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KEY POINTS

� AKI is common in patients with COVID-19.

� Increasing age, diabetes, hypertension and CKD are the major risk factors for developing
covid-19 associated AKI.

� No specific therapies are available for treatment of AKI associated with COVID-19 and
therefore practitioners should follow accepted local management guidelines.

� The use of blood purification techniques should be adopted with caution although prelim-
inary data shows promise.

� The consequences of COVID-19 associated AKI in the longer term are as yet unknown
INTRODUCTION

In December 2019, a novel severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) was discovered in Wuhan, China, the rapid spread of which culminated in a
global pandemic and critical pressure on health care resources.1,2 The presentation
of COVID-19 varies considerably from asymptomatic individuals and those presenting
with mild respiratory symptoms to the more severe spectrum of disease requiring hos-
pitalization. In more severe cases, the development of multi-organ failure may ensue.
Overall, mortality from COVID-19 infection is approximately 1% population-wide but
may reach 50% or more in those requiring intensive care.3,4
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EPIDEMIOLOGY OF COVID-19-ASSOCIATED ACUTE KIDNEY INJURY

Initial reports suggested that acute kidney injury (AKI) as defined by the Kidney Dis-
ease Improving Global Outcomes (KDIGO) criteria was uncommon following acute
COVID-19 infection.5,6 However, subsequent data from the US and Europe did not
support this finding particularly in the critically ill whereby AKI rates in excess of
40% were reported.7,8 The incidence of C19-AKI continues to demonstrate regional
variability among patients hospitalized for COVID-19. For example, a recent interna-
tional meta-analysis including 49,048 patients found 28.6% of hospitalized individuals
with COVID-19 were diagnosed with AKI in Europe and the USA, compared with only
5.5% of inpatients in China.9 Similar results have been shown by others,10 with data
from the UK demonstrating C19-AKI rates in intensive care patients of greater than
45% in the period February to July 2020.11 This disparity, may, in part, be explained
by the difference in thresholds dictating hospital admission, for example, in China
admission of any suspected COVID-19 infection was mandatory, whereas this was
not the case in Europe and the USA.9

What is clear is that the development of AKI is a poor prognostic factor for individ-
uals with COVID-19 infection with a risk ratio (RR) of 4.6 for mortality when compared
with patients with COVID-19 but without AKI.9 Cheng and colleagues were able to
demonstrate that age over 65, male sex and severe COVID-19 infection were indepen-
dent risk factors for in-hospital mortality. After adjusting for these, they found a signif-
icant increase in mortality with worsening AKI stage, dipstick proteinuria above 11,
and the presence of hematuria.12

RISK FACTORS FOR COVID-19-ASSOCIATED ACUTE KIDNEY INJURY

Boxes 1 and 2 outline the main risk factors for the development of AKI in patients with
COVID-19 infection. Unsurprisingly, there is considerable overlap with factors known to
contribute to the development of AKI in patients without COVID-19 infection.13 A recent
retrospective study from a New York City health system demonstrated a higher inci-
dence of AKI among patients with COVID-19 infection compared with a historical cohort
(56.9% vs 25.1%).14 Factors independently associated with the development of stage 2
or 3 C19-AKI included older age, black race, male sex, diabetes mellitus, nursing home
resident, and initial respiratory rate. The median time to development of AKI was
6.5 days in one study in a cohort suffering from severe COVID-19 pneumonitis.15 Given
this delay, predicting those at risk of C19-AKI may influence management and several
studies have identified potential candidates for developing C19-AKI including higher
levels of ⍺1-microglobulin excretion.16
Box 1

Risk factors for the development of C19-AKI

� Patient factors
� Obesity15

� Increasing age15,122,123

� Renal transplant recipient10

� Chronic kidney disease124

� Disease factors
� Invasive mechanical ventilation15,124

� Severe COVID-19122,123

� Nephrotoxic drugs exposure123

� Vasopressor requirement124



Box 2

Causes of renal impairment in COVID-19 infection

� Hypotension/hypovolemia

� Vascular
� Macrovascular thrombosis
� Microthrombi
� Endothelialitis
� Thrombotic microangiopathies (atypical hemolytic uremic syndrome, thrombotic

thrombocytopenic purpura)

� Acute tubular necrosis

� Viral infection of renal parenchyma

� Collapsing glomerulopathy

� Glomerulonephritis

� Drug-induced acute interstitial nephritis

� Drug-induced acute tubular necrosis
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PATHOPHYSIOLOGY

Given that AKI, rather than being a distinct phenotype, is often multifactorial in nature,
C19-AKI may also be due to a variety of concomitant factors with a number of potential
pathophysiological processes implicated. These include direct kidney injury as well as
indirect mechanisms leading to C19-AKI (Fig. 1).17,18
Fig. 1. Pathogenesis of COVID-19 AKI. The pathogenesis of AKI in patients with COVID-19
(COVID-19 AKI) is likely multifactorial, involving both the direct effects of the SARS-CoV-2
virus on the kidney and the indirect mechanisms resulting from systemic consequences of
viral infection or effects of the virus on distant organs including the lung, in addition to
mechanisms relating to the management of COVID-19. (From Acute Disease Quality Initia-
tive 25, www.ADQI.org, CC BY 2.0 (https://creativecommons.org/licenses/by/2.0/).)

http://www.ADQI.org
https://creativecommons.org/licenses/by/2.0/
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Tubular and Glomerular Damage

Acute tubular injury is the most frequent finding on autopsy studies reported in C19-
AKI although the findings are often mild despite significant serum creatinine elevation
with often evidence of preexisting comorbidities such as hypertensive nephrosclero-
sis associated with kidney disease.19,20 In keeping with these findings, proteinuria
when demonstrated in C19-AKI has a low molecular weight, pointing to a tubular
rather than glomerular injury pattern.21 In a multicentre study from France including
47 patients who underwent kidney biopsy in those who had severe AKI, the histo-
pathological pattern was almost exclusively tubular injury, whereas none in their
comparator group outside the ICU had evidence of acute tubular injury. Interestingly,
in those outside the ICU with proteinuria and/or AKI glomerular collapsing glomeru-
losclerosis characterized by the segmental collapse of the glomerular tuft, parietal
cell hypertrophy, or obliteration of the capillary loop or podocyte, was observed.
This phenotype has also been described elsewhere predominantly in individuals
with high-risk APOL1 genotypes.22 The APOL1 gene encodes apolipoprotein-1
(apol1), part of high-density lipoprotein complex and genetic variants are common
in the peoples of western Africa and carriers of APOL1 variants are at higher risk
of chronic kidney disease (CKD) including a 17 times higher risk of developing focal
segmental glomerulosclerosis.23,24

Viral Tropism in the Kidney

Evidence for direct renal tropism by COVID-19 is controversial. Although a few studies
have been able to demonstrate evidence of the presence of viral particles in renal tis-
sue many have not.25–27 Furthermore, the timing of renal biopsies and autopsy studies
are often days to weeks after the onset of the associated AKI, putatively beyond the
infectious period of SARS-CoV-2. However, the trimeric spike protein of SARS-
CoV-2 is a large molecule at approximately 600 kDa which should preclude its filtration
in the healthy glomerulus suggesting the infection of the renal tubular cells, the urothe-
lium or filtration occurring through damaged glomeruli.28 Similarly to the related virus
SARS-CoV, SARS-CoV-2 enters cells expressing ACE2 and seems to be its principal
mechanism of infectivity.29,30 The cell-free and macrophage-phagocytosed virus can
spread to other organs and infect ACE2-expressing cells at local sites, causing multi-
organ injury.31 Interestingly, in murine models of ischemic tubular injury ACE2 expres-
sion may drop.32 This would theoretically reduce the further influx of viral material into
the renal epithelial cells. Moreover, SARS-CoV-2 is endocytosed by the kidney injury
molecule-1 (KIM-1) glycoprotein expressed on pulmonary and renal epithelial cells.
This represents an alternative entry mechanism for the virus into already damaged
epithelial cells, further prolonging infectivity.33

Complement Activation

The immune/inflammatory response to COVID-19 infection has been implicated in the
development of C19-AKI. For example, complement activation has been demon-
strated within the kidney with evidence of complement deposition and membrane
attack complex in nephron vessels and the tubular basement membrane.34 The acti-
vation of the complement cascade has previously been shown to lead to chronic renal
inflammation and subsequent tubulointerstitial fibrosis.35 This has led to studies
administering the complement C5a inhibitor eculizumab in patients with COVID-
19.36 Although preliminary results show promise, these are proof of concept studies
with insufficient numbers to demonstrate any significant effects on C19-AKI or the
need for RRT.
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Cytokine Activation

The inflammatory response to COVID-19 infection has been described as a “cytokine
storm” contributing to organ dysfunction. Although poorly defined, cytokine storm syn-
drome (macrophage activation syndrome) is a life-threatening inflammatory response
involving high levels of circulating cytokines and immune cell hyperactivation triggered
by multiple mechanisms including sepsis. The proinflammatory cytokines interleukin
(IL)-1, IL-6, and tumor necrosis factor-alpha (TNFa) are 3 of themost important cytokines
of the innate immune system and are implicated in the development of a cytokine storm.
Although in COVID-19 elevated levels of monocytes and macrophages have been
demonstrated, particularly in the lungs, and are thought to account for the high levels
of IL-1, IL-6, and TNFa observed in some individuals other data suggest that levels of
circulating cytokinesareoften lower inpatientswithCOVID-19 than inpatientswithacute
respiratory distress syndrome (ARDS) due to causes other than COVID-19.37–39 Never-
theless, monoclonal antibodies against IL-6 have been trialed in patients with the RE-
COVERY trial demonstrating that the anti-IL-6 monoclonal antibody tocilizumab had a
positive effect inmoderate COVID-19 pneumonitis, contradicting the results of a smaller
multicentre Italian studywhich found no benefit.40,41 However, in the critically ill, the data
aremore contentious. The REMAP-CAP trial demonstrated a reduction in the duration of
cardiorespiratory support in an intensive carepopulationwhenadministering tocilizumab
or sarilumab, another anti-IL-6 monoclonal antibody.42 The excess cytokine production
resulting in ARDSmaybe associatedwith disease severity inCOVID-19; however, its role
in the contribution toward kidneydamage is vague. IL-6hasbeen implicated in the devel-
opment of AKI given that elevated IL-6 levels may induce renal endothelium cells to
secrete other proinflammatory cytokines and chemokines contributing to microvascular
dysfunction.43 Moreover, in patients with a greater than 100-fold increase in IL-6 levels
increased rates of AKI have been observed although this is not a consistent finding.44,45

COVID-19-Associated Coagulopathy

The extrapulmonary clinical manifestations of COVID-19-infection are likely to be related
to associate widespread vascular pathology given prominent pulmonary as well as sys-
temic endotheliitis represents a distinguishable and distinct feature of COVID-19 infec-
tion.46 The prothrombotic nature of COVID-19-associated sepsis has been well
described.47 Platelet-rich thrombi have been observed in the microvasculature of the
heart, brain, kidney, and liver and renal infarction secondary to arterial thrombi have
also been described.48,49 Although prophylactic anticoagulation with low-molecular-
weight subcutaneous heparin or enoxaparin (a low-molecular-weight heparin) was
shown to provide a mortality benefit in inpatients with COVID-19 from the US Veterans
database this finding was confirmed only in moderate COVID-19 pneumonitis, failing to
show benefit in the critical care population.50,51 Furthermore, no effect on AKI rates
was observed. Thrombotic microangiopathy characterized by thrombocytopenia and
microthrombiwhichmay lead to ischemic tissue injuryhasbeenobservedboth in thepul-
monary vasculature and kidneys of patients with severe COVID-19.52–54 In addition, sig-
nificant alterations of the von Willebrand factor (VWF)-ADAMTS13 axis in patients with
COVID-19 have been observedwith an elevated VWF:Ag toADAMTS13 activity ratio be-
ing strongly associatedwith disease severity. Such an imbalance enhances the hyperco-
agulable state of patients with COVID-19 and their risk of microthrombosis.55

Indirect Kidney Injury

Indirect mechanisms include damage from the therapeutic interventions to manage
critical illness as well as the systemic effects of COVID-19 infection (see Fig. 1).
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Insensible losses leading to hypovolemia and kidney injury, through an increased work
of breathing, pyrexia, and gastrointestinal manifestations of infection may be signifi-
cant in individuals with COVID-19. Moreover, hemodynamic instability and fluid
restrictive strategies in patients with ARDS may further exacerbate kidney injury.
The relationship between the underlying pulmonary pathology and the kidney may
also exacerbate C19-AKI. The consequence of respiratory failure and subsequent
hypoxemia on the kidney are well documented with increased renovascular resis-
tance, exacerbated by hypercapnia, leading to a reduction in glomerular filtration
rate (GFR).56 Furthermore, increases in pulmonary artery and intrathoracic pressure
may lead to right ventricular dysfunction and renal venous congestion,
effects exacerbated by the use of mechanical ventilation and the application of posi-
tive end-expiratory pressure (PEEP).57,58 This effect may be exaggerated in severe
COVID-19, whereby high PEEP levels and high peak and plateau pressures are often
required to achieve adequate oxygenation in the context of COVID-19 ARDS.59

Administration of nephrotoxic medications, such as antibiotics, may also contribute
to the development of AKI in patients already at high risk.
ASSESSMENT AND INVESTIGATION OF ACUTE KIDNEY INJURY

Initial assessmentofanypatientwithCOVID-19 infectionshould includea fullmedicalhis-
tory focusing on those comorbidities and patient factors identified as being associated
with higher risk for AKI development.13,46,60 Clinical examination should include the eval-
uation of volume status and whereby appropriate, hemodynamic assessment. AKI in
COVID-19 is defined and classified by the KDIGO criteria-based serum creatinine and
urine output changes.5 Urinalysis is mandatory as it may help to differentiate various
causes of AKI and give an indication of potential glomerular involvement, even whereby
alterations in kidney function as defined by KDIGO criteria are absent. This has been
observed in one study whereby urinalysis was positive for proteinuria in 65.8% and he-
maturia in 41.7%, while only 4.7% of the patients met KDIGO criteria for AKI.61

Biomarkers of Acute Kidney Injury

Novel biomarkers of AKI in the evaluation of C19-AKI have been evaluated in several
studies. Neutrophil gelatinase-associated lipocalin (NGAL) is produced in the distal
nephron and its synthesis is upregulated in response to kidney injury and may predict
the need for RRT requirement and in-hospital mortality.62,63 A small observational trial
of 17 patients with COVID-19-positive admitted to a Japanese ICU showed that
elevated urinary NGAL on admission to the ICU was associated with the development
of AKI during their stay.64 Of note, patients with elevated urinary NGAL had a longer
duration of mechanical ventilation and ICU length of stay which may reflect the effect
of AKI; however, increased NGAL levels have also been observed in ventilator-
associated lung injury.65 The type-1 transmembrane glycoprotein KIM-1 is expressed
in proximal tubular epithelial cells and has been shown to be associated with AKI
development.66 A recent study has shown that KIM-1 was significantly elevated in pa-
tients with COVID-19 with, compared with those without AKI (P5 .005) and was signif-
icantly elevated in the patients with COVID-19 that had to be transferred to the ICU.67

The use of other biomarkers such as tissue inhibitor of metaloproteinases-2 (TIMP-2)
and insulin-like growth factor binding protein-7 (IGFBP-7) has also been proposed in
assessing patients with COVID-19 and a recent study demonstrated that the use of
this biomarker combination may identify patients with AKI and infection early.68,69

Also, increased requirement for RRT in individuals with C19-AKI and high levels of
[TIMP-2]x[IGFBP-7], has been observed. While a further study in a cohort of 352
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patients found admission soluble urokinase plasminogen activator receptor (suPAR)
levels to be predictive of in-hospital AKI and the requirement for RRT.16,70

MANAGEMENT OF C19-ACUTE KIDNEY INJURY

As the syndrome of C19-AKI has multiple etiologies, no generalized single manage-
ment plan can be proposed for use in all cases and there is no evidence that the treat-
ment of C-19 AKI should be managed differently to other causes of AKI in hospitalized
patients.13 Patients admitted with COVID-19 are often intravascularly deplete and fluid
resuscitation until euvolemic with vasopressor support whereby required, should be
administered according to usual best practice and individualized whereby possible.
This is in keeping with recent evidence showing that targeted resuscitation through
dynamic hemodynamic assessment reduces the risk of both AKI and respiratory fail-
ure.71 Fluid choice for initial resuscitation should be crystalloid, preferably balanced in
those who are critically ill. It has been shown that a composite outcome of death, new
RRT, or persistent kidney dysfunction among critically ill patients was reduced with the
administration of balanced crystalloids over 0.9% saline. Similar findings in noncriti-
cally ill patients were also generated.72,73 Although subsequent meta-analysis failed
to demonstrate a definite benefit for balanced crystalloids over 0.9% saline, other in-
dications, such as hypochloremia or hypernatremia may guide the clinician toward us-
ing balanced solutions.74 Although recent data from a randomized trial on over 11,000
patients in Brazil did not demonstrate a difference in mortality between saline and
balanced solutions these data are not directly transferable to severely ill patients
with COVID-19 with AKI.75 These data were from patients with lower acuity (median
APACHE II score 12 and SOFA 4) and 40% of the patients were not hypotensive. Me-
dian volumes of trial fluid administered were low (mean < 1 L/d) and 68% of all patients
received fluid before randomization with significant crossover. Furthermore, following
randomization, approximately 30% of the total fluid received by day 3 was nonstudy
crystalloid. General management should follow the KDIGO guidelines and include
glucose monitoring and control, relevant given the potential association between dia-
betes, insulin resistance, and COVID-19 infection.76 Preferably pharmacy lead medi-
cation review should be undertaken and pharmacokinetics and drug clearance should
be considered as a dose adjustment may be required in AKI for both COVID-19 spe-
cific acute therapies as well as other medications. General guidance for nutritional
assessment and support in critically ill patients with AKI should be followed especially
as COVID-19 infection which is associated with an inflammatory hypercatabolic state,
reduced oral intake, and immobilization predisposing to malnutrition and muscle
wasting.77 Where mechanical ventilation is needed lung-protective low tidal volume
ventilation strategies as per general ARDS management should be followed.78–80

Prone ventilation has been reported as beneficial in patients with COVID-19 pneumo-
nitis, and at present no evidence suggests that any effect on intraabdominal pressure
and renal blood flow impact on the risk of AKI.81–83

COVID-19-SPECIFIC THERAPIES

Several therapeutic agents have emerged as potentially beneficial in COVID-19 infec-
tion. Remdesivir, an inhibitor of the viral RNA-dependent RNA polymerase was studied
in the Adaptive COVID-19 Treatment Trial (ACTT-1) and demonstrated that compared
with placebo, remdesivir shortened the time to recovery although no significant mortality
benefit was seen.84 Of note, however, patients with AKI or CKD were excluded and as
such, the clinical effect of remdesivir in C19-AKI remains largely unknown. The RECOV-
ERY trial examined the use of the glucocorticoid dexamethasone at a dose of 6mg/d for
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up to 10 days. The use of dexamethasone reduced the mortality of hospitalized patients
receiving invasive mechanical ventilation or oxygen therapy at the time of randomization
with further evidence supporting this approach from meta-analysis of systemic cortico-
steroids in COVID-19.85,86 The RECOVERY trial also demonstrated a reduced need for
RRT in patients not requiring RRT at the time of randomization, with a risk ratio of 0.61
(95% CI 0.48–0.76). More recently a small pilot study from France has also shown a
reduction in AKI in COVID-19 infection.87

As outlined, there may be significant systemic inflammation complicating COVID-19
infection. This has led to the use of immunomodulatory therapies such as Tocilizumab,
an anti-IL-6 receptor monoclonal antibody. The use of Tocilizumab improved survival in
critically ill patients receiving organ support in intensive care with an observed reduction
in the need for RRT, while the RECOVERY trial demonstrated a reduced 28-day mortal-
ity, probability of discharge at 28 days and reduced progression to the composite
outcome of mechanical ventilation and death in those not already ventilated in hospital-
ized patients with hypoxia and systemic inflammation (defined as CRP � 75 mg/L).40,42

Although other therapies have been considered for COVID-19 at the time of writing there
is insufficient evidence of clinical efficacy in the management ofC19-AKI.
RENAL REPLACEMENT THERAPY

The indications for RRT in C19-AKI do not differ from AKI complicating other conditions
and should consider both patient and disease factors. However, resource limitations in
the setting of the pandemic may require further consideration of potential for benefit at
the individual patient level.13 Vascular access should be through the internal jugular and
femoral sites with ultrasound directed placement as this increases success rate and re-
duces complications.5,13,88,89 Internal jugular access may be associated with lower
infection rates compared with femoral in patients with elevated body mass index, but
left internal jugular access is associated with higher rates of vascular access dysfunc-
tion.90,91 Internal jugular access may also be preferable in patients whereby prone venti-
lation is anticipated.13 In the absence of an emergent indication, multiple trials have
failed to demonstrate any impact on mortality using either early/accelerated versus
delayed initiation of RRT, and indeed, premature start may be associated with adverse
outcomes.92,93 However, it must be remembered that the ELAIN trial and more recently,
the AKIKI2 trial found that an overly delayed strategy may be associated with harm (ref-
erences) This implies that the exact timing of initiation of RRT in COVID-19 should be on
a patient by patient basis considering the full clinical context, not just the degree of kid-
ney dysfunction as measured by conventional means.94,95 Use of maximal medical
management, whereby safe, including loop diuretics, potassium binders, and sodium
bicarbonate should be considered before committing to RRT, especially whereby re-
sources may be limited in surge situations. Continuous RRT, prolonged intermittent
renal replacement therapy (PIRRT), and intermittent hemodialysis may all be considered
depending on local familiarity and resources given there is no evidence for superior out-
comes with any onemodality of RRT over another. However, continuous RRTmay allow
more fluid removal and tends to cause less hemodynamic instability, which may be a
consideration in critically ill patients with COVID-19.96 During peak admissions associ-
ated with the COVID-19 pandemic, the demand for ICU care and RRT was stretched,
and shortages of RRT devices, disposables, and dialysis fluid were described.97 Ap-
proaches to mitigate this included moderating RRT intensity to conserve fluids, running
accelerated high clearance RRT or PIRRT to allow machine sharing, in-house prepara-
tion of dialysis fluid, and early transition to IHD.98–100 Peritoneal dialysis (PD) is rarely
used in critical care due to concerns regarding unpredictable fluid balance, variable
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dialysis adequacy, potential peritoneal infection, and compromised ventilation due to
diaphragmatic restriction. Also from a practical standpoint, there may be substantial
challenges involved in delivering PD to patients who are ventilated in the prone position
and intra-abdominal pressure may be increased. Despite these reservations during
surge conditions PD was successfully implemented under certain conditions.101–103

Anticoagulation is recommended for RRT unless contra-indicated especially given
the proinflammatory and prothrombotic nature of COVID-19 infection. This is espe-
cially relevant given that reduced RRT circuit life has been widely reported which
has implications on the dose delivered as well as increasing the consumption of con-
sumables and potential exposure of staff to infection risk.13,104,105 Regional citrate
anticoagulation has been shown to be superior to systemic heparin for anticoagulation
with RRT and although some centers have reported reduced effectiveness of citrate in
patients with COVID-19 others have suggested superiority over heparin.106,107 Choice
of anticoagulation regime is likely to be center dependent, but it is important that if is-
sues with filter lifespan are identified a stepwise approach to optimizing anticoagula-
tion is taken, with the consideration of a shift in modality to IHD, PIRRT, or acute
peritoneal dialysis if possible if issues persist.
EXTRACORPOREAL BLOOD PURIFICATION

There has been considerable interest in the use of extracorporeal blood purification
(EBP) therapies to modify or remove circulating inflammatory mediators with the
aim of mitigating organ damage, including AKI.108 Given the inflammatory profile asso-
ciated with COVID-19 this provides the rationale for such a treatment, but, as dis-
cussed earlier, the degree of cytokine production is generally not as pronounced in
COVID-19 infection as in other causes of ARDS or bacterial sepsis which may
confound this approach. Despite these reservations, several extracorporeal blood pu-
rification filters received emergency use authorization from the US FDA for the treat-
ment of severe COVID-19 pneumonia in patients with respiratory failure not
specifically for AKI. To-date, several single-center case series have been produced
with variable results. In a time-series analysis of 44 consecutive COVID-19 cases
treated with the AN69ST (oXiris) cytokine adsorbing hemodiafilter a decrease in acute
phase proteins was demonstrated with a reduction in IL-6 levels and an observedmor-
tality of 36.3% across the cohort.109 In a further study on 5 patients using the AN69ST
filter a reduction in cytokines levels and improvement of hemodynamic status was also
observed and similarly in 37 patients in a further single-center study a reduction in ex-
pected mortality was also seen (8.3% compared with the expected rate as calculated
by APACHE IV).110,111 Several studies have reported benefits on the use of the hemad-
sorption filter Cytosorb whereby improvements in catecholamine use as well as de-
creases in inflammatory markers were seen.112 A multi-centre study enrolled 61
patients with COVID-19 treated with the Seraph 100 microbind affinity sorbent hemo-
perfusion filter which contains polyethylene beads coated with immobilized heparin
and allows for broad-spectrum pathogen removal.113 An overall mortality of 37.3%
was observed compared with 67.4% in historical controls (P5 .003). In addition, multi-
variable logistic regression analysis yielded an odds ratio of 0.27 (95% confidence in-
terval 0.09–0.79, P 5 .016) in favor of the treatment. However, there are important
caveats principally that this was a retrospective analysis with differing local criteria
for initiating extracorporeal blood purification therapy and hence the potential for sig-
nificant selection bias.114 However, not all EBP interventions have demonstrated such
positive findings as a recent randomized controlled pilot study examined cytokine
adsorption during the first 72 h after the initiation of venovenous ECMO in severe
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COVID-19 demonstrates. Of the 34 patients assessed for eligibility, 17 (50%) were
treated with cytokine adsorption but cytokine adsorption did not result in reduced
interleukin-6 concentrations after 72 h, compared with the control group. One patient
in each group died before 72 h. Survival after 30 days was 3 (18%) of 17 with cytokine
adsorption and 13 (76%) of 17 without cytokine adsorption (P 5 0$0016) These find-
ings were in contrast with the hypothesis of a treatment benefit for patients in the cyto-
kine adsorption group although the study was not powered to detect a mortality
benefit, the results are of interest.115,116 These variable results show that although
control of inflammation in the critically ill through immunomodulation may hold prom-
ise, more data from large, multicentre trials with robust yet pragmatic endpoints are
required.

LONG-TERM OUTCOMES

Early observational data suggest that approximately 50% of patients who have had
AKI associated with COVID-19 infection had not recovered to baseline by the time
of hospital discharge.61,117 Similarly, emerging data suggest that C19-AKI may be
associated with an increased decline in GFR postdischarge than patients who had
AKI from other causes.118 Data from New York showed that in survivors from AKI
who required RRT, 30.6% remained dialysis dependent on discharge with a history
of CKD being the only independent risk factor for this association (adjusted OR, 9.3
[95% CI, 2.3–37.8]).119 In another US-based cohort study from 67 hospitals, 1 in 5 pa-
tients developed AKI-RRT, 63% of whom died during hospitalization. Among those
who survived to discharge, 1 in 3 remained dialysis dependent at discharge, and 1
in 6 remained dialysis dependent 60 days after ICU admission.120 Similar results
were observed in a German study whereby 67% of patients who had required RRT
were dialysis free at hospital discharge and encouragingly at a mean follow-up of
151 days over 90% were dialysis independent.121

SUMMARY

Despite early reports, AKI complicating COVID-19 infection is common in hospitalized
patients. The development of AKI increases the risk of mortality significantly and there-
fore, efforts should be made to minimize the occurrence of AKI and limit the progres-
sion to more severe stages. Treatment should follow accepted practice guidelines for
the general management of AKI given the heterogeneous nature of the potential
causes of AKI in this group. To-date, no specific therapies have demonstrated a
benefit for patients with C19-AKI. Extracorporeal blood therapies show promise but
should be adopted with caution and preferably within a clinical trial. Long-term out-
comes from C19-AKI may not be as poor as initially suggested although data are still
accumulating.

CLINICS CARE POINTS

� COVID-19 associated AKI resembles AKI due to other causes and therefore these should be
excluded where possible.

� Although no specific therapies are available for the treatment of AKI associated with COVID-
19 practitioners should follow accepted management guidelines for the treatment of AKI.

� Where possible follow up of patients who have sustained severe AKI should occur to
minimise longer term sequelae such as CKD.
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