysdale
et al. (68) first identified 4 clusters of individuals with depres-
sion symptoms and then trained separate ML models to pre-
dict treatment response to repetitive transcranial magnetic
stimulation for each subtype. Not only were the subtype-
specific models significantly more accurate than the universal
model trained on the entire population but the neuroimaging
biomarkers driving the prediction were also substantially
different across subtypes. Similarly, Chen et al. (65) clustered
81 infants into 2 subgroups based on brain functional con-
nectivity. Those subgroups had contrasting IQ in a 4-year
follow-up and distinct functional connectivity patterns in neo-
nates that predicted 4-year IQ. Although these results highlight
the need to consider variability in brain-behavior relationships
in brain-based ML analysis, the subtyping and predictive
modeling steps are still formulated as 2 separate procedures.
The successful training of the predictive models depends on
the quality of derived subtypes and may fail to capture com-
mon population-level mappings.

Therefore, we believe that the community will benefit from
exploring a new ML regime, which we call heterogeneous ML,
to enable the discovery of interpretable relationship-level het-
erogeneity in an end-to-end, data-driven fashion. These
models can be regarded as conditional models, wherein the
relationship between input and output variables is conditioned
on the moderators. Ideally, a heterogeneous ML model should
bal Open Science January 2025; 5:100397 www.sobp.org/GOS 3
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be able to encode a population-level mapping function just as
well as a homogeneous ML model but with the additional ca-
pacity to encode how environmental and sociodemographic
factors alter that mapping. These models can not only improve
understanding of brain-behavior relationship variability across
individuals (69) but they also have the potential to increase the
generalizability of models across populations that contain
sampling bias and/or domain shifts (70,71).
POTENTIAL APPROACHES FOR HETEROGENEOUS
ML

We now turn to the question “What might be an appropriate
computational approach for heterogeneous ML?” Traditional
approaches for probing nonuniform brain-behavior relation-
ships are largely based on multiple regression analysis (72),
which predicts a single brain measurement from diagnosis
group, behavioral phenotype, and demographic variables.
Known as the moderation effects, the varying brain-behavior
relationship is achieved by adding interaction terms between
behavioral measurements and covariates of interest (72,73)
(Figure 2A). While being simple and interpretable, these models
are univariate in nature and typically analyze each voxel or
region of interest independently, which can miss important
dependencies among multiple brain regions (12).

To capture the multivariate brain patterns, ML predictive
models reverted the direction of regression by predicting the
diagnosis group or behavioral phenotype from all available
brain measurements (4,10,13). However, most predictive
models are homogeneous and do not consider important
covariates in the training process. The challenge in identifying
moderation effects in whole-brain exploratory analysis is that
the high dimensional neuroimaging measurements would
require a large number of interaction terms as the model input,
likely resulting in training instability and overfitting. Thus, re-
searchers need to explore alternative strategies to reliably
model moderation effects in brain-based predictive models. A
possible existing ML technique that could be used for this
purpose is ensemble learning (74,75). For example, the
mixture-of-experts algorithm aims to learn an ensemble of
expert models, where each expert is specifically tailored for a
subset of data (76–78). When used in brain-behavior mapping,
mixture-of-experts models can define categories of relation-
ships by learning a finite number of representative brain-
behavior mapping functions that exist within the population.
The final mapping for each individual is thus a weighted
combination of the expert models (79) (Figure 2C) moderated
by their external factors. To further interpret the encoding of
moderation effects by mixture-of-experts models, future
research should focus on understanding how the external
factors drive the division of experts (or data subsets) and the
weighting scheme for each individual.

The past few years have witnessed the increasing use of
deep learning in brain-behavior mapping (10,43,54), with some
preliminary evidence suggesting its superior predictive per-
formance compared with traditional ML methods (80). These
highly nonlinear models are intrinsically more expressive than
traditional ML models and can be potentially better suited for
learning heterogeneous mapping functions (81,82). A high-
capacity deep learning model coupled with large-scale data,
4 Biological Psychiatry: Global Open Science January 2025; 5:100397
in principle, can implicitly extract the information related to
latent factors from the neuroimaging data (83–85) and subse-
quently use that information to learn nonuniform brain-
behavior mapping within the population. To explicitly link
those latent factors with interpretable environmental and
sociodemographic factors, multimodal predictive models can
be used to combine imaging and nonimaging (e.g., tabular)
data as the input (i.e., multimodal data fusion) (86–89) to learn
factor-modulated mapping functions. However, identifying
whether and how external factors interact with neuroimaging
measures or whether they are simply learned as final additive
effects can be challenging. One potential way to increase the
interpretability of relationship-level heterogeneity in deep
learning models is to use a hypernetwork (90) mimicking the
interaction term in traditional regression analysis. A hypernet-
work is a neural network that generates a subset of parameters
in a deep learning model. As opposed to the previous cate-
gorical setup in mixture-of-experts, this type of relationship-
level heterogeneity captures dimensional moderation effect,
as the parameters of the core brain-behavior mapping network
are continuously moderated by external factors represented
within the second hypernetwork (Figure 2B). Given that deep
networks are characterized by hierarchical extraction and
abstraction of features from input data (91), one has the flexi-
bility to choose which specific layer(s) of the network is
moderated, thereby bypassing the need for including the full
interaction of external variables with whole-brain connectome
measurements.

UPCOMING CHALLENGES AND NEXT STEPS

Despite the vision that heterogeneous ML might help unlock
the mystery of nonuniform mapping between biology and
psychopathology, some key components require careful
consideration.

Related Statistical Concepts

Other than moderation, there exist other types of statistical
relationships that are commonly studied in biostatistics to
model the causal effects of a third variable on treatment and
outcome variables (92). Two closely related concepts are
mediation and confounding (Figure 3A). Originating from
different research domains, these statistical concepts some-
times can only be distinguished on conceptual grounds (93)
while modeled identically in computational analysis (92).
Therefore, heterogeneous ML might benefit from the causal
ML literature that studies generic probabilistic graphical
models based on causal directed acyclic graphs (94–97). In
bridging the gap between these statistical methods, we have
to always keep in mind that computational models are largely
influenced by the context in which they are developed. In most
modern medical AI applications, for example, the ultimate goal
of modeling variable association or causality is usually to make
ML models invariant to external factors rather than dependent
on them (98–101). These models, known as fair AI or invariant
learning (102–105), hold the belief that the predictive behavior
of a model should be identical when applied to different sub-
populations and unconfounded by sensitive factors such as
sex and race (106). As such, existing learning mechanisms
(104,105,107,108) often fall short in capturing the meaningful
www.sobp.org/GOS
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Figure 2. (A) A multiple linear regression uses interaction terms to model how external factors moderate the univariate association between a neuroimaging
measurement and a behavior variable. (B) In a nonlinear machine learning model (e.g., a deep neural network), the dimensional moderation effect can be
characterized by using a second hypernetwork framework to generate the parameters of a neural network mapping brain to behavioral phenotype. (C) A
mixture-of-experts model can learn categorical subtypes of brain-behavior mapping by constructing a set of expert models, each encoding a mapping function
tailored for a subpopulation. The specific mapping associated with an individual is a weighted average of the expert models.
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moderation effects by those factors. While the idea of fair AI
seems to contradict heterogeneous ML, we emphasize that
bias, confounding effects, and moderation effects are distinct
concepts that do not conflict with each other. Mediators and
confounders influence the distribution of input and output
variables, whereas moderators influence the mapping function
between them (Figure 3A). In other words, it is theoretically
possible to design a model in which the model parameters are
factor dependent, but the prediction outcome is factor
invariant (Figure 3B). Thus, to be inclusive, future brain-based
ML research should embrace the concept of factor-
dependent models but needs to find new ways to disen-
tangle different statistical relationships.
Training Large-Scale Models

As mentioned, a universal high-capacity model can theoreti-
cally capture multiple latent brain-behavior pathways when
Biological Psychiatry: Glo
trained on sufficient data. This argument aligns with the current
trend in ML to train a single large-scale foundation model on
extensive datasets that is generalizable to various tasks and
populations (109–111). This approach has shown promise in
advancing clinical, research, and educational workflows in
many health care applications (112–114), including neurosci-
ence (115). In the context of brain-behavior mapping, the ex-
istence of a shared neural basis underlying psychiatric
comorbidity (116–120) suggests the feasibility of developing a
unified brain foundation model that can be integrated with
neurobiological, psychological, environmental, and physical
measurements for predicting symptom outcomes. However,
the practical question is whether existing neuroimaging studies
contain enough samples for training large-scale models. To
date, even the largest neuroimaging datasets (e.g., UK Bio-
bank and the ABCD Study) (28) and meta-analytic approaches
(121) contain sample size magnitudes smaller than those for
training text- and natural image–based deep learning models.
bal Open Science January 2025; 5:100397 www.sobp.org/GOS 5
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Figure 3. (A) Although heterogeneous machine learning aims to model moderation effects in machine learning prediction, different types of statistical
relationships exist among independent, dependent, and third variables. However, moderation effects characterize the statistical influence only on variable
relationships, not on the variables themselves; (B) brain-behavior mapping research should embrace the concept of factor-dependent models and correctly
disentangle moderation effects from confounding effects. External factors can moderate the mapping function without biasing the prediction outcome.
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Moreover, the increased capacity of large-scale models also
heightens the risk of low interpretability, overfitting, and biasing
predictions toward confounding effects (122). Thus, until
multimodal foundation models are proven feasible in neuro-
psychiatric prediction tasks, in-depth and reproducible studies
will likely rely on smaller-scale models with explicit modeling of
relationship-level heterogeneity.

Reproducibility of Brain-Behavior Subtypes

Despite the growing interest in data-driven heterogeneity
analysis, efforts in reproducing revealed subtypes are generally
lacking (51,123,124). The challenges in replication stem from
several key issues. First, there is an increasing concern about
misusing ML tools and validation procedures to obtain findings
that are not reproducible when subjected to more rigorous
statistical analysis (29,125,126). ML recipes discussed in this
review need to be combined with stringent data processing,
confounding-effect removal, hyperparameter tuning, and pre-
registration of validation data and experimental setups to
generate unbiased subtypes. Proper dissemination of experi-
mental data, code, and trained models is also critical for
reproducibility analysis. Next, the complexity of the heteroge-
neity may arise from the interaction among multiple biological,
psychological, and environmental factors (127). As a result,
replicating subtypes on independent studies is often chal-
lenging, given that the strength of specific moderation effects
can be further modulated by other factors across diverse
populations and contexts (23). Thus, integrating the proposed
methodology (Figure 2B) with large-scale multisite data to
model the interaction of multiple moderators can potentially
capture the full complexity of the disorder and bridge the
discrepancy across studies. Finally, reproducibility analysis
should also focus on long-term longitudinal validation
(128,129) to determine whether proposed subtypes represent
stable, clinically relevant distinctions in disease trajectories or
merely transient states or different stages of a single devel-
opmental trajectory (130).
6 Biological Psychiatry: Global Open Science January 2025; 5:100397
Evaluation and Interpretation Procedures

In addition to developing novel algorithms and architectures
for training heterogeneous ML, new evaluation procedures
need to be introduced to define the success criteria of het-
erogeneous ML. Commonly used metrics defined on the
overall population (e.g., prediction accuracy, area under the
curve, R2) need to be placed into the context of heterogeneous
ML to quantify variation in predictive power across individuals
(i.e., stratified performance evaluations) (131,132). Therefore,
more informative might be metrics such as the correlation
between an individual’s age and prediction error or an analysis
of variance test of area under the curve for different racial/
ethnic groups. These metrics should be subject to convergent
validity based on external dataset validation, longitudinal
assessment, and different types of data sources (e.g., struc-
tural or functional neuroimaging, inflammatory biomarkers). To
accelerate the translation of the heterogeneous predictive
modeling into clinical practice, evaluation should focus on
examining the association between subtypes and differences
in trajectories of symptom progression (e.g., motor, cognitive,
life quality, social functional) and treatment responses (e.g.,
remission rate, relapse rate, functional improvement)
(53,54,133). Finally, the development of heterogeneous ML
needs to be accompanied by new compatible model-
interpretation procedures. The universal neuroimaging bio-
markers need to be refined to ones that are more represen-
tative of specific subpopulations. In particular, the
interpretation should stringently specify which specific brain
circuits are most significantly moderated by external factors
and which subset of external factors are significant modera-
tors. Based on the results, researchers should be able to draw
conclusions in the following format, e.g., “Lower functional
activation in the frontoparietal network is a more salient risk
factor for substance use onset in males than in females” or
“The association between dorsal attention network functional
connectivity and anxiety symptoms is more pronounced with
more adverse childhood experiences.” Having these
www.sobp.org/GOS
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subcohort-specific neuroimaging biomarkers is fundamental to
designing tailored prevention and treatment strategies to
advance precision psychiatry.

From Subtyping to Individualized Analysis

As discussed, the interpretation of a heterogeneous ML model
will produce subtypes of neuroimaging biomarkers linked to
external factors. As a more comprehensive set of factors is
introduced to the model, the number of subtypes will drasti-
cally increase, such that each individual will be characterized
by a distinct descriptor. The subtyping analysis is then trans-
formed into a truly personalized predictive analysis. Such fine-
grained analysis holds the promise for understanding the
variability across individuals (69) and increasing the general-
izability of models across populations due to sampling bias
and/or domain shifts (70,71). Meanwhile, we also acknowledge
that ML is a data-centric approach at its core. The quality of
model personalization is tightly tied to the size and quality of
training data (88). Data diversity is highly desired to fully stratify
the effect of certain factors on brain-behavior mapping
(134,135). Thus, common issues in data collection, including
missing values, subject selection bias, underrepresentation of
specific groups, and skewed distribution in factors, can all lead
to model underspecification (34,88,131).

CONCLUSIONS

Many challenges need to be addressed before brain-based
modeling can substantially advance our understanding of
complex brain-behavior relationships and subsequently
translate to improved health care. Here, we reviewed current
research analyzing population heterogeneity and identified one
underexplored problem: the current design of brain-based ML
models fails to examine the heterogeneous nature of brain-
behavior mappings. Given that converging evidence points to
the benefit of modeling relationship-level heterogeneity, we
acknowledge that a more comprehensive study design is
required to test the efficacy of heterogeneous ML and evaluate
its improvement over unimodal and homogeneous ML. In
pursuing this path, understanding how to accurately model
moderation and confounding effects of environmental and
sociodemographic factors, along with optimally evaluating and
interpreting factor-moderated ML models, remain key chal-
lenges. Once addressed, ML can unleash its unique power to
quantify and disentangle brain-behavior-factor relationships to
truly personalize medicine.
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