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Objective. The aim of this study was to develop a method to assess the potential effects of air pollution mitigation on healthcare costs
and to apply this method to assess the potential savings related to a reduction in fine particle matter in Denmark. Methods. The
effects of air pollution on health were used to identify “exposed” individuals (i.e., cases). Coronary heart disease, stroke, chronic
obstructive pulmonary disease, and lung cancer were considered to be associated with air pollution. We used propensity score
matching, two-part estimation, and Lin’s method to estimate healthcare costs. Subsequently, we multiplied the number of saved
cases due to mitigation with the healthcare costs to arrive to an expression for healthcare cost savings. Results. The potential cost
saving in the healthcare system arising from a modelled reduction in air pollution was estimated at C0.1–2.6 million per 100,000
inhabitants for the four diseases. Conclusion. We have illustrated an application of a method to assess the potential changes in
healthcare costs due to a reduction in air pollution. The method relies on a large volume of administrative data and combines a
number of established methods for epidemiological analysis.

1. Introduction

Air pollution is known to have an adverse effect on different
sectors of the economy, including public health. Air pollution
causes increased morbidity and mortality [1]. It is therefore
relevant to include in cost-benefit analyses of mitigation
projects an assessment of the potential savings in healthcare
resources due to a reduction in morbidity and mortality.

The relationship between exposure to air pollution, the
disease burden, and healthcare costs cannot be determined
precisely. Air pollution impacts negatively on health; mitigat-
ing air pollution could potentially result in health benefits.
A recent literature review identified several studies of the
relative changes in incidence and mortality associated with
changes in air pollution [1]. The review specifically identified
the connection between an increase in fine particulate

matter (PM2.5) and the following four diseases: coronary
heart disease (CHD), stroke, chronic obstructive pulmonary
disease (COPD), and lung cancer [1]. A review linked
to the present study that explored the literature relating
to healthcare cost savings of a reduction in air pollution
identified six nonsource-specific studies on the impact of
particulate matter on healthcare costs [2–7]. These studies
were conducted in other countries and dealt with air
pollution in different circumstances. They were prevalence-
based and focused on coarse particulate matter (PM10).
PM10 is associated with less severe health effects than is
PM2.5 [8].

In the present study, we chose to focus our analysis on the
four diseases mentioned above. The objective was to develop
a method to assess the potential effects of air pollution
mitigation on healthcare costs. We focused on the effects of
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changes in the level of PM2.5 and developed a method to
assess the potential benefits for the Danish healthcare sector
from a reduction in air pollution. As a case, we assumed
a 10 μg/m3 decrease in the annual mean level of PM2.5.
Compared with data from the Danish national air pollution
monitoring programme, this corresponds to a reduction of
51% and 76% of present levels in Copenhagen at street level
and rooftop urban background, respectively [9].

2. Materials and Methods

Since most individuals are exposed to some levels of air
pollution, it is not feasible to differentiate between indi-
viduals who are exposed to certain levels of air pollution.
Therefore, this study used an indirect method of identifying
the “exposed” individuals (as opposed to nonexposed). By
applying assumptions about the relative risks of new diseases
(incidence) we attributed a change in disease incidence to a
change in air pollution exposure.

In Denmark, easy access to administrative health registers
provides excellent conditions for register-based research.
The use of individual civil registration numbers enables
researchers to make connections between registers con-
taining information about individuals’ use of healthcare
resources as well as demographics and other social variables.
The advantages of such registers have been well illustrated
in Davidsen et al. [10]. For this study, we used individual
encrypted data on healthcare utilisation, sociodemographics,
education, migration, and death on the entire Danish
adult population. These data were supplied and hosted
by Statistics Denmark. To describe healthcare utilisation,
we used data from the Danish National Health Service
Register, the Danish National Patient Register, and the
Danish National Prescription Registry. These registers hold
detailed information about the use of healthcare resources.
Information on sociodemographics, education, migration,
and death was retrieved from the Danish Civil Registration
System and from registers about level of education, labour
market affiliation, personal income and transfer payments,
and causes of death. We also used data from the DANCOS
cohort [10], which includes individuals who participated
in the Danish nationally representative health interview
surveys. The cohort provided self-reported information on
health status and smoking habits, among other things. To
simplify the analyses, we excluded individuals who emigrated
from Denmark after the baseline year.

Healthcare costs include utilisation of primary and
secondary healthcare services and of prescription medicine.
Healthcare costs in the primary healthcare sector were
defined as the reimbursement to the patient by public
health insurance (in most cases 100% of average costs). The
diagnosis-related groups (DRG) tariff, defined as the average
cost per admission, was used as the cost of admissions.
The ambulatory grouping system (DAGS) tariffs defining
the average cost per visit were used to cost outpatient or
emergency room visits in the secondary healthcare sector.
Neither the DRG nor DAGS tariffs included contributions to
fixed costs. To value the cost of prescription medicine, the full

sales price was used, including both the patient’s payment
and the reimbursed element. The currency was translated
into euros using a 7.45 DKK/EUR exchange rate. Costs were
discounted at a 3% discount rate and adjusted to similar
pricing levels (fixed at 2006 pricing levels).

2.1. Assumptions of Relative Risk. For women aged 50–79
and exposed to a 10 μg/m3 increase in the annual mean
level of PM2.5, the relative risk of being incident with CHD
and stroke was assumed at 1.21 and 1.35, respectively [11].
No similar data were available for the long-term effects in
males. Based on findings on mortality related to particulate
emissions, for example, Pope et al. [8], we assumed that the
relative risk for cardiovascular events in men was lower than
for women. Tentatively, therefore, we assumed the relative
risk (RR) to be half that of the increased risk for women, that
is, for stroke the RR for men was 1.175 and for coronary heart
disease 1.105.

For both men and women aged over 30, we assumed that
the RR of COPD for a 10 μg/m3 increase in the annual mean
level of PM2.5 was 1.14 [12]. For lung cancer, we used the
RR of mortality as an approximation for incidence. The RR
of lung cancer mortality per 10 μg/m3 increase in the annual
mean level of PM2.5 was assumed at 1.14 [13]. We assumed
that, by inverting the RR, we would achieve an expression
for the reduction in incidence due to a 10 μg/m3 decline in
the annual mean level of PM2.5 for CHD, stroke, COPD, and
lung cancer, enabling us to calculate a number of saved cases.

2.2. Attributable Cost. We applied the attributable cost
approach [14]. In this approach, the costs associated with
a particular disease can be determined as the difference
between average healthcare costs of diseased individuals
and a comparable nondiseased control group, thus covering
all contacts with the healthcare system regardless of the
reason for the contact. In the analysis, we matched the cases
(individuals with one of the four diseases) with a set of
controls (individuals without any of the four diseases) by
use of propensity scoring. This method aims to identify
individuals who are similar with respect to a predetermined
set of sociodemographic characteristics. We assumed that the
cost difference for these two groups accounts for the average
attributable cost of the disease.

We multiplied the average attributable cost with the
number of saved cases following a reduction in air pollution
to arrive at an expression for healthcare cost savings from a
10 μg/m3 decline in the annual mean level of PM2.5.

2.3. Identification of Cases. Individuals were identified as
cases if they had at least one inpatient admission, outpatient
visit, or emergency room visit with a relevant primary
diagnosis. We defined our diagnoses according to the ICD10
classification codes [15]: CHD = I20–25, stroke = I60–69,
COPD = J41–44, and lung cancer = C33-34. The time of
incidence was defined as the date of the first hospital contact
due to disease (including death). Individuals with the disease
who were in contact with primary care facilities only could
not be identified. We applied a washout period of 20 years to
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ensure that the identification of cases was based on the first
occurrence of the diagnosis.

1997 was considered as the baseline year as it was the first
year where detailed data on healthcare cost was available in
the registers. We required a minimum number of 25 cases
for the estimates to be considered to have sufficient statistical
power. Where our requirement was not met, we extended the
baseline to a longer period.

According to Vestbo et al. [16], hospitalisation for COPD
patients most often occurs at a relatively late stage of the
disease. Therefore, we were not able to identify the true date
of onset of COPD from registers. As a pragmatic solution
to this, we introduced a lag-time of nine years and assumed
that true incidence of COPD was nine years prior to the first
hospitalisation. In this way, we identified a cohort of cases
with their first hospitalisation in 2006 and followed them
retrospectively from 1997 to 2005. We defined this cohort as
the prehospitalisation cohort and used it in the estimation
of attributable healthcare costs related to the years prior to
the first hospitalisation. Regarding healthcare utilisation after
hospitalisation, we used the same method as for the other
three analysed diseases.

We stratified all analyses by gender and age in five-year
intervals (50–54,. . ., 75–79, 80+). For CHD and stroke the RR
change associated with an increase in the air pollution could
only be identified for individuals in the 50–79 age range.
We assumed that the RR for older age groups was identical
to that of younger age groups. For lung cancer we excluded
individuals older than 79 because the mortality by the fifth
year would have resulted in fewer than 25 cases.

2.4. Time Horizon. The attributable costs of chronic diseases
range in time from the onset of disease to the time of death.
Therefore, we applied the longest time horizon allowed by
the data. For CHD and stroke, the follow-up period was 10
years, for COPD 19 years, and for lung cancer eight years.

2.5. Matching. We matched cases with controls using the
propensity scoring method [17]. In the baseline year, we
determined the propensity score for the entire population at
risk using logistic regression. The propensity score expresses
the likelihood of being incident during the year depending on
cohabiting status, educational level, socioeconomic status,
age, gender, and comorbidity. For comorbidity, we used an
adjusted Charlson index [18], which did not include scores
achieved from the analysed diseases. We included all theo-
retically relevant variables that were accessible from registers
regardless of their significance in the logistic regression.

Equation 1. Propensity score:

logit
(
p
) = ln

(
p

1− p

)

= α0 + ρX. (1)

The variable X in (1) included age, cohabitation status, edu-
cation, socioeconomic status, and comorbidity. We excluded
controls that contracted one of the analysed diseases during
followup. This meant that patients were deleted from the
control population. Cases were matched 1 : 5 with controls

using nearest neighbour matching, where each case was
matched with the five individuals closest to the case,
measured on propensity score. This allowed us to identify a
cohort of controls that was similar to cases (measured by the
likelihood of being incident) but without having the disease.

2.6. Healthcare Costs. Since we had detailed data on all
individuals in all years, we could apply the method developed
by Lin et al. [19], dividing the entire study period into smaller
periods and multiplying the Kaplan-Meier estimator for the
probability of surviving to the start of each interval with an
appropriate estimator of the average cost over the interval,
given survival to the start of the interval. From this point
on, we therefore separated regression of cases from that of
controls.

Two challenges in the analysis of healthcare costs related
to the distribution of costs. Firstly, some individuals had zero
demand for healthcare. Secondly, given positive demand,
healthcare expenditure followed a lognormal distribution. A
two-part model was suitable for solving the first challenge
[20]. In the first part of the two-part method we calculated
the share of individuals with positive healthcare costs, C+

t .
We use C+

t for adjustment of the healthcare costs, which are
calculated for individuals with positive healthcare costs, thus
achieving an expression of the average healthcare costs for all
individuals.

Given positive healthcare demand, we suggested the
average cost for individuals alive at the beginning of the year
to be estimated assuming a log-link and a lognormal distri-
bution in a generalised linear mixed model with a categorical
variable, Year, indicating the year (after incidence), and an
individual random effects term, Z, as explanatory variables.

Equation 2. Two part—part II:

E
(
Healthcare costs | positive demand

)

= α + θt ∗ Year + ϑ∗ Z, where θt =

⎛

⎜
⎜
⎜
⎜
⎝

θ0

θ1
...
θT

⎞

⎟
⎟
⎟
⎟
⎠

,
(2)

where T is the time horizon. With the mixed model, we
addressed heterogeneity and with the generalised form we
addressed the log-normality of healthcare costs. We were
particularly interested in the parameter estimates of α and
θ, which in combination express the log of healthcare costs.

However, since the log of healthcare costs was of little
informative value, a retransformation was needed. In order
to compensate for retransformation bias, we multiplied by
the smearing estimator [21].

Equation 3. Duan smearing estimator:

SM = 1
N

∑
ee, (3)

where e is error term from the regression of healthcare costs
and N is the number of individuals in the cohort.
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Once we knew (from (2) and (3)) the average healthcare
cost given positive demand, the two-part method led to a
multiplication of these findings with the share of individuals
with positive demand, C+

t , in order to achieve the expected
healthcare cost. We did this for individuals surviving to the
beginning of each year.

Equation 4. Expected healthcare cost for individuals surviv-
ing to the start of year t:

HC(t) = C+
t ∗ eα2+θt ∗ SM. (4)

Subsequently, we calculated the survival at the end of each
time period (or, equivalently, the beginning of the following
time period).

Equation 5. Kaplan-Meier survival estimate:

Ŝ(t) =
t∏

i=0

ni − di
ni

, (5)

where ni is number of survivors up to time period i, and di is
the number of deaths in time period i.

By weighing average costs for individuals surviving to the
start of period t with the survival to the start of period t (or,
equivalently, end of period t−1) and subsequently summing
over the entire time horizon, T , we achieved an expression of
the attributable costs of the given disease.

Equation 6. NPV healthcare costs per case attributable to the
air-pollution-related disease:

NPV =
T∑

t=0

HCp(t)∗ Ŝp(t − 1)−HCc(t)∗ Ŝc(t − 1)

(1 + δ)t
. (6)

Subscripts p and c denote group assignment (patient or
control), δ is the discounting factor and

Ŝp,c(t − 1) = 1, for t = 0. (7)

The expression in the numerator can be interpreted as the
expected healthcare cost attributable to the pollution related
disease in year t. All terms were aggregated over time in order
to achieve the total net present value of expected healthcare
cost attributable to the disease.

As noted previously, we assumed that the RR could be
inverted to give an incidence after a 10 μg/m3 decline in the
annual mean level of PM2.5. Thus, we could calculate the
decline in the incidence.

Equation 7. Number of Saved Cases due to a 10 μg/m3

Decline in the Annual Mean Level of PM2.5:

Cases saved =
(

1− 1
RR

)
∗ incidence before. (8)

Having achieved the total net present value in (8) and
the number of saved cases in (9), we multiplied these two
in order to achieve the benefit from mitigation in terms of
healthcare cost savings.

Equation 8. Healthcare Cost Savings per 100,000 Inhabitants
Related to a 10 μg/m3 decline in Annual Mean PM2.5:

Healthcare cost savings = NPV∗ cases saved. (9)

3. Results

Table 1 shows the characteristics of the analysis populations
including t-tests for equality of means. In the 1997 national
patient register, we identified 20,083, 13,632, and 9,058
incident cases of CHD, stroke, and COPD, respectively. In
1997–1999, we identified 10,200 incident cases of lung cancer
and in 2006 we identified 7,712 incident cases of COPD.

The average age spanned from 67 to 74. Of the pop-
ulations, 42% to 53% were female, and this was highest
for stroke and COPD, and 49% to 61% of the populations
were married. The average Charlson score was lowest for the
cardiopulmonary diseases, ranging from 0.3 to 0.4, while the
average Charlson score for lung cancer cases and controls was
about 1.2. More than 60% were unskilled and less than 10%
had a university degree. More than 80% of cases and controls
were outside the labour market (i.e., either retired or on early
retirement). For those still in the labour market, the majority
were blue collar workers.

Figure 1 shows the survival of the analysed populations.
Not surprisingly, survival of controls was better in all four
diseases. We were not able to analyse survival for COPD prior
to hospitalisation. Therefore, the survival in the retrospective
part of the COPD analysis was assumed at 100%.

Mortality was high among lung cancer cases. Hence, we
chose to expand the baseline for lung cancer in order to
increase the size of the cohort. Thus, we pooled incident cases
and their controls in the years 1997–1999 for analyses of lung
cancer.

Table 2 illustrates incidences per 100,000 inhabitants and
attributable healthcare costs per episode. The incidences of
CHD and stroke were based on 1997 data. The incidence of
lung cancer was an average of incidences in 1997–1999 and
the incidence of COPD was an average of 1997 and 2006. The
healthcare costs per case correspond to (6).

As it is not within the scope of this study to provide a
detailed analysis of the above table, it suffices to state that
the incidence rates are within the expected range and in
accordance with common knowledge of the epidemics of the
diseases. This is also the case for the average healthcare costs.
The negative attributable costs in the oldest age groups with
CHD and lung cancer can be explained by a poor survival
prognosis compared to their controls.

Table 3 shows the healthcare cost savings per 100,000
inhabitants of a 10 μg/m3 decline in the annual mean level
of PM2.5 for 10, 10, 19, and 8 year-time horizons for CHD,
stroke, COPD, and lung cancer, respectively, and a total for
the Danish population aged 50+.

A formal comparison of the estimated cost data for the
different diseases requires an equal time horizon. Therefore,
it is only relevant to compare the healthcare costs of
cardiovascular diseases (CHD and stroke).

Stroke had a much higher potential of healthcare cost
savings from air pollution mitigation compared to CHD.
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Table 1: Characteristics of the populations at baseline.

CHD Stroke
COPD COPD

Lung cancer
before after

Number of cases 20,083 13,632 7,712 9,058 10,200

Age 72.1 73.9 71.3 70.2 67.0

Women (%) 46.4 52.7 51.9 50.3 42.4

Married (%) 55.3 48.6 48.9 55.1 61.1

Charlson score 0.3 0.3 0.4 0.3 1.2

Education (%)

Unskilled 74.9 78.6 63.2 76.6 64.8

Skilled 18.2 15.5 28.0 18.3 26.8

Higher education 6.9 5.9 8.8 5.2 8.4

Socioeconomic status (%)

White collar 6.7 4.6 2.9 3.6 5.2

Blue collar 10.5 7.3 9.7 7.4 11.3

Unemployed 1.7 1.3 1.6 1.8 1.7

Outside labour market 81.1 86.9 85.8 87.2 81.8
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Figure 1: Survival curves.
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Table 2: Incidence per 100,000 inhabitants and attributable healthcare costs per case (C, 2006 level).

50–54 55–59 60–64 65–69 70–74 75–79 80+

Incidence per 100,000 inhabitants

CHD

Men 409 610 850 1, 113 1, 478 1, 936 3, 125

Women 131 242 350 551 764 1, 224 2, 746

Stroke

Men 240 388 620 867 1, 236 1, 746 2, 473

Women 144 221 348 590 854 1, 372 2, 286

COPD

Men 155 198 318 511 834 944 851

Women 169 217 335 481 680 787 523

Lung cancer

Men 88 151 283 409 524 517

Women 73 114 206 275 274 252

Attributable healthcare cost per case

CHD

Men 21, 650 21, 466 20, 247 12, 249 6, 080 −2, 062 −9, 991

Women 19, 365 21, 177 18, 711 14, 907 10, 398 −489 −10, 360

Stroke

Men 32, 924 33, 178 31, 586 27, 785 19, 640 15, 191 3, 994

Women 30, 212 30, 850 32, 534 25, 847 22, 975 13, 795 1, 512

COPD

Men 23, 315 27, 786 32, 130 28, 859 22, 177 9, 869 4, 427

Women 31, 174 32, 698 41, 222 36, 695 26, 390 18, 834 11, 636

Lung cancer

Men 33, 515 23, 685 22, 467 9, 207 4, 111 −2, 905

Women 33, 371 24, 508 17, 831 13, 485 4, 590 −3, 522

Table 3: Healthcare cost savings attributable to a 10 μg/m3 decline in annual mean PM2.5 (million C, 2006 level).

RR 50–54 55–59 60–64 65–69 70–74 75–79 80+ Total∗

CHD

Men 1.105 0.8 1.2 1.6 1.3 0.9 −0.4 −3.0 0.7

Women 1.21 0.4 0.9 1.1 1.4 1.4 −0.1 −4.4 0.1

Stroke

Men 1.175 1.2 1.9 2.9 3.6 3.6 3.9 1.5 2.5

Women 1.35 1.1 1.8 2.9 4.0 5.1 4.9 0.9 2.6

COPD

Men 1.14 0.4 0.7 1.3 1.8 2.3 1.1 0.5 1.1

Women 1.14 0.6 0.9 1.7 2.2 2.2 1.8 0.7 1.3

Lung cancer

Men 1.14 0.4 0.4 0.8 0.5 0.3 −0.2 0.4

Women 1.14 0.3 0.3 0.5 0.5 0.2 −0.1 0.3

Note: the denominator of healthcare costs per age group is based on the Danish age composition at baseline.
∗Total is a weighted total for all age groups.

This is partly explained by the attributable healthcare costs
per case, which are positive for any stroke age group and
higher than those of CHD for any age/gender group, whereas
it is negative for the oldest age groups of CHD. It is also
partly due to the fact that the incidence of stroke is more
responsive to changes in air pollution (i.e., has higher RRs)
than is CHD.

3.1. Sensitivity Analysis. Tables 4–8 show sensitivity analyses
of the total cost (corresponding to the last column of Table 3)
when different model assumptions have been applied.

In the base case, we have used a modified Charlson index
to control for comorbidity in the matching algorithm. In this
first sensitivity analysis, we have excluded comorbidity from
the matching algorithm in order to test the sensitivity of the
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Table 4: Sensitivity analysis based on matching without co-
morbidity (million C, 2006 level).

RR Total Deviation (%)

CHD

Men 1.105 0.9 0.2 (25.9)

Women 1.21 0.3 0.2 (218.9)

Stroke

Men 1.175 2.8 0.3 (12.8)

Women 1.35 3.0 0.3 (12.9)

COPD

Men 1.14 1.3 0.2 (21.8)

Women 1.14 1.5 0.2 (14.5)

Lung cancer

Men 1.14 0.6 0.2 (41.7)

Women 1.14 0.4 0.1 (42.1)

Table 5: Sensitivity analysis—2050 population standards (million
C, 2006 level).

RR Total Deviation (%)

CHD

Men 1.105 0.1 −0.6 (−85.7)

Women 1.21 −0.4 −0.5 (−497.9)

Stroke

Men 1.175 2.5 0.0 (0.5)

Women 1.35 2.6 0.0 (0.5)

COPD

Men 1.14 1.1 0.0 (−1.7)

Women 1.14 1.3 0.0 (−0.7)

Lung cancer

Men 1.14 0.4 −0.1 (−15.6)

Women 1.14 0.3 0.0 (−11.6)

base case results to comorbidity. Table 4 shows the results of
these calculations.

Table 4 shows us that potential healthcare cost savings
increase marginally when excluding comorbidity from the
matching. This indicates that comorbidity contributes in the
propensity score of being incident with the four analysed
diseases and by taking it out of the matching algorithm we
select a set of controls that are healthier than the controls
selected for the base case.

Both from a Danish [22] and a worldwide perspective
[23], radical changes are expected to the composition of
the population over the coming 50 years. All other things
being equal, this will impact on potential healthcare cost
savings. Table 5 shows a one-way sensitivity analysis based
on population projections from Statistics Denmark.

Estimates of the total healthcare cost savings were lower
for the diseases, except for stroke, for which there was a
close to zero change. The reduced healthcare cost savings is a
result of a shift of the population towards a higher fraction
of the older age groups and relatively smaller attributable
healthcare costs in the older age groups.

Table 6: Sensitivity analysis based on case survival (million C, 2006
level).

RR Total Deviation (%)

CHD

Men 1.105 1.4 0.7 (99.7)

Women 1.21 1.3 1.1 (1096.8)

Stroke

Men 1.175 3.3 0.8 (33.6)

Women 1.35 4.2 1.6 (61.3)

COPD

Men 1.14 1.5 0.5 (42.2)

Women 1.14 1.7 0.4 (26.8)

Lung cancer

Men 1.14 0.9 0.5 (113.0)

Women 1.14 0.6 0.3 (96.3)

Table 7: Sensitivity analysis—COPD survival (million C, 2006
level).

RR Total Deviation (%)

COPD

Men 1.14 1.1 0.0 (2.3)

Women 1.14 1.4 0.0 (2.5)

It is a matter for discussion as to whether or not inclusion
of savings to healthcare costs due to the premature death of
case individuals is unethical. We have included these in the
base case while some may argue that, by doing so, one favours
disease and air pollution through potential healthcare cost
savings due to increased mortality among cases. In order to
shed light on the magnitude of this potential source of bias,
we have calculated a one-way sensitivity analysis replacing
Ŝc with Ŝp in the calculation of healthcare costs (6). Table 6
shows the results of these calculations.

The results of the sensitivity analysis are that healthcare
costs beyond the death of the cases are eliminated, giving
a positive gain in the potential of reducing the levels of
PM2.5. In absolute figures, there is a gain of C0.3–1.6
million in the potential healthcare cost savings. These are
considerable changes in all four diseases, representing the
fact that premature mortality is a major factor in these
diseases (even when comorbidity is taken into account).

Table 7 shows a one-way sensitivity analysis of the health-
care costs of COPD associated with particulate emissions
with updated survival on the prospective part. For survival in
the year of the first hospitalisation, we used the 2006 cohort
survival and adjusted the survival of the prospective part of
the analysis on the basis of this.

The sensitivity analysis resulted in very small changes in
the estimates of total healthcare cost savings compared to the
base case. Updating the survival had little influence on the
magnitude of total healthcare cost savings.

Our estimates of RRs taken from the literature were
based on cohorts studied many years ago and under different
circumstances; therefore, the RRs may not be representative
for our case. Additionally, a mitigation of more than 50%
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Table 8: Sensitivity analysis: 5 μg/m3 decrease in the annual mean
level of PM2.5 (million C, 2006 level).

RR Total Deviation (%)

CHD

Men 1.088 0.4 −0.3 (−47.5)

Women 1.105 0.1 0.0 (−45.2)

Stroke

Men 1.053 1.3 −1.1 (−46.0)

Women 1.175 1.5 −1.1 (−42.6)

COPD

Men 1.07 0.6 −0.5 (−46.7)

Women 1.07 0.7 −0.6 (−46.7)

Lung cancer

Men 1.07 0.2 −0.2 (−46.7)

Women 1.07 0.2 −0.1 (−46.7)

of current air pollution levels may be difficult to achieve,
especially considering that current levels are already below
EU limit values [24]. It may be more realistic to consider
scenarios with smaller changes in air pollution. Both these
concerns relate to the RR and a sensitivity analysis of changes
in RR therefore seemed evident. Table 8 shows a scenario
where mitigation is only 5 μg/m3 (corresponding to half the
RR).

In this scenario, healthcare costs of all four diseases
decrease by 43% to 48%, indicating that the elasticity of the
healthcare cost savings with respect to the RR is close to one
in our model.

4. Discussion

We have devised a method to calculate the number of saved
cases associated with a 10 μg/m3 decline in the annual mean
level of PM2.5 (using RRs found in the literature). We
multiplied these numbers of cases with the average healthcare
cost per episode of pollution related disease in order to
achieve the healthcare cost savings attributable to a 10 μg/m3

decline in the annual mean level of PM2.5. Using this
method, it appears that there is a positive savings potential
for the healthcare sector. However, the applied method is
challenged by various factors.

The achievement of the objective to estimate potential
benefits in terms of reduced healthcare costs rests on the
assumption that all health effects of air pollution have been
captured by the selection of the four diseases. This is not the
case. More diseases than selected for this study were found to
be related to air pollution [1]. However, the indirect method
we used to identify exposed individuals requires that we only
use diseases with significantly increased RRs of incidence
or mortality, hence the selection of the four diseases. By
not taking into account all potential benefits in terms of
health effects, potential benefits in terms of healthcare costs
represent an underestimation.

An important strength of the analysis is its basis in real-
life individual data obtained from routine administrative
registers. This enabled a much more detailed analysis and

the combination of a number of very strong and well-proven
methods and principles.

4.1. Applicability. The cost-benefit framework is useful for
analysing the full effects of mitigating air pollution. In
such a framework, the costs make up the actual costs of
implementing mitigation interventions. The benefits would
be in the form of healthcare cost savings, productivity gains
and the value of increased utility of reduced pollution. The
advantage of analysing in a cost-benefit framework is that it
is intuitive and yields a single numeric (positive or negative)
describing the net benefit of the mitigation effort. The results
of our analysis may therefore be used as input in a cost-
benefit framework. However, it is important to note that
mitigating air pollution reduces incidence in diseases with
high mortality, thereby increasing the average remaining
life expectancy and hence the time span in which positive
healthcare costs can be sustained. Combining this result
with the productivity gains and the value of the increased
utility of reduced pollution would give us the total benefits
of an intervention, which reduces annual mean levels of
PM2.5 by 10 μg/m3. We have not considered the effects of
mitigating domestic pollution on health abroad. Since air
pollution is airborne, it may affect the health of neighbouring
populations. Any such effects should also be incorporated in
a cost-benefit analysis.

Our estimates were computed on the basis of Danish
healthcare cost figures. They may therefore differ substan-
tially from healthcare costs of pollution-related diseases in
countries with different organisational healthcare sector and
cost structures. We believe, however, that the method in itself
is fully applicable to cost-benefit analyses in other countries.

4.2. Matching of Controls. We know that smoking, for
instance, is a high-risk factor for the diseases analysed. How-
ever, smoking data are not included in the administrative
registers. We explored the opportunity of matching with the
inclusion of an index of smoking probability derived from
a logistic regression from a subsample of the population.
The controls identified by this approach had almost identical
healthcare costs compared to controls identified without
the smoking probability. Therefore, we abandoned this
approach.

In the selection of controls for each disease, we excluded
those individuals who became incident with the disease
within the observation period. This may bias the estimates
of healthcare cost for controls, since the control population
may be “too healthy.” However, it was not possible to include
them in the model using the method selected for this study.
By including the individuals known to develop the disease,
we get a control cohort that is “too ill.” A series of studies
[25–27] discusses the issue of control selection.

In our matching, we found that CHD and stroke cases
were slightly older than controls and lung cancer cases had
higher comorbidity than controls. However, the absolute
differences in age and comorbidity were relatively small and
the significance is probably an indication that age did not
contribute much to the propensity to be incident with CHD
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or stroke (already stratifying by five-year intervals) and that
comorbidity did not contribute much to the propensity of
being incident with lung cancer.

4.3. Relative Risks. The studies on which we based our
assumptions of RRs (Table 3) might have been based on
other levels of air pollution and in other populations.
Application of these RRs for Denmark therefore relies heavily
on the assumption that the RR is identical for other levels of
air pollution. No evidence of a nonlinear relationship (within
the ranges of PM pollution encountered in Europe) exists
and for that reason a linear relationship is assumed.

It was not possible to establish the RRs of incidence
of lung cancer associated with the outdoor concentration
of PM2.5. Thus, we used the RRs of mortality as an
approximation for those of incidence. This is not likely to
induce much bias, since the prognosis of surviving once
diagnosed with lung cancer is very poor.

4.4. Left Censoring, Left Truncation, and Time Horizon. We
were challenged by left censoring in that some cases may
have died prior to hospitalisation. However, by including
information from the causes of death register, we believe that
we captured the majority of cases. Cases particularly subject
to left censoring are likely to be the mild cases that did not
need hospitalisation and did not have the disease registered
as cause of death. Most of the left censoring was likely to be
in relation to COPD.

It was not possible to identify the date of onset of disease
using register-based analysis. By using the first hospital
contact (or time of death) to identify time of onset of
disease, our analyses were subject to left truncation. Cases
will always have had a period of time with the disease prior
to the first hospital contact. We believed that the gravity of
this error was largest for COPD, which is known to have
a long period prior to hospitalisation. By using a nine-year
prehospitalisation period for COPD cases, the error was
assumed to be negligible. For the other three diseases, we
believed that the error obtained from not including a pre-
hospitalisation period was negligible.

Mortality was high for lung cancer. We therefore trun-
cated the follow-up period of lung cancer to eight years
to ensure sufficient statistical strength. Furthermore, we
excluded individuals older than 79 years of age from the
analysis of lung cancer. By truncating the follow-up period
and excluding certain age groups, we disregarded an element
of the costs in estimating the healthcare cost savings for
lung cancer. Whether total healthcare cost savings would
have been higher or lower depends on mortality and the
level of healthcare costs of cases relative to controls in the
years beyond the truncated period. This also applies to CHD,
stroke, and COPD.

In accordance with the method used to define disease
incidence and for reasons of limitations in data availability,
our analyses were limited to 10, 10, 19, and eight years
for CHD, stroke, COPD, and lung cancer, respectively. As
previously noted, an extension of the time horizon may

reduce or increase healthcare cost savings depending on
mortality and healthcare costs of cases relative to controls.

4.5. Obsoletion of Data. Analysing healthcare costs of two
cohorts of COPD patients and controls with different time of
incidence informed us that survival and (initial) healthcare
cost patterns had changed from 1997 to 2006. The 1997
cohort experienced lower survival rates and lower initial
healthcare costs compared to the 2006 cohort. On the other
hand, fewer patients were diagnosed in 2006 than in 1997.
This same issue may apply to the other diseases if analysed
prospectively.

5. Conclusion

To our knowledge, no previous study has used the combi-
nation of Lin’s approach, attributable cost computation and
register-based data to arrive at an expression of healthcare
costs associated with a given exposure, in this case, air
pollution.

In the present study, we succeeded in achieving our
objective of developing a method for assessment of the
benefits of mitigating air pollution in terms of healthcare cost
savings, and applying it to the Danish case with fine particle
matter. We found that there was a potential benefit in the
form of reduced healthcare costs related to mitigation.
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