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Abstract

Background: Visual analytics, a technique aiding data analysis and decision making, is a novel tool that allows for a better
understanding of the context of complex systems. Public health professionals can greatly benefit from this technique since
context is integral in disease monitoring and biosurveillance. We propose a graphical tool that can reveal the distribution of
an outcome by time and age simultaneously.

Methodology/Principal Findings: We introduce and demonstrate multi-panel (MP) graphs applied in four different settings:
U.S. national influenza-associated and salmonellosis-associated hospitalizations among the older adult population ($65
years old), 1991–2004; confirmed salmonellosis cases reported to the Massachusetts Department of Public Health for the
general population, 2004–2005; and asthma-associated hospital visits for children aged 0–18 at Milwaukee Children’s
Hospital of Wisconsin, 1997–2006. We illustrate trends and anomalies that otherwise would be obscured by traditional
visualization techniques such as case pyramids and time-series plots.

Conclusion/Significance: MP graphs can weave together two vital dynamics—temporality and demographics—that play
important roles in the distribution and spread of diseases, making these graphs a powerful tool for public health and
disease biosurveillance efforts.
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Introduction

Visual analytics enhances the understanding of large, complex

data with effective, interactive visualization [1]. The technique can

be especially useful in epidemiological investigations, which

involves monitoring trends, detecting anomalies, and generating

testable hypotheses. The potential of visual analytics in epidemi-

ology has been recently illustrated by a number of applications,

including flow-maps to display population mobility and person-to-

person contact across wide geographic space [2], dynamic

mapping of disease occurrences with simultaneous depiction of

spatio-temporal changes in environmental factors [3], detection of

spatiotemporal hotspots [4], and displaying genotype data [5].

Ongoing federally-funded programs for implementation of these

visual analytic techniques in support of pandemic planning and

response may further stimulate interest in visual analytics [6].

Although the application of visual analytics in biosurveillance has

not been extensively studied, new uses for these techniques could

lead to important breakthroughs in surveillance applications. The

growth of surveillance systems in both quantity of data and variety

of outcomes is likely to necessitate constant innovations in data

processing, synthesis, and communication [7].

The increasing popularity of graphical applications for data

visualization has inspired a growing body of diverse graphs, charts,

plots, and maps in research literature. Impressive attempts have

been made to guide proper construction and interpretation of

visual displays [8,9,10,11]. However, specific recommendations for

using complex graphs in epidemiological studies are lacking.

In this paper we present examples of how visual analytics can be

used by epidemiologists and public health professionals to facilitate

data interpretation and decision-making. We provide instructions

for building plots consisting of multiple panels and offer guidance

for properly interpreting information abstracted from these

graphs. We also provide justification for the use of rates, detailed

age pyramids, and refined temporal scales in visual analytics.

Methods

Data Sources
The data sets used in this analysis represent different time

periods, geographic levels, demographic characteristics, and

disease measurements. To illustrate the use of MP graphs for

nationally representative data we utilized the Medicare database.

The database, maintained by the Centers for Medicare and
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Medicare Services (CMS), covers over 96% of US residents aged

65 years and older, representing about 36 million residents [12].

We abstracted all hospitalizations that involved influenza (ICD-9-

CM code 487, n = 250,858) and salmonellosis (ICD-9-CM code

003, n = 27,950) between January 1991 and December 2004. We

compiled a weekly time-series data set (728 weeks) with counts of

influenza and salmonellosis and estimated disease rates per one

million population aged 65 or above. Population denominators for

these rates were calculated using population estimates derived

from the United States Census Bureau Population Estimates

Program for individual years, then linearly interpolated for each

week of the study period.

To illustrate the use of MP graphs on a regional level we used

state surveillance records from Massachusetts (population 6.4

million). Confirmed cases of salmonellosis (n = 2,287) for the

years 2004–2005 were abstracted from case reports submitted to

the Massachusetts Hinton State Laboratory Institute of the

Massachusetts Department of Public Health (MDPH). Case

definitions and data collection methods for this dataset have been

described in detail elsewhere [13,14]. To illustrate the use of MP

graphs for community level data, we abstracted 15,508 records of

hospital visits for asthma among children aged 0–18 years from

the billing data of emergency department, outpatient visits, and

inpatient admissions to Milwaukee Children’s Hospital of

Wisconsin (CHW) for the years 1997–2006. CHW is the primary

pediatric referral hospital for children aged 0–18 years in eastern

Wisconsin and represents 85% of all hospital admissions in

Milwaukee County for children aged 0–19 years [15]. All

analytical results and graphs were produced using SPSS version

17.0 and S-Plus 8 for Windows.

Ethics Statement
This is a secondary data analysis. The protocol was approved by

the Tufts Institutional Review Board. Approvals for the use of

these data sets were obtained from the relevant Institutional

Review Boards and data owners. All data were de-identified before

being delivered to the authors for analysis.

Visualization and Analysis
In this section we describe the important features of population

pyramids, time-series plots, and image plots and then go on to

explain the compilation of an MP graph.

Outcome Pyramids
The outcome pyramid is based on the population pyramid,

which is a type of graph commonly used to describe the

composition of age and sex of a population. Population pyramids

contain two vertically juxtaposed histograms, one for males and

the other for females with a common vertical axis for age, which is

usually represented by single years or 5-year categories. The

longer a bar extends from the vertical axis, the greater the

proportion or number of individuals in that age category. The

horizontal axis can also be modified to depict disease counts and

rates, what we refer to as an ‘‘outcome pyramid’’ in this paper.

In assessing outcome pyramids, attention should be paid to: 1)

the general shape of a pyramid, such as uniform or triangular; 2)

the presence or absence of symmetry by gender; and 3)

irregularities and specific features, such as bumps or spikes in

cases. Outcome pyramids themselves provide an important visual

tool for assessing age and gender differences in diseases. However,

static outcome pyramids are insensitive to temporal changes.

These changes can be substantial, especially for infectious diseases

with well-pronounced seasonality [16,17,18].

Time-series Plots
Time-series plots visualize temporal trends and seasonal

patterns in disease rates. An informative time-series plot must

contain a sufficiently long time frame and a carefully chosen unit

of time, such as day, week, month, or year. While various levels of

temporal aggregation have both benefits and limitations, a weekly

time-series is standard for many surveillance systems [19]. Like the

horizontal axis for outcome pyramids, the vertical axis of a time-

series plot can display either disease counts or rates.

While a well-constructed time-series plot reflects temporal

fluctuations in disease occurrence, interpretation of such fluctua-

tions rests on the assumption of equal risks across the represented

age categories. However, diseases rarely affect all ages uniformly:

older adults and infants often experience higher age-specific

disease rates. This can be partly alleviated by compiling time-series

plots for specific age groups. However, small age group intervals

(e.g. single year) lead to an overwhelming number of plots, while

medium sized intervals (e.g. 5-year) still require the aforemen-

tioned assumption of equally distributed risks within the five years

interval. Therefore, better integration of demographic information

into time-series plots is needed to more accurately interpret disease

trends. Although outcome pyramids and time-series plots alone are

useful for surveillance purposes, they are still two separate

constructs and hence cannot be used to observe temporal-

demographic interaction on their own [20].

Image Plots
An image plot is capable of displaying information for at least

three variables. The first two variables are shared and represented

by the horizontal axis and vertical axis, which form a grid of

numerous rectangular tiles. In our example, these two variables

are time and age. The third variable is represented by different

hues or saturations of colors in the rectangular tiles. In our

examples, the third variables are disease rates or counts.

New information previously masked by case pyramids and time-

series plots can be revealed from image plots. However, reading the

graph properly requires some training and practice. Figure 1 displays

some of the typical patterns. In this figure, a monochromatic color

scale is used, with higher saturation, or darker colors, representing

higher values of an outcome. Panel A shows a decrease of color

saturation from left to right, indicating that the outcome decreases

along time, and the observed decrease is somewhat uniform across

age. Panel B shows a decrease of color saturation from top to bottom,

indicating an increase in an outcome in the older age group

irrespective of time. Panel C shows the combined effect of Panels A

and B: an outcome increasing with age but decreasing across time.

Panel D shows a striated pattern typical for periodic fluctuations in an

outcome across time—evidence of seasonality. Panel E also shows a

striated pattern, but tilted at an angle. This pattern indicates that at

any time point, the outcome across age is uneven and likely to be

cohort-specific. This phenomenon, known as the ‘‘age-cohort effect,’’

[21] can be observed if an outcome was measured in the same cohort

repeatedly and an outcome remains higher or lower in a group of

subjects as they aged. Finally, Panel F shows a set of four distinct

clusters combined with Panel B, where substantially higher outcomes

in the younger group at the middle of the time duration are observed.

These clusters might be indicative of disproportionally high values of

an outcome, or an aberration in the expected values. Depending on

the context a cluster, the pattern may indicate potential outbreaks.

The Construction of a Multi-panel Graph
We propose a new graphical design called a multi-panel (MP)

graph, which involves the strategic positioning of two or more

graphs sharing at least one common axis on a single canvas. In our

Multi-Panel Graphs
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example, we propose combining the time-series plot, outcome

pyramid, and image plot by aligning them together so that they

share a common set of axes that represent age and time. This

design allows for the simultaneous visualization of population

structure and temporal trend, which is important for us to clearly

understand trends in disease burden and, more importantly, for

infectious diseases, to quickly detect historical outbreaks [22,23].

Results

We first demonstrate the use of the MP graph with a disease that

has a well pronounced seasonal pattern. Figure 2 shows influenza-

associated hospitalizations among 65–85 year olds in the United

States, 1991–2004. The outcome pyramid depicts the rates for each

single year of age by gender. The horizontal bars lengthen with

increasing age, indicating that the rates of influenza increase with age.

The upper time-series shows rates plotted against time, expressed in

weekly units. The ticks of the horizontal axis are set at every 52nd

week as an approximation of one calendar year. The vertical,

regularly occurring spikes near the beginning of each year represent

the peaks of influenza epidemics. In some years, the spikes are

particularly high (1999–2000, week 468; 2003–2004, week 676),

indicating more severe epidemics. The image plot displays the log-

transformed rate projected onto an age-by-time grid, allowing the

examination of the age-time interaction. The data were log-

transformed to improve visualization of the whole range of values

due to right-skewness in the distribution of rates. Two important

features are shown in the image plot. First, vertical strips

corresponding to the seasonal peaks shown in the time-series indicate

an annual seasonal pattern. Second, for most of the dark strips, the

color is more saturated for the older age groups, illustrating a higher

rate of disease. In severe epidemic years, the saturation of the strips is

more uniform, indicating substantial rate increases in all age groups.

The lighter regions between the dark strips represent the ‘‘off-

season’’, commonly defined as April through September. During the

off-seasons, the rates are also higher for the older age groups

compared to the younger groups. Among those lighter areas, the

lower right corner of the strips appears to be lighter than the upper

left corner, suggesting a possible cohort effect.

Figure 3 shows information on hospitalizations associated with

non-typhoidal salmonellosis in the older adult US population ages

65–85 years, 1991–2004. The outcome pyramid shows a higher

rate of disease for the older population. The time-series plot shows

an oscillatory pattern which is less extreme than that of influenza.

The peaks occur during the middle of each year, typically during

the summer months in the US, which agrees with findings of other

investigations [18,24,25]. There is also a declining long-term trend

from 1991 through 1998, and then the trend stabilizes in 1999

(week 416). The image plot shows the rate by age and week. The

vertical strips associated with the seasonal pattern are less

profound compared to that of influenza, but are still discernable.

The younger group, once again, has a lower rate. The rates are

also higher at the top left corner compared to the lower right. A

cohort effect may be possible, but other measures such as new food

safety regulation or improved food safety knowledge could also

have contributed to the observed decline [26].

Figure 4 shows information on reported cases of salmonellosis in

Massachusetts, 2004–2005. The outcome pyramid displays number

of cases per 100,000 persons by gender. Infants and children #8

years old seem to be most at risk, as represented by the long

horizontal bars. Another small peak occurs during early adulthood

(18–30 years old). This observed increase during early adulthood

may be attributable to insufficient knowledge of food hygiene,

indirectly increasing the risk of food poisoning during eating out,

cooking, or inter-household infection involving young children [27].

The time-series plot shows two seasonal peaks: between the 25th and

35th weeks (summer, 2004) and a smaller one between the 75th and

90th weeks (summer, 2005). The image plot is more pixelated

compared to the previous ones because the range of time has

dropped from 728 weeks to 104. Even so, the vertically aligned

clusters can still be clearly distinguished. The light shade of grey in

the background for those aged 65 years and above indicates a low

rate of Salmonella infection across the two years, although infants,

children, and young adults contribute the majority of the cases.

Finally, Figure 5 shows cases of childhood asthma in Milwaukee,

Wisconsin during the period 1997–2006. This figure differs from the

other three in that it shows counts rather than rates due to the lack of

a proper regional denominator in the Milwaukee area. The outcome

pyramid shows several important characteristics. First, there were

fewer cases at age 0. The numbers of asthma cases are highest for

toddlers aged 1–2 years old. There were more male cases than female

cases, with a male-to-female ratio ranging from 1.5 to 2, although the

ratio decreases as age increases. The time-series plot shows a non-

uniform seasonal pattern: the winter months had slightly higher

asthma cases than the summer months did. The overall number of

visits due to asthma increased markedly, particularly over the last

three to four years of observation. Many potential factors could have

caused the observed increase. First, the time-series only shows

frequency, so the increase might be due to changes in the size of the

selected population. For instance, increased immigration to Milwau-

kee, closing of a nearby hospital, or expansion of the hospital, both in

size and service, could have caused the observed increase. The image

plot reveals that the increase in asthma cases did not occur uniformly

throughout all of the age groups. Except for the spike in late 1997,

most of the cases occurring in children aged 4–12 seem to stabilize

from 1997 to 2004. After 2004, marked increases in frequency are

seen in the 2 to 6 year old age group, forming a darker shade at the

lower right corner.

Figure 1. Typical patterns observed in image plots used to study the association between age, time, and the disease of interest.
doi:10.1371/journal.pone.0014683.g001

Multi-Panel Graphs
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Discussion

Technological advancements have enabled health-related data

collection and storage in larger scale and higher frequency. This

has led to the compilation of a tremendous amount of information,

which is challenging for analysts to sort through. With the growth

of epidemiologic research examining climate change, population

growth, migration, emerging pathogens and natural disasters,

monitoring human health through surveillance data is becoming

increasingly complex. Epidemiologists can benefit immensely from

adopting innovative visual-analytical techniques used in other

fields of study. This includes the utilization of population pyramids

by demographers to describe the age structure of a community,

along with modified Lexis diagram surfaces to describe incidence

patterns in diseases, such as influenza, simultaneously by age,

period, and cohort. Time-series plots have also been widely used in

economics and physics. By strategically combining these visuali-

zation techniques in an MP graph, we can more efficiently analyze

surveillance data through discerning interactions between vari-

ables, detecting anomalies in the data, identifying temporal trends,

and discovering other nuances. In this section we discuss some

potential analytical recommendations stemmed from the findings

in the MP graphs, as well as the strengths of MP graphs and

caveats when applying this technique.

Seasonality of influenza in the U.S.
A well-constructed MP graph can inform the decisions used in

statistical modeling. The time-series plot in Figure 2 shows that

influenza hospitalizations exhibited a pronounced annual seasonal

pattern: every winter there is a noticeable spike in influenza. To

properly model this oscillation, a harmonic regression model can

be employed:

Outcome~b0zb1tzb2t2zb3 sin (2pvt)zb4 cos (2pvt), . . . ðiÞ

where t represents time and v represents the frequency (1 divided by

the total number of time units in a cycle). The coefficients b3 and b4

in the equation (i) can be used to derive seasonal parameters such as

time to peak and magnitude. Using this model, we found that the

average peak week of influenza was the 28.6th week (95% CI: 28.4,

28.8) or the 3rd week of January. The median absolute intensity

Figure 2. Multi-panel graph of influenza in the United States older adult population (aged 65 and over) 1991–2004. Lower left:
outcome pyramid; upper right: time-series plot; lower right: image plot.
doi:10.1371/journal.pone.0014683.g002

Multi-Panel Graphs
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(outcome at peak – outcome at nadir) was 48.3 cases per one million

older adults (95% CI: 45.8, 51.0) [28]. From Figure 2, we can also

estimate the time to peak by looking for the highest point in the

time-series plot or the darker strip in the image plot. The annual

alternating contrast between the light and dark saturations allows us

to estimate the absolute intensity as well. Notably, more intense flu

seasons tend to peak earlier in the year, as shown in the uneven

spacing of peaks with different heights and strips with different color

saturations in the time-series plot and image plot, respectively. In

fact, absolute intensity and peak timing had a strong, inverse

relationship (Spearman’s correlation coefficient = 20.5, p,0.05).

Effectiveness of a food safety regulation enforcing
testing for Salmonella

Other than providing improvements for statistical models, an

MP graph can also help generate new hypotheses. For instance, we

observed a decreasing trend in salmonellosis-associated hospital-

izations, like the one shown in Figure 3, around the 300th week

(approximately early 1997), which then led to investigations into

reasons for such a prominent drop. A potential reason could be the

implementation of a nation-wide quality control program known

as Hazard Analysis Critical Control Points (HACCP) in the broiler

chicken production facilities. This hypothesis can be tested using

the general model:

Outcome~b0zb1(tpre)zb2(tpost)z

b3 sin (2pvt)zb4 cos (2pvt), . . .
ðiiÞ

where again t represents time and v represents frequency. The

linear terms, tpre and tpost, represent the time (in weeks) before and

after the HACCP implementation began in early 1997. By

comparing the regression coefficients of the two terms, we can

estimate the possible effect of the HACCP regulation. We found

that when looking at the whole nation, the pre-HACCP and post-

HACCP rates of change did not differ. The rates of change in

hospitalization associated with Salmonella before and after HACCP

are 20.0009 (95% CI: 20.0018, 20.0001) cases per million

people aged 65+ per week and 20.0009 (95% CI: 20.0015,

20.0002), respectively (p-value for the difference between

slopes = 0.92). A decreasing trend was observed in salmonellosis-

Figure 3. Multi-panel graph of salmonellosis in the United States older adult population (aged 65 and over) 1991–2004. Lower left:
outcome pyramid; upper right: time-series plot; lower right: image plot.
doi:10.1371/journal.pone.0014683.g003

Multi-Panel Graphs
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associated hospitalizations, but the HACCP regulation did not

seem to be associated with a steeper decrease in salmonellosis-

associated hospitalizations after it was implemented. A closer

investigation by Census division (results not shown) revealed that

the effect of HACCP in preventing Salmonella infections could have

been modified by geographic area: The southern part of the US

did not demonstrate any beneficial post-HACCP change [26].

Strengths of MP Graphs
Susceptibility to infectious diseases varies by age, time, and

geography. Understanding the interactions of these three elements

is important for prediction and prevention of disease outbreaks in

vulnerable populations. We have adopted and advanced a set of

traditional graphical tools for visualizing demographic and temporal

patterns simultaneously. As illustrated by the four examples, the MP

graph presents a straightforward and effective way of visualizing key

temporal and age-related trends that might otherwise be hidden if

the traditional visualization techniques were used individually.

The component graphs themselves require only standard

statistical packages and basic knowledge of statistical analysis. By

adding detailed statistical assessments, these graphs can be used for

observational and analytical surveillance purposes. For instance,

we can detect age-specific clusters and cohort effects when

individuals of the same age at the same time exhibit differential

disease patterns over the period of surveillance than other

individuals of different ages [29]. As an extension, the tools can

facilitate the detection of increased risk of disease in vulnerable

subpopulations at a given time period, and depict the projected

change in demographic structures and expected disease outcomes

based on local forecasts. Although we have demonstrated the use

of multi-panel graphs in retrospective surveillance data, the

techniques can be further expanded by plotting projected trends,

marking the time and age groups where deviations from expected

values are noticed. The MP graph can be also animated and

projected in real-time.

Precautions in Using MP Graphs
There are some precautions when composing MP graphs. To

build MP graphs properly, we have to consider the 1) precision of

age valuation in describing population structure, 2) temporal scale

Figure 4. Multi-panel graph of salmonellosis in the general Massachusetts population 2004–2005. Lower left: outcome pyramid; upper
right: time-series plot; lower right: image plot.
doi:10.1371/journal.pone.0014683.g004

Multi-Panel Graphs

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e14683



and resolution, and 3) amplitudes of temporal variations in both

populations at risk and the disease. Traditionally, the primary

approach used to evaluate age-specific rates is to stratify the

population into age categories and then to observe how the disease

of interest affects each age group. A common example is the

division of the population into three broad age categories:

children, adults, and older adults [30,31,32]. Such an approach

can cause problems if the age range for each category is set

arbitrarily, as critical information may be lost during aggregation.

The disadvantage of this approach is magnified if the disease of

interest has different prevalence across age ranges that are finer

than the chosen age categories [33]. Some diseases are more

prevalent in children, while others are more prevalent in the older

population. For example, the incidence of salmonellosis in 2003 in

the United States is greatest among infants aged ,1 year (122.7

per 100,000 infants) and second highest among children aged 1–4

years (50.6 per 100,000 children) [34]. Depending on the disease

of interest, different age groups can be affected by the disease

differently. In biosurveillance systems, the cases are typically

shown without correction for the size of the affected population or

the population at risk [23]. Interpretation of the ‘‘hot spots’’ in

such situation should be done with caution, since the age-time

interactions can be easily distorted due to skewing distributions

toward age-specific population or unequal sizes of age groups. Our

previous work has revealed significant changes in population

profiles during various phases of seasonal oscillations in enteric

infections [35].

Second, the seasonality of certain diseases can also be a concern

in rate calculations, specifically for infectious diseases. In

temperate climates, seasonal peaks of enteric disease are most

likely to be observed in the summer months [36,37,38,39,40] while

influenza and other respiratory infections are most prominent with

the advent of the winter months [20,41]. The shape and

magnitude of temporal variations can be better understood if

records cover a sufficiently long time period and represent a

clearly-defined geographic area. Systematic over- and under-

estimations of daily, weekly, monthly or yearly rates can occur if

the population was erroneously assumed to be static. Potential

sources of error in existing surveillance systems include variations

in system specifications, data collection protocol, time periods over

which the data are collected, and analytic methods applied to

determine disease trend or departure from a typical norm.

Figure 5. Multi-panel graph of asthma in children aged 0–18 in Milwaukee 1997–2006. Lower left: outcome pyramid; upper right: time-
series plot; lower right: image plot.
doi:10.1371/journal.pone.0014683.g005

Multi-Panel Graphs
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Future developments
MP graphs are a potentially useful tool for illustrating data with

complex, multifaceted structure. Combined with live data streams,

we can create an efficient dashboard device for the purpose of real-

time surveillance. Two other features, if incorporated, can further

enhance the power of the MP graph: dynamic display and

interactivity. Dynamic display of data, such as a movie with

consecutive snapshots showing the geographic distribution of an

epidemic [3], allows for a better perception of disease progression.

Such animation devices can also be applied to MP graphs.

Interactive features such as user-controlled functions in enlarging

or diminishing the scale, setting the lower and upper limits of the

axes, or freely assembling different graphical components can

make the MP device more versatile, improving its applicability.

Conclusion
Increasing complexity in epidemiological data calls for more

sophisticated graphical representations. Other than developing or

adapting new visualization schemes, we can also enrich the

number of variables, or dimensions, on a canvas by combining

simple graphical modules. MP graphs offer a novel way to

synthesize complex visual data. Further research into expanding

the use of these techniques will help epidemiologists better identify

the most vulnerable populations and times, enhancing the

detection and prevention of diseases.
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