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Bacteria belonging to Staphylococcus genus, in particular methicillin-resistant
Staphylococcus aureus and multidrug-resistant Staphylococcus epidermidis, together
with Cutibacterium acnes are the main strains involved in skin disease. The increase in
multidrug-resistant bacteria has revived attention on natural compounds as alternative
agents for the treatment management. Among these, hop extract, a hydroalcoholic
solution obtained from experimental crops of Humulus lupulus L. variety cascade (hop),
displays diverse biological properties including an antimicrobial one. The aim of this
study was to evaluate the antimicrobial activity and the capacity to inhibit the biofilm
formation of a characterized hop extract against S. aureus and S. epidermidis multidrug-
resistant strains and against a C. acnes strain. The hop extract was characterized
by (i) phytochemical analysis through a reversed-phase high-performance liquid
chromatography (HPLC)–fluorimetric method, (ii) biocompatibility test with Artemia salina
L., (iii) cytotoxicity against two cell lines, (iv) docking analysis, and (v) antimicrobial and
antibiofilm activities by detection of zones inhibition, minimal inhibitory concentrations
(MICs), biomass quantification, and cell viability. The hop extract was biocompatible
and non-cytotoxic at all tested concentrations. HPLC analysis revealed significant levels
of gallic acid, resveratrol, and rutin. This last compound was the most representative
displaying a high affinity against PBP2a and KAS III (Ki values in the submicromolar
range). The characterized hop extract showed a good antimicrobial action with MICs
ranging from 1 to 16 µg/mL and was able to inhibit the biofilm formation of all tested
strains, except for two S. aureus strains. The biofilm formed in presence of the hop
extract was significantly reduced in most cases, even when present at a concentration
of 1/4 MIC. The live/dead images showed a remarkable inhibition in the biofilm formation
by hop extract with a weak killing action. Overall, the tested hop extract is a good
candidate to further explore for its use in the prevention of infection particularly, by
multidrug-resistant Gram-positive pathogens.

Keywords: hop extract, Staphylococcus spp. and Cutibacterium acnes, antibacterial activity, antibiofilm activity,
antimicrobial resistance, biocompatibility
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INTRODUCTION

Nowadays, the increase in multidrug-resistant (MDR) bacteria
represents an important global emergency that encourages
the search for new strategies to overcome this complex
phenomenon that led to the failure of traditional antibiotic
treatments. Diverse studies show that infections by MDR
strains are one of the principal causes of morbidity and
mortality (Levin-Reisman et al., 2017; Oliveira et al., 2018). This
phenomenon involves pathogens isolated from different sites.
The higher number of MDR Gram-positive microorganisms
coming from skin infections with a high percentage of
methicillin-resistant Staphylococcus aureus (MRSA) (Lu et al.,
2018) is significant.

Staphylococci are the main strains colonizing the resident
human microbiota, and in particular, Staphylococcus epidermidis
and other coagulase-negative staphylococci are deemed major
skin commensal bacteria (Prescott et al., 2017). Coagulase-
positive S. aureus is not considered to be part of the natural
skin microbiota, and it is able to colonize different sites causing
infections such as bacteremia, pneumonia, endocarditis, and
toxic shock syndrome (Becker et al., 2014; Peacock and Paterson,
2015). If the cutaneous and mucosal barriers are compromised,
and the microbiota is unbalanced, S. aureus can gain access
to underlying tissues, causing opportunistic infections (Grice
et al., 2008; Coates et al., 2014; Williams and Gallo, 2015;
Lee et al., 2018).

The emergence of MDR S. aureus and S. epidermidis strains
has led to a high number of infections toward which of
the treatment and control has been failing. In particular,
the increase in MRSA and vancomycin-resistant S. aureus
strains is a challenge in the actual clinical practice (Oliveira
et al., 2018). MRSA are microorganisms responsible for most
skin and hospital-acquired infections, associated with a high
level of mortality (Bocquet et al., 2019). The methicillin
resistance is due to the acquisition of gene encoding for
a penicillin-binding protein 2a (PBP2a), reducing the β-
lactam action (Peacock and Paterson, 2015). Furthermore,
both S. aureus and S. epidermidis have the capability to
form biofilms, which are also implicated in the pathogenesis
of numerous bacterial infections caused by those bacterial
species (Weber et al., 2019). The presence of biofilms reduces
the effectiveness of the antimicrobial agents, increasing their
tolerance level.

Staphylococcus aureus is often identified along with
S. epidermidis and Cutibacterium acnes as the main acne-causing
bacterium (Yamaguchi et al., 2009; Sinha et al., 2014).

Cutibacterium acnes is an important skin commensal that
it is also able to become an opportunistic pathogen, causing
invasive infection of the skin, soft tissue, cardiovascular system,
or deep-organ tissues (Achermann et al., 2014). This bacterium
produces β-ketoacyl-ACP synthase III (KAS III) involved in
fatty acid synthesis, lipases, proteases, and hyaluronidases
injuring the tissue lining of the pilosebaceous unit and
encodes for immunogenic factors with adherent properties
and porphyrins (Coenye et al., 2007; Isard et al., 2011;
Platsidaki and Dessinioti, 2018).

The antibiotic resistance/tolerance phenomenon has revived
the attention on plant extracts as promising agents with
antibacterial and antibiofilm activities.

Humulus lupulus (hop) belongs to the Cannabaceae family
and is used in the brewing industry for its bitter and aromatic
properties. The plant presents secretory structures on the
epidermal surface of stem and leaves, but only the female
cones are of economic relevance for the greater presence of
secretory glands, which are easily separated from dry plant
material. The powder material represented by only secretory
glands results the most expensive and is defined as lupolin. In
such glands, terpenoid metabolites are synthetized and stored,
such as bitter acids, terpenophenolics, monoterpenoids, and
sesquiterpenoids. Those compounds are usually responsible for
typical flavors, which therefore can be obtained using isolated
glands (lupolin) and whole cones. Hop extract and relative
compounds such as polyphenols and acylphloroglucides have
also been used in the cosmetic and pharmaceutical industries
because of their antimicrobial and antiviral effects. In ancient
times, hops were used against leprosy, bad smell of feet,
liver diseases, constipation, sleeping disorders, and for blood
purification. Moreover, alcoholic extracts of hops have been used
in ayurvedic medicine for treating pulmonary tuberculosis and
acute bacterial dysentery due to their strong spasmolytic effect on
smooth muscle (Blumenthal et al., 2000; Olsovska et al., 2016).

Previous studies (Gerhäuser, 2005; Olsovska et al., 2016;
Weber et al., 2019) showed that xanthohumol and lupulones,
prevalent hop active compounds, inhibit C. acnes, S. epidermidis,
S. aureus, and Streptococcus pyogenes growth.

On that basis, the goal of this study was to characterize
a hydroalcoholic solution of hop extract and evaluate its
antibacterial action and its ability to inhibit biofilm formation
against clinical MDR isolates of S. aureus, S. epidermidis, and also
against a susceptible strain of C. acnes.

MATERIALS AND METHODS

Plant Material and Phytochemical
Analysis
Hop extract was kindly furnished by Bioinvest S.r.l. It
consisted of a pale yellow hydroalcoholic solution obtained from
experimental crop of H. lupulus L. variety cascade grown in
Abruzzo (Italy). After manual collection and selection of female
cones, the plant material was dried in ventilated oven (40◦C)
until achievement of a constant weight. Dry plant material, with
water content lower than 10%, was extracted in 60% ethanol
in 1/20 plant material/solvent ratio (wt/wt). Temperature and
extraction process were optimized for extract recovery, stability,
and organoleptic note, and the resulting extract is characterized
by typical phloroglucinol derivatives known as bitter acids.
Origin of the extract was guaranteed by producer, and qualitative
standard was defined as bitter acid content resulting as 4.7 and
6.1% in α-acids and β-acids, respectively. The extract was further
investigated for the phenolic characterization, and total phenolic,
flavonoid, tannin, and carotenoid profile was determined through
validated colorimetric tests. The experimental procedures for all
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assays were comprehensively described in our previous papers
(Orlando et al., 2019). Hop extract (5 µg/mL) was analyzed by an
independent and quantitative determination of phenol fraction
using a reversed-phase high-performance liquid chromatography
(HPLC)–fluorimetric method in gradient elution mode. Analyses
were carried out by using a liquid chromatograph (MOD. 1525;
Waters Corporation, Milford, MA, United States) equipped with
a fluorimetric detector (MOD. 2475; Waters Corporation), a C18
reversed-phase column (Acclaim TM 120, 3 µm, 2.1 × 100 mm;
Dionex Corporation, Sunnyvale, CA, United States), an online
degasser (Biotech 4-CH DEGASi compact; Lab Service, Anzola
dell’Emilia, Italy). The gradient elution was achieved by a mobile
phase methanol–acetic acid–water (10:2:88, vol/vol) as solvent A
and methanol–acetic acid–water (10:2:88, vol/vol) as solvent B.
For analyte detection, λex = 278 nm and λem = 360 nm were
selected in order to quantify the following phenolic compounds:
gallic acid, catechin, epicatechin, and resveratrol. For rutin
determination, λex = 340 nm and λem = 420 nm were selected.

Biocompatibility Tests
Artemia salina L. cysts were hatched in oxygenated artificial
sea water (1 g cysts/L). After 24 h, brine shrimp larvae were
gently transferred with a pipette in a six-well plate containing
2 mL of hop extract at different concentrations (0.1–20 mg/mL)
in artificial sea water. Ten larvae per well were incubated
at 25 to 28◦C for 24 h. After 24 h, the number of living
napulii was counted under light microscope and compared to
control untreated group. Results were expressed as percentage
of mortality calculated as follows: [(T − S)/T] × 100. T is
the total number of incubated larvae, and S is the number of
survival napulii. Living napulii were considered those exhibiting
light activating movements during 10 s of observation. For
each experimental condition, three experiments were performed
using two replicates.

Murine cardiomyocyte C2C12 and human colon cancer–
derived HCT116 cell lines were cultured in Dulbecco modified
eagle medium (Euroclone) supplemented with 10% (vol/vol)
heat-inactivated fetal bovine serum and 1.2% (vol/vol) penicillin
G/streptomycin in 75 cm2 tissue culture flask (n = 5 individual
culture flasks for each condition). The cultured cells were
maintained in humidified incubator with 5% CO2 at 37◦C.
For cell differentiation, C2C12 and HCT116 cell suspensions
at a density of 1 × 106 cells/mL were treated with various
concentrations (10, 50, and 100 ng/mL) of phorbol myristate
acetate (PMA, Fluka) for 24 or 48 h (induction phase). Thereafter,
the PMA-treated cells were washed twice with ice-cold pH
7.4 phosphate-buffered solution (PBS) to remove PMA and
non-adherent cells, whereas the adherent cells were further
maintained for 48 h (recovery phase).

Morphology of cells was examined under an inverted phase-
contrast microscope (Leica DMi1). To assess the basal effect of
hop extract, a viability test was performed on 96-microwell plates,
using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) test. Cells were incubated with extract (ranging
in the concentration 10–1,000 µg/mL) for 24 h. Ten microliters
of MTT (5 mg/mL) was added to each well and incubated for
3 h. The formazan dye formed was extracted with dimethyl

sulfoxide, and absorbance was recorded as previously described
(Ferrante et al., 2019a). Effects on cell viability were evaluated in
comparison to untreated control group.

Finally, we tested the hop extract on both cell lines,
using a wound healing experimental paradigm. Cell migration
was determined using the scratch wound healing assay, as
previously reported (Ferrante et al., 2019b). HCT116 cells
(6 × 103 cells/well) were seeded on six-well plastic plates.
Cell monolayers were preliminarily treated with a proliferation
inhibitor mitomycin C (Sigma-Aldrich) at the non-toxic
concentration of 5 µM, in order to exclude the effect of cell
proliferation. After 2 h on cells in the confluence interval 85 to
90%, a wound was generated by scratching the cell monolayer
using a 0 to 200 µL pipette tip. Two gentle washes with PBS were
performed to remove suspended and damaged cells. Cells were
incubated in serum free media supplemented with hop extract
in the concentration range 10 to 1,000 µg/mL. Cell migration
was followed capturing at least three microscope images per
well at different time points: 0, 24, and 48 h. An inverted
light Leica microscope equipped with Nikon 5100 camera
was used to capture image at 4 × /10 × magnification. The
quantification of scratch area with no cells was quantified using
ImageJ software (National Institutes of Health). Using GraphPad
software (version 5.01 for Windows; GraphPad Software, San
Diego, CA, United States), mean data at T0, 24, and 48 h were
calculated for untreated control and hop group and expressed as
percentage variation with reference to relative 100% at 0 h.

Bacterial Strains
The strains used for this study are listed and characterized for
their susceptibility profiles in Table 1.

TABLE 1 | Strains used in the present study.

Strains Antimicrobial resistance
pattern

References

S. aureus Sa1 AMC, AMP, CIP, FOX, OXA,
TET

Bessa et al., 2018

S. aureus Sa3 AMC, AMP, CIP, FOX, IPM, OXA Bessa et al., 2018

S. aureus SA007 CIP, CLI, ERI, FOX, GEN, LEV,
MOX, OXA

Bessa et al., 2019

S. aureus SA010 CIP, CLI, DAP, ERI, FOX, LEV,
MOX, OXA, TET

This study

S. epidermidis SE009 CIP, CLI, ERI, FOX, GEN, LEV,
MOX, OXA, SXT

This study

S. epidermidis 317 AMP, CIP, FOX, GEN, NET, P,
TET,VA

Nostro et al., 2012

S. aureus ATCC 29213 American Type
Culture Collection

S. epidermidis ATCC 12228 American Type
Culture Collection

C. acnes ATCC 11827 American Type
Culture Collection

AMC, amoxicillin/clavulanic acid; AMP, ampicillin; CLI; clindamycin; CIP,
ciprofloxacin; ERI, erythromycin; FOX, cefoxitin; GEN, gentamicin; IPM, imipenem;
LEV, levofloxacin; MOX, moxifloxacin; OXA, oxacillin; TET, tetracycline; SXT,
trimethoprim sulfamethoxazole; NET, netilmicin; P, penicillin G; VA, vancomycin.
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The isolates S. aureus Sa1, S. aureus Sa3, S. aureus SA007,
S. aureus SA010, and S. epidermidis SE009 were methicillin-
resistant, and S. epidermidis 317 was an MDR strain.

Staphylococcus epidermidis 317 was collected from the private
collection of Pharmacy Department, “G. d’Annunzio” University
of Chieti, Italy, and the other clinical isolates came from
the private collection at LAQV/REQUIMTE, Department of
Chemistry and Biochemistry, University of Porto, Portugal.

Furthermore, S. aureus ATCC 29213, S. epidermidis ATCC
12228, and C. acnes ATCC 11827 were included as control strains.

The strains were stored at −80◦C until use.

Antimicrobial Action of Hop
The antimicrobial action of the hop extract was evaluated by
the disk diffusion method and by the microdilution method,
which allows the determination of the minimal inhibitory
concentration (MIC). For the tests, S. aureus and S. epidermidis
strains were grown on Mueller–Hinton (MH) agar (Liofilchem
s.r.l., Roseto degli Abruzzi, Italy) under aerobic conditions at
37◦C overnight, and the bacteria were suspended in cation-
adjusted Mueller–Hinton broth (CAMHB, Oxoid, Madrid, Spain)
in order to achieve an optical density at 600 nm (OD600)
of 0.10. Cutibacterium acnes ATCC 11827 was grown in
brain–heart infusion broth (BHI, Oxoid Milan, Italy) under
anaerobic conditions at 37◦C for 4 to 7 days, and the turbidity
of the bacterial suspension was adjusted to OD600 of 0.14
(Weber et al., 2019). For the disk diffusion method, the
above prepared suspensions were streaked evenly throughout
the entire surface of an MH agar plate. Then, 6-mm filter
paper disks loaded with 15 µL of hop extract at 5 mg/mL
were applied to the inoculated MH agar and incubated under
aerobic conditions for 24 h for staphylococci and under
anaerobic conditions for 4 to 7 days for C. acnes. The
diameter of the zone of growth inhibition around the disks
was measured in millimeters. Five-micrograms of ciprofloxacin
(Sigma Aldrich, Milan, Italy) was used as positive control for
all tested strains.

For the MIC determination, the microdilution method was
used. Briefly, the standardized bacterial suspensions (described
above) were diluted 1:100 in MH broth (staphylococci) or
in BHI (C. acnes) and used to inoculate 96-well microtiter
plates previously containing the hop extract serial diluted
(2-fold dilutions) in the respective media. Thus, the final
bacterial inoculum was of approximately 5 × 105 cfu/mL,
and the hop extract was tested in the final concentration
range of 1,024 to 0.12 µg/mL. Staphylococcus aureus
and S. epidermidis were incubated overnight in aerobic
condition and C. acnes in anaerobic conditions at 37◦C for
4 to 5 days (Clinical and Laboratory Standards Institute
[CLSI], 2018; Marini et al., 2018). Ciprofloxacin was used
as positive control for all studied strains. As negative
control, only media (without the strains) was added to
the different concentrations of hop extract. The lowest
concentration of hop extract required to inhibit bacterial
growth was defined as MIC.

Each determination was performed in three independent
experiments, each in duplicate.

Docking Calculations
Based on HPLC analysis, gallic acid, resveratrol, and rutin
were selected for docking calculations, in order to evaluate
their affinity toward PBP2a and β-ketoacyl-ACP synthase
III (KAS III). The routine steps for docking calculations
involved the preparation of the inhibitors and the protein.
The crystal structures of the PBP2a and KAS III were
downloaded from Protein Data Bank (PDB). The PDB codes
of PBP2a and KAS III were 6A9N and 4CJN, respectively.
In order to prepare the protein for docking calculations, all
water molecules and cocrystallized compounds were removed.
This step was followed by adding polar hydrogen atoms
and neutralized using Autodock 4 program (Molinspiration
Database). The starting structures of the selected phytochemicals
were optimized to their ground state structures using the
AM1 semiempirical method, and the three-dimensional (3D)
structures were saved in mol2 format. The protein was
immersed in a 3D grid box with 60 × 60 × 60 dimensions
with 0.375 Å distance between points. Lamarckian genetic
algorithm was used to calculate the docking free energy of
250 conformations for each inhibitor. The docking results
were clustered and organized according to the docking free
energy. The binding site was localized, and the nonbonding
non-bonding interactions were elucidated using Discovery
Studio 5.0 visualizer.

Membrane Fluidity Assessment by
Laurdan Generalized Polarization (GPexc)
Eventual changes in the membrane fluidity of S. aureus ATCC
29213, S. epidermidis ATCC 12228, and C. acnes ATCC
11827 derived to the hop extract treatment were evaluated
by assessing the Laurdan generalized polarization (GPexc) as
previously described by Bessa et al. (2019). Briefly, fresh
colonies were inoculated in nutrient broth (NB, Liofilchem
s.r.l., Roseto degli Abruzzi, Italy) to obtain an OD600 of 0.4.
Aliquots of 1.5 mL of these bacterial suspensions were taken
and centrifuged (9,000 rpm, 8 min); pellets were resuspended
in 1.5 mL of NB (in duplicate, to serve as controls; one
to be unlabeled and the other to be labeled with Laurdan)
and NB containing 2 MIC, MIC, and 1/2 MIC of hop
extract and incubated at 37◦C for 3 h. After incubation, the
bacterial suspensions were centrifuged (9,000 rpm, 8 min),
and cells were washed twice with 15 mM Tris–HCl buffer
(pH 7.4) and finally resuspended in 10 µM of Laurdan
(from a 2 mM stock solution in dimethylformamide) and
incubated in the dark at 37◦C with shaking (500 rpm)
for 1.5 h. Laurdan emission spectra were obtained in a
Varian Cary Eclipse fluorescence spectrofluorometer (Agilent
Technologies, Santa Clara, CA, United States) at an excitation
wavelength of 350 nm using emission wavelengths from 410
to 550 nm. The excitation GPexc was calculated using the
following equation: GPexc = (I440 − I490)/(I440 + I490),
where I440 and I490 are fluorescence intensities at 440 and
490 nm, respectively.

As positive control, the GPexc of ciprofloxacin at 2 MIC, MIC,
and 1/2 MIC concentrations was determined as describe above.
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Antibiofilm Action of Hop
The effect of hop extract on the biofilm formation by
S. aureus, S. epidermidis, and C. acnes strains was assessed.
Staphylococcus aureus and S. epidermidis strains were
grown in MH agar under aerobic conditions at 37◦C
overnight, and the fresh colonies were used to prepare
the bacterial inoculum in trypticase soy broth (TSB,
Liofilchem s.r.l., Roseto degli Abruzzi, Italy) with an OD600
of 0.10. Cutibacterium acnes ATCC 11827 was grown in
BHI (Oxoid, Milan, Italy) under anaerobic conditions
at 37◦C for 4 to 7 days and the turbidity of the bacterial
suspension was adjusted to OD600 of 0.14 in BHI +1% glucose
(Weber et al., 2019).

The adjusted inoculum was further diluted (1:100) in each
broth and inoculated in 96-well flat-bottom microtiter plates
in presence of MIC, 1/2 MIC, 1/4 MIC, or without (control)
hop extract. The plates were then incubated at 37◦C for
24 h in aerobic condition for staphylococci and for 3 days in
anaerobic condition for C. acnes, allowing the biofilm formation.
As negative control, only media (without the strains) was
added to the different concentrations of hop extract. After
incubation, the planktonic phase was removed; biofilms were
washed with sterile PBS, air-dried, stained for 5 min with
0.5% crystal violet, washed with distillated water, and air-dried.
The stained and dry biofilms were resuspended in 200 µL
acetic acid (33% vol/vol), and the OD595 was measured. Each
condition was tested in three independent experiments, each in
triplicate (three wells).

Ciprofloxacin, at MIC values, was used as positive control for
all detected strains (Marini et al., 2019).

Additionally, a qualitative evaluation to examine cell
viability within biofilms formed in presence of MIC, 1/2
MIC, and 1/4 MIC of hop extract was also performed
through the live/dead staining kit (Molecular Probes Inc.,
Invitrogen, San Giuliano Milanese, Italy) as indicated by
the manufacturer and visualized under a fluorescence
Leica 4000 DM microscope. The biofilms were formed as
mentioned above in µ-Dish (35 mm, high); ibidi Polymer
Coverslips (ibidi GmbH, Planegg-Martinsried, Germany)
were used (2 mL/dish). Prior to microscopic observation,
planktonic phases were removed; biofilms were washed
with PBS and then stained with the live/dead staining
mixture for 15 min in the dark, washed once again,
and then examined under the fluorescence microscope
(Di Lodovico et al., 2019).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
version 5.01 for Windows. Data were obtained from at least
three independent experiments performed in duplicate.
Data were shown as the means ± standard deviation
(SD). The results regarding the biofilm formation were
expressed as mean values ± SD. Differences between
control and hop extract treated groups were assessed
with paired Student t test. P ≤ 0.05 was considered
statistically significant.

TABLE 2 | Phytochemical composition of hop extract.

Total phenols (as mg of gallic acid equivalents per mL of
extract)

0.24 ± 0.08 mg/mL

Total flavonoids (as mg of rutin equivalents per mL of
extract)

0.07 ± 0.01 mg/mL

Total tannins (as mg of tannic acid equivalents per mL of
extract)

0.017 ± 0.03 mg/mL

Total carotenoid pigments (mg/mL) 0.44 ± 0.08 mg/mL

Gallic acid 0.038 ± 0.01 µg/mL

Catechin Not detected

Epicatechin Not detected

Resveratrol <0.001 µg/mL

Rutin 0.63 ± 0.04 µg/mL

RESULTS

Phytochemical Profile
As shown in Table 2, colorimetric assays showed the presence
of multiple classes of phenolic compounds, namely, phenolic
acids, flavonoids, tannins, and carotenoids, whose presence
was confirmed by independent HPLC-fluorimetric analysis. The
HPLC analysis permitted to measure the levels of gallic acid,
resveratrol, and rutin, in the hop extract. In this regard, rutin level
was higher than the other assayed compounds.

Biocompatibility Tests
To explore the biocompatibility, the hop extract (1–20 mg/mL)
was tested in the A. salina L., using a lethality assay on
brine shrimps. Because the results of the test indicated an
LC50 value > 10 mg/mL, a concentration range at least 10-
fold lower was then chosen for the following in vitro tests.
Therefore, the hop extract was tested in the non-tumoral
C2C12 and tumoral HCT116 cells, in the concentration
range 10 to 1,000 µg/mL (Figure 1). Particularly, the
extract was biocompatible at all tested concentrations,
with cell viability ranging from 80 to 100%, compared to
control group. Furthermore, the wound healing test ruled
out any involvement in spontaneous migration of C2C12
and HCT116 cells, after challenging with the hop extract
(Figures 2, 3).

Antimicrobial Action of Hop
The hop extract exhibited antibacterial activity against all
strains used in this study, including MDR clinical isolates
(Table 3). The diameter of the zones of inhibition caused by hop
extract was relatively variable among the strains tested (ranged
between 12 and 21 mm).

The MIC values of hop extract ranged from 1 to
16 µg/mL (Table 3). The lower MIC value was obtained
against C. acnes ATCC 11827 (1 µg/mL). Moreover, there
was no apparent correlation between zones of inhibition
and MIC values; higher zone of inhibition did not always
correspond to lower MIC values, as, for instance, comparing
the results obtained for S. aureus ATCC 29213 and
S. aureus Sa1.
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FIGURE 1 | Hop extract effects on cell viability (24 h) on (A) murine
cardiomyocyte C2C12 and (B) human colon cancer–derived HCT116 cell
lines.

The ciprofloxacin zones of inhibition ranged from 0 to
25 mm. All clinical isolates were resistant to ciprofloxacin, as
expected (Table 1).

The ciprofloxacin MICs ranged from 0.12 to 128 µg/mL.

Docking Analysis
In order to deeply investigate the molecular interactions
underlying the observed antimicrobial effects, gallic acid,
resveratrol, and rutin were docked against PBP2a and KAS III.
The docking approach permitted to elucidate the orientation of
the selected phenols against these microbial proteins, at their
respective active sites. The related binding affinities, measured as
binding free energies (1G), the inhibition constant (Ki), and the
non-bonding interactions, were evaluated as well and reported in
Figures 4A–F. Among tested compounds, rutin revealed to be the
most potent against both PBP2a and KAS III, with Ki values in the
submicromolar range.

Membrane Fluidity Assessment by
Laurdan GPexc
To evaluate if hop extract could affect the bacterial membrane,
specifically, the membrane fluidity, Laurdan GPexc values

were calculated. Higher Laurdan GPexc values correspond to
lower membrane fluidity. Laurdan GPexc values increased with
increasing concentrations of hop extract for all tested strains, as
shown in Table 4. Therefore, hop extract tended to decrease the
membrane fluidity. The GPexc values obtained with ciprofloxacin
were similar to controls for all tested strains.

Antibiofilm Action of Hop
Hop extract displayed a remarkable inhibition of biofilm
formation at sub-MIC values for all tested microorganisms.
A significant biofilm biomass reduction was recorded for all
tested strain (except for S. aureus ATCC 29213 and the clinical
isolate S. aureus SA010) in presence of sub-MIC values of hop
extract in respect to the controls (Table 5).

At sub-MIC values, the best antibiofilm effect was detected at
1/2 MIC against S. epidermidis 317 with 98.74 ± 1.64% of biomass
reduction in respect to the control (absence of hop extract).
Interestingly, at 1/4 MIC, the biomass reductions were significant
in respect to the controls and ranged from 62.13 ± 0.83% against
S. epidermidis 317 and 30.97 ± 1.44% against C. acnes ATCC
11827. The obtained percentages of biofilm inhibition in presence
of hop extract were similar to those detected with ciprofloxacin.

The effect of hop extract in inhibiting the biofilm formation
at sub-MIC values was also observed through live/dead staining
for all detected strains. Representative images are shown in
Figure 5. Except for S. aureus ATCC 29213, the biofilms formed
by staphylococci in presence of hop extract were clearly less
abundant in respect to the controls, presenting also a weak
reduction in the viability. In fact, a moderate killing action was
detected up to 1/4 MIC values for the clinical strains of S. aureus
and S. epidermidis. A weak reduction of cell adhesion with no
significant differences in terms of viability, however, was observed
for the three reference strains assayed when comparing biofilms
formed in presence of 1/4 MIC of hop extract and in absence of
it (Figure 5).

DISCUSSION

In this study, the antimicrobial and antibiofilm properties of
hop extract were evaluated against staphylococci strains and
C. acnes including multiresistant isolates. The global increase
in multidrug resistance underlines the need to search for new
strategies to control the microorganism proliferation and to halt
their associated infections.

Nowadays, the discovery of new antibiotics is a lengthy
and expensive process, and the bacterial capability to develop
resistance is unpredictable and fast (Brown, 2015). For these
reasons, natural extracts have been proposed as alternative
or adjuvant antimicrobial agents. In this regard, hop extract
certainly deserves to be further explored. Previous studies showed
a significant antibacterial action of hop extract against different
Gram-positive pathogenic bacteria (Weber et al., 2019).

The main hop components are bitter acids, usually classified
as α- and β-acids and the derived isomers such as cis-
iso-α-acids and trans-iso-α-acids. Among them, the iso-α-
acids could be considered the most relevant for their bitter
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FIGURE 2 | Effects of subtoxic concentration of hop extract on spontaneous cell migration in murine cardiomyocyte C2C12. Quantification of free cell area (A) and
representative images (B) of wound healing test (10–1,000 µg/mL) recorded at T 0, 24, and 48 h (4 × magnification).

organoleptic characters and for their antibacterial properties
(Teuber and Schmalreck, 1973).

The plant used in this study is a variety selected for specific
flavoring effects related to the balance between α- and β-acids,
useful in beer production. The phenolic fraction revealed the
presence of a complex mixture of a different class of secondary
metabolites that, if present in low amount, can significantly
influence the organoleptic and biological effects, including

the antibacterial and antibiofilm activities. Among the tested
phenolic compounds, rutin was present at higher concentrations
compared to the other phytochemicals. This is consistent, albeit
partially, in recent literature data (Almeida et al., 2020).

The hop extract was biocompatible at all tested concentrations
showing significant viable cells in both tested murine
cardiomyocyte C2C12 and human colon cancer–derived
HCT116 cell lines.
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FIGURE 3 | Effects of subtoxic concentration of hop extract on spontaneous cell migration in human colon cancer–derived HCT116 cell line. Quantification of free
cell area (A) and representative images (B) of wound healing test (10–1,000 µg/mL) recorded at T 0, 24, and 48 h (10 × magnification).

Overall, the in vitro tests, besides confirming the
biocompatibility of the extract, any cytotoxicity that often
occurs with herbal extracts were excluded, especially at high
concentrations (1,000 µg/mL) (Orlando et al., 2020; Recinella
et al., 2020). The wound healing test also ruled out any influence
of this extract in modifying the intrinsic spontaneous migration
of both tested cell lines.

Moreover, the hop extract displayed a very good antimicrobial
action against the strains included in this study with MIC
values widely lower than those used to demonstrate hop

biocompatibility. The results related to the zones of growth
inhibition and MIC values seem apparently discordant between
them. This may be related to the wide range of bioactive
molecules composing the hop extract, as well as to its probable
hydrophobic nature, which prevents the uniform diffusion and
solubility of these active components through the agar medium
(Hammer et al., 1999). Therefore, the disk diffusion method may
not be the best to assess the antibacterial effect of hop extract.
MIC values may mirror better the antibacterial activity of hop
extract on the tested strains.

Frontiers in Microbiology | www.frontiersin.org 8 August 2020 | Volume 11 | Article 1852

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01852 August 11, 2020 Time: 19:13 # 9

Di Lodovico et al. Antimicrobial/Anti-virulence Activity of Hop Extract

TABLE 3 | Zones of inhibition (mm) and minimum inhibitory concentration (MIC)
values (µg/mL) of hop extract and ciprofloxacin (CIP) against Staphylococcus
aureus, Staphylococcus epidermidis, and Cutibacterium acnes strains.

Strains Hop extract CIP

Zone of inhibition MIC Zone of inhibition MIC

S. aureus ATCC 29213 12 16 25 0.25

S. aureus Sa1 20 16 0 128

S. aureus Sa3 12 16 0 128

S. aureus SA007 19 16 0 64

S. aureus SA010 12 8 0 64

S. epidermidis ATCC 12228 16 16 21 0.12

S. epidermidis SE009 18 16 0 32

S. epidermidis 317 17 8 15 2

C. acnes ATCC 11827 21 1 19 1

The antibacterial activity of hop extract, especially its good
effect against MDR Gram-positive isolates, may be attributed
to the phenolic compounds as also reported by Bocquet et al.

(2019), who concluded that the phenolic compounds had more
effect against staphylococci and in particular against MRSA
strains. Probably, the phenolic compounds are able to break the
antibiotic resistance. Regarding the action mechanism of hop
extract, Rozalski et al. (2013) reported that hop compounds
affected the cell wall and the membrane integrity and could
also bind the PBP inside the wall. Rutin, the main component
present in our tested hop extract, showed the highest affinity
toward PBP2a, thus further highlighting the importance of
this flavonoid in the antimicrobial effects exerted by hop
and other herbal extracts (Orlando et al., 2020). Interestingly,
hop extract showed a strong antibacterial action against the
anaerobic C. acnes with very low MIC values (1 µg/mL)
likely due to its capability to inhibit the C. acnes lipase
(Falcocchio et al., 2006). β- and α-acids produce an intracellular
accumulation of protons, dissipation of the transmembrane
proton gradient, decrease in proton motive force (pmf)-driven
uptake of nutrients, and starvation and cause cell growth
inhibition (Karabın et al., 2016). Moreover, rutin also showed
a high affinity to KAS III, determining the inhibition of
fatty acid synthesis, necessary for the survival of C. acnes
(Cheon et al., 2019).

FIGURE 4 | (A–F) Interactions of the docked compounds, gallic acid, resveratrol, and rutin. The 2D orientations of the docked compounds are shown. The putative
interactions with PBP2a (PDB: 4CJN) and KAS III (PDB: 6A9N) are shown with different colors. (A) Gallic acid vs. PBP2a (PDB:4CJN): 1G = –5.5 kcal/mol;
Ki = 94.10 µM; (B) resveratrol vs. PBP2a (PDB:4CJN): 1G = –6.7 kcal/mol; Ki = 12.40 µM; (C) Rutin vs. PBP2a (PDB:4CJN): 1G = –8.5 kcal/mol; Ki = 0.60 µM;
(D) gallic acid vs. KAS III (PDB:6A9N): 1G = –5.7 kcal/mol; Ki = 67.18 µM; (E) resveratrol vs. KAS III (PDB:6A9N): 1G = –6.8 kcal/mol; Ki = 10.52 µM; (F) rutin vs.
KAS III (PDB:6A9N): 1G = –9.0 kcal/mol; Ki = 0.26 µM.
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TABLE 4 | GPexc values of Staphylococcus aureus ATCC 29213, Staphylococcus
epidermidis ATCC 12228, and Cutibacterium acnes ATCC 11827 treated with 2
MIC, MIC, and 1/2 MIC of hop extract and ciprofloxacin (CIP) compared with the
untreated controls.

Strains Hop extract CIP

Control 2 MIC MIC 1/2 MIC 2 MIC MIC 1/2 MIC

S. aureus ATCC 29213 0.236 0.290 0.280 0.252 0.242 0.243 0.245

S. epidermidis ATCC 12228 0.197 0.203 0.193 0.196 0.186 0.189 0.161

C. acnes ATCC 11827 0.251 0.311 0.308 0.277 0.257 0.258 0.256

Gerhäuser (2005) showed that bitter acid, extracted from the
hop, could interact with the bacterial cell wall and consequently
exert its antibiotic action. Here, we aimed to evaluate if
hop extract could affect the bacterial membrane by assessing
changes in membrane fluidity through the calculation of Laurdan
GPexc values.

Fluidity is associated with the degree of geometrical packing
of the phospholipid membrane, a process governed by polar
head group composition and fatty acyl chain conformation (Bessa
et al., 2018). The slight rigidity (increase in Laurdan GPexc
values) of the membrane caused by hop extract in all three
tested strains may allow anticipating the effect of hop extract on
the cytoplasmic bacterial membrane. This is in accordance with
previous reports that have attributed the antibacterial effect of
hop extract to the interference of prenyl groups (hydrophobic
groups) of some hop acids and flavonoids with the cytoplasmic
membrane (Bartmańska et al., 2018; Bocquet et al., 2019).

In this study, it was also found that hop extract affected the
biofilm formation of all tested Gram-positive bacteria. Biofilms
formed in presence of subinhibitory concentrations of hop
extract were significantly reduced and showed less clustered cells.
Moreover, biofilms formed by S. aureus and S. epidermidis clinical
isolates in presence of hop extract revealed lower viability, which

TABLE 5 | Inhibition of biofilm formation (%) by Staphylococcus aureus,
Staphylococcus epidermidis, and Cutibacterium acnes strains in presence of
MICs and sub-MICs of hop extract compared to the ciprofloxacin (CIP) in respect
to the control samples (absence of hop extract).

% of biofilm reduction

Hop extract CIP

Strains MIC 1/2 MIC 1/4 MIC MIC

S. aureus
ATCC 29213

95.33* ± 2.20 0.00 ± 0.00 0.00 ± 0.00 92.83* ± 1.55

S. aureus Sa1 97.49* ± 1.84 93.88* ± 5.64 34.60* ± 3.68 95.97* ± 0.63

S. aureus Sa3 95.60* ± 3.15 83.53* ± 2.29 34.12* ± 1.37 87.08* ± 3.60

S. aureus
SA007

95.57* ± 2.72 96.76* ± 1.70 35.29* ± 2.69 99.41* ± 0.12

S. aureus
SA010

96.45* ± 4.55 0.00 ± 0.00 0.00 ± 0.00 100* ± 0.00

S. epidermidis
ATCC 12228

86.96* ± 3.18 44.20* ± 1.66 43.08* ± 10.36 89.25* ± 2.30

S. epidermidis
SE009

98.29* ± 2.41 95.04* ± 2.05 31.63* ± 2.54 86.86* ± 2.20

S. epidermidis
317

99.34* ± 0.26 98.74* ± 1.64 62.13* ± 0.83 95.43* ± 4.80

C. acnes ATCC
11827

84.18* ± 2.65 33.36* ± 3.84 30.97* ± 1.44 95.09* ± 4.30

*Statistically significant in respect to the control (P < 0.05).

can be noticed even though a quantitative assessment on the
viability was not undertaken.

Hop extract may interfere with adhesion that is an important
step in biofilm formation. In addition, Bogdanova et al. (2018)
correlated the antibiofilm effect of hop with its capability to
interfere with quorum-sensing against Gram-positive bacteria.

Overall, the hop extract showed antimicrobial and antibiofilm
activities against S. aureus, S. epidermidis, and C. acnes strains

FIGURE 5 | Representative live/dead images of S. aureus ATCC 29213, S. aureus Sa1, S. epidermidis ATCC 12228, S. epidermidis 317, and C. acnes ATCC 11827
biofilms in presence of 1/4 MIC of hop extract compared to the respective controls. The images observed by fluorescent Leica 4000 DM microscopy (Leica
Microsystems, Milan, Italy) were recorded at an emission wavelength of 500 nm for SYTO 9 and of 635 nm for propidium iodide, and several fields of view were
randomly examined. Original magnification × 1,000.
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including the MDR clinical isolates. Considering that the
concentrations of hop extract at which it exerted its antibacterial
action were lower than those employed in the biocompatibility
tests, causing no cytotoxicity and no spontaneous migration in
the tested cell lines, this hop extract may have the potential to
be further explored for its use and application in the treatment
and management of infections caused by multidrug Gram-
positive bacteria. Future studies will be needed to confirm lack
of cytotoxicity on skin epithelial cells or fibroblasts in order to
validate the topical application of this hop extract.
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