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Abstract
Intra-cellular fluctuations, mainly triggered by gene expression, are an inevitable phenome-

non observed in living cells. It influences generation of phenotypic diversity in genetically

identical cells. Such variation of cellular components is beneficial in some contexts but detri-

mental in others. To quantify the fluctuations in a gene product, we undertake an analytical

scheme for studying few naturally abundant linear as well as branched chain network mo-

tifs. We solve the Langevin equations associated with each motif under the purview of linear

noise approximation and derive the expressions for Fano factor and mutual information in

close analytical form. Both quantifiable expressions exclusively depend on the relaxation

time (decay rate constant) and steady state population of the network components. We in-

vestigate the effect of relaxation time constraints on Fano factor and mutual information to

indentify a time scale domain where a network can recognize the fluctuations associated

with the input signal more reliably. We also show how input population affects both quanti-

ties. We extend our calculation to long chain linear motif and show that with increasing

chain length, the Fano factor value increases but the mutual information processing capabil-

ity decreases. In this type of motif, the intermediate components act as a noise filter that

tune up input fluctuations and maintain optimum fluctuations in the output. For branched

chain motifs, both quantities vary within a large scale due to their network architecture and

facilitate survival of living system in diverse environmental conditions.

Introduction
Cell, the building block of every biological system, is capable of sensing extra-cellular as well as
intra-cellular changes and responds accordingly using the mechanism of signal propagation
through various network motifs [1–5]. The ubiquitous examples of biological motifs are signal
transduction networks (STN) [6–10], gene transcription regulatory networks (GTRN) [11–15],
metabolic reaction networks [16–18] and protein-protein interaction networks [19, 20]. The
interactions between the different biochemical components of a motif are probabilistic in na-
ture. Thus, fluctuations play an important role during the process of signal transduction [21–
27]. The extent of performance of a network is measured by the response time, i.e., how fast the
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network output is changed with the fluctuating input stimuli [28]. If the network input-output
relation follows a characteristic time scale then it could sense the changes (extra-cellular as well
as intra-cellular) more precisely via components of a signal transduction motif. Consequently,
some intra-cellular changes occur with the variation of input signal with few chemical modifi-
cations to optimize the effect of the input. One of the well studied STNs is mitogen activated
protein kinase (MAPK) cascade, mostly observed in eukaryotic signaling pathway [6–8]. In
MAPK cascade, external signal is processed through several steps via phosphorelay mechanism
and fluctuations due to signaling molecules are subjected to modification at every step of the
cascade. This phenomenon has been observed in various experimental and theoretical studies
[29–32]. It has been shown that output fluctuations increase in an integrated way with the cas-
cade length. On the other hand, the GTRN network is depicted by few nodes. These nodes rep-
resent regulatory genes and are connected via edges. A simple network can be constructed by
considering two nodes representing two genes connected by a directed single edge. The edge
signifies how the product of one gene (transcription factor) regulates the other gene and the di-
rection of the edge represents the mode of regulation. In such case, transcription factor may act
as the signaling molecule and plays a pivotal role in maintaining the transcription rate of a tar-
get gene by controlling the appropriate time scale and the amount of transcripts. GTRN motifs
were initially identified in E. coli where few network motifs are much more common compared
to the other random motifs [12, 33]. Later, these common motifs have been also observed in
several other prokaryotes as well as in eukaryotes [2]. To understand the cellular physiology, it
is thus essential to study the GTRNmotifs at the single cell level. Cell shows phenotypic hetero-
geneity in genetically identical system due to fluctuations present within the cellular environ-
ment [15, 25, 34]. Fluctuations in the cellular component not only depend on the mean value
of the component but also on the life time (relaxation time) [35]. Moreover, the relaxation rate
of a biochemical component acts as a parameter which can be tuned during experiment [1]. In
other words, tuning of relaxation time scale of each motif component provides a way to mea-
sure the amplification or suppression of fluctuations in each step of signal propagation. Recent
development of monitoring protein degradation at the single cell level enables one to measure
relaxation (degradation) time where fluctuations play an important role [36]. It is thus impor-
tant to investigate how these networks perform under fluctuating condition. In the present
paper we have studied few GTRN motifs to investigate the mode of functionality and their re-
sponse in terms of the relaxation time scale. Our theoretical formalism takes care of the intrin-
sic noise associated with each biochemical reactions.

In the present communication, we focus on few naturally abundant GTRN network motifs.
At first, we consider a simple linear one step cascade (OSC) and study the steady state dynam-
ical behavior under stochastic framework. Two nodes and one edge are used to draw this motif,
where each node represents a gene of a simple regulatory system (see Fig 1a). The edge indi-
cates that one gene regulates the other via interaction of transcription factor with the promoter
site of the target gene. Due to the direct interaction of the two nodes, this motif can be consid-
ered as a direct pathway for gene regulation or signal transmission. The next motif we under-
take is a linear two step cascade (TSC) obtained from the previous motif by inserting a new
node (gene) in between the two nodes of the one step network (see Fig 1b). In this case, the tar-
get gene is indirectly regulated by the input (transcription factor) that acts as a signal. Recent
theoretical formalism reveals enhancement of signal processing capacity (fidelity) in TSC due
to increase in the “biochemical noise” [37]. Furthermore, it has been shown that the relaxation
time scale plays an important role in determining the fidelity.

Using both OSC and TSC network motifs, we then construct some biologically important
motifs that belong to the group feed forward loop (FFL) (see Fig 1d–1f)). We compose these
motifs by lateral combination of two linear cascades (OSC and TSC). In FFL, a transcription
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factor regulates the target gene directly (via OSC) as well as indirectly (via TSC) [1, 2, 12, 33,
38]. In these motifs, two transcription factors are present and each of these can show either
positive (activation) or negative (repression) effect on the target gene. Therefore, eight different
types of FFL are possible considering both effects. Among all the possible FFL, four of these are
of coherent type and the remaining four are of incoherent type. The classification is done ac-
cording to the overall sign of the regulatory motif, positive and negative sign for coherent and
incoherent type, respectively. Experimentally, it has been shown that type-1 FFL has both co-
herent and incoherent nature and are ubiquitous. Due to this reason, we consider these two
motifs in the present work. Type-1 coherent FFL has two sub-types depending upon the func-
tion of direct and indirect regulatory pathways on the promoter region of the target gene.
When both transcription factors are required to express the target gene, the FFL motif behaves
as an AND like gate (see Fig 1e). On the other hand, when one of the two transcription factors
are sufficient to regulate the target gene, the FFL motif behaves as an OR like gate (see Fig 1d).
At this point, it is important to mention that few theoretical studies under stochastic frame-
work have been undertaken to understand the FFL motif [23, 39–41].

We use a Gaussian model (see Methods) to study the origin and consequence of stochasti-
city for all motifs considered in the present work. In all the motifs, fluctuations are carried for-
ward from one node to the next one when signal is transduced along the direction of each edge.
Thus, our main purpose here is the quantification of fluctuations in output signal for all motifs.
Using an approximation technique (linear noise approximation [42–48]), we solve all dynam-
ical equations and calculate the Fano factor (variance/mean) [49] expression by which we mea-
sure output fluctuations of each motif. Keeping this in mind we study the effect of relaxation
time scale, i.e., lifetime of a network component on output fluctuations as it can provide knowl-
edge about fluctuations propagation at each and every step of a cascade. We derive a time scale
condition in which fluctuations in the input signal are filtered out by the intermediate compo-
nent. Similarly, conditions have been figured out when fluctuations are enhanced. We also

Fig 1. Schematic presentation of different GTRNmotifs. (a) one step cascade (OSC), (b) two step cascade (TSC), (c) multi step cascade with n number
of intermediate nodes, (d) OR coherent feed forward loop (OCFFL), (e) AND coherent feed forward loop (ACFFL) and (f) incoherent feed forward loop
(ICFFL).

doi:10.1371/journal.pone.0123242.g001

Relaxation Time Scale and Signal Transduction

PLOS ONE | DOI:10.1371/journal.pone.0123242 May 8, 2015 3 / 26



examine the effect of copy numbers of input signal on output fluctuations and show that it
plays a vital role under some specific conditions. As all cascades process information of the
input signal, we investigate the reliability of information flow through each cascade by measur-
ing the mutual information between the input signal and the output [37, 50–53]. We calculate
similar properties for FFL and identify biological significance of two sub types of
coherent motifs.

Methods
To start with, we consider few network motifs that represent GTRN. All the motifs that are
taken into account in the present work are shown in Fig 1 where each circle represents a node
and a straight line with an arrowhead connecting two different nodes represents an edge. The
direction of an arrowhead denotes flow of signal from one node to the next one. The simplest
linear signal transduction motif is modeled by two nodes, where S component acts as an input
signal (transcription factor) which regulates the expression of a target gene Y (Fig 1a). The
length of linear motif is increased further by incorporating another node X in between the S
and the Y nodes. In such case, the S component regulates or transduces input signal to the Y
component via the intermediate X (Fig 1b) [4, 54, 55]. We also consider a long chain linear
motif (Fig 1c) by integrating n numbers of intermediate nodes within the simplest motif shown
in Fig 1a.

Next, we focus on few branched chain network motifs that are constructed by lateral combi-
nation of the first two signal transduction motifs (one step and two step, Fig 1a and 1b, in dif-
ferent ways and are characterized as feed forward loop (FFL). Fig 1d represents coherent feed-
forward loop of OR like gate (OCFFL), where the target gene Y is positively regulated by either
the S or by the X component, both acting as transcription factors. On the other hand, for coher-
ent feed forward loop of AND like gate (ACFFL), both S and X are essential to regulate the tar-
get gene Y positively (Fig 1e). In Fig 1f, the transcription factor S positively regulates the
production of gene Y via direct pathway but represses the gene regulation via the X mediated
indirect pathway and this motif is known as incoherent feed forward loop (ICFFL) [2, 33, 55,
56].

All the biochemical network motifs considered in Fig 1 consist of an input signal S and a
output signal Y with an intermediate X except the long chain linear motif with n numbers of in-
termediate components (see Fig 1c). We describe the time dependent dynamics of the three
chemical components by a set of generic coupled Langevin equations [42, 43, 47, 51] which
may be of linear or non linear type depending on the kinetic schemes of a network motif con-
sidered in the present work

ds
dt

¼ fsðsÞ � t�1
s sþ xsðtÞ; ð1Þ

dx
dt

¼ fxðs; xÞ � t�1
x x þ xxðtÞ; ð2Þ

dy
dt

¼ fyðs; x; yÞ � t�1
y y þ xyðtÞ: ð3Þ

The first and the second terms on the right hand side of Eq (1) take care of synthesis and
degradation of S, respectively, whereas ξs(t) is the fluctuations associated with the input signal.
In Eq (2), we consider the dynamics of intermediate X where fx(s, x) is the S and/or X mediated
synthesis of X and t�1

x x takes care of degradation of X. As in Eq (1), ξx(t) is the fluctuations as-
sociated with X. Similarly, the first and the second terms on the right hand side of Eq (3)
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presents S and/or X and/or Y mediated synthesis of output Y and degradation of the same, re-
spectively, and ξy(t) is the fluctuations associated with Y. Thus without loosing generality fi and
t�1
i , in Eqs (1–3), represent the functional form of synthesis and degradation (inverse of life
time τi) rate constants of the i-th (i = s, x, y) chemical component, respectively. Here, s, x and y
stand for the copy number of the chemical species S, X and Y, respectively, expressed in mole-
cules/V where V is the unit cellular volume. This convention has been adopted for all the net-
work motifs considered in the present work. The noise terms ξi are considered to be Gaussian
white noise with zero mean, hξii = 0. The noise strength or the variance associated with each
noise term can be written as hjξij2i, quantified by the sum of production and decay rate [32, 43,

47, 57]. To be explicit, hξi(t)ξj(t 0)i = hjξij2iδij δ(t − t 0), where hjxij2i ¼ hfii þ t�1
i hii ¼ 2t�1

i hii. In
general, the variance associated with each noise term is a time dependent quantity [58, 59].
However, when the calculation is carried out at steady state one can use time independent ex-
pression of variance [32, 42, 43, 47] as considered in the present work. The cross-correlation
between two noise terms is zero as the two kinetics are uncorrelated with each other. Consider-
ing that the copy number of each component is large at steady state, we study the dynamics of
each motif (shown in Fig 1) at steady state within the purview of linear noise approximation
[42–48]. Recent study has shown that linear noise approximation is valid for first order reac-
tion kinetics as well as for bi-molecular reaction kinetics with large copy numbers [48]. It has
been further shown to be applicable for chemical Langevin equation [59]. The dynamics of the
signal transduction motifs shown in Fig 1 takes care of first order and/or bi-molecular reaction
kinetics with high copy numbers, and has been theoretically formulated using coupled Lange-
vin equations. Since the relaxation time of each component is small compared to the coarse
grained (steady state) time scale, the Langevin equations we have adopted could satisfactorily
explain the dynamics of each motif.

To solve the set of Langevin equations in a generalized way, we write these equations in the
matrix form. To this end, we introduce two vectors z and ξ where z = (s, x, y) and ξ = (ξs, ξx, ξy).
Linearizing the Langevin equations around steady state and considering the change in the copy
number due to fluctuations of each species from steady state to be very small, one can write δz
(t) = z(t) − hzi, where hzi is the steady state value of z. The linearized Langevin equation thus
takes the form

ddz
dt

¼ Jz¼hzidzðtÞ þ xðtÞ: ð4Þ

Here, J is the Jacobian matrix evaluated at steady state. The diagonal elements of matrix J define
the relaxation time of each component (Jii ¼ �t�1

i ) and the off-diagonal terms take care of in-
teraction between the two components [45, 46, 57, 60]. Performing Fourier transformation of
the linearized equation, we obtain

iod~zðoÞ ¼ Jz¼hzid~zðoÞ þ ~xðoÞ; ð5Þ

where d~zðoÞ and ~xðoÞ are Fourier transforms of δz(t) and ξ(t), respectively. The power spectra
of the network components can be derived using Eq (5) [45–47, 61]

SðoÞ ¼ ½ioI � J��1H½�ioI � JT ��1
; ð6Þ

where I is the identity matrix and JT is the transpose of matrix J. The elements of matrix S and
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matrix H are,

S ijðoÞ ¼ hd~ziðoÞd~zjð�oÞi;
Hij ¼ h~x iðoÞ~x jð�oÞi ¼ hjxij2idij:

The elements of matrix H thus stand for noise strength. Before proceeding further it is impor-
tant to mention that to calculate the variance of linearized Langevin Eq (4) one may also use
the Lyapunov matrix equation JC + CJT +H = 0 where C is the covariance matrix [42, 45, 46].
Next, we perform the inverse Fourier transformation of the power spectra for every network
component at steady state and evaluate the variance as well as covariance of the individual
component and between two components, respectively. From the variance of output compo-
nent, one can quantify the extent of fluctuations that are transduced by the final transcript of
all the network motifs considered and the quantity of fluctuations can be defined in terms of
Fano factor s2

y=hyi, ratio of variance and population of Y component [49].

At this point it is important to mention that all the network motifs we have considered in
the present work are regulated by a common transcription factor S and the output of each
motif is Y. This led us to calculate the association in between the fluctuating input S and the
output Y in terms of mutual information I(s, y) using Shannon’s formalism to check the reli-
ability of all the network motifs [50, 53, 62, 63]

Iðs; yÞ ¼
X
S

X
Y

pðs; yÞ log 2

pðs; yÞ
pðsÞpðyÞ : ð7Þ

Here p(s, y) is the joint probability distribution function of the input S and the output Y. p(s)
and p(y) are the marginal probability distribution functions of input S and output Y, respec-
tively. In the present study, statistical properties of all the network motifs are evaluated at
steady state where the fluctuations are considered to be Gaussian in nature. Under this con-
strain all motifs attain maximum possible entropy [50]. Since, for a Gaussian distribution func-
tion entropy depends only on the variance (σ2) of the distribution, Eq (7) can be simplified in
terms of the variance associated with the input S and the output Y and also the covariance be-
tween them. Moreover, in the present study we have adopted linear noise approximation that
leads to Gaussian distribution. Thus for a jointly Gaussian distribution Eq (7) simplifies into
[50, 53, 62, 63]

Iðs; yÞ ¼ 1

2
log 2 1þ s4

sy

s2
ss2

y � s4
sy

" #
; ð8Þ

where s2
s and s

2
y are the variance associated with the S and the Y component, respectively, and

the covariance between them is given by s2
sy. Note that, theoretical calculation provides

s2
s ¼ hsi, a signature of simple birth-death process. In the present work evaluation of mutual

information is based on Gaussian nature of the noise processes. A more general theoretical for-
malism has been proposed by Bowsher et al [37] which is independent of the nature of distri-
bution of the input signal. The quantity s4

sy=ðs2
ss

2
y � s4

syÞ in Eq (8) is known as signal-to-noise

ratio in the literature and is related to fidelity of the signal transduction mechanism [37, 52].
To check the validity of our theoretical analysis, we perform numerical calculation using

stochastic simulation algorithm [64, 65]. For reaction schemes, propensities and rate constants
associated with each motif we refer to S1 Table. While performing simulation we have express-
ed the components (s, x, and y) in molecules/V. In addition, the rate constants have been ex-
pressed in min−1. During numerical evaluation of mutual information we have calculated two
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variances (s2
s and s

2
y) and one covariance (s

2
sy) using the values s and y at steady state. These

values are then used in Eq (8) to calculate mutual information. Furthermore, we also investi-
gate the validity of using approximate Gaussian expression (Eq (8)) by numerical calculation of
Eq (7). To this end, data generated by stochastic simulation algorithm [64, 65] allows us to gen-
erate the distribution functions p(s), p(y) and p(s, y) by employing the binning technique with a
smallest bin size of 1. In the calculation of mutual information using theoretical and experi-
mental data, specially the last one, bias estimation has a significant role [52, 66]. It depends on
both bin size and number of sample size (number of trajectories generated from stochastic sim-
ulation). A biased mutual information converges to unbiased one for smallest bin size as well
as for large number of sample size. In the present work we have used 105 trajectories and bin
size of 1 while calculating the mutual information. Due to this reason we do not employ any
bias correction explicitly. To carry out the stochastic analysis we have used a set of biologically
relevant parameters. Most of the parameters have been considered in the present work while
keeping in mind the dynamics of the network motifs in prokaryotic system [1, 47, 55, 67].

Results and Discussion
In the following subsections, we execute individual study of each network motif as well as per-
form a comparative study of all the motifs. From the Fano factor expression, one can discrimi-
nate the origin of fluctuations in a motif. We identify the network that faces maximum
fluctuating environment under a definite condition and characterize the favorable circum-
stances in which it can transduce the information of the input signal more reliably.

One step cascade
As one step cascade (OSC) is the simplest unit of addressing signal transduction motifs, we ini-
tially start with this simple motif. In this motif, the input signal S directly regulates the target
gene Y. For the sake of simplicity, we consider that S is constitutively active and linearly regu-
lates the target gene leading to the formation of Y. The stochastic kinetics in Langevin equation
formalism is given by

ds
dt

¼ k1 � t�1
s sþ xsðtÞ; ð9Þ

dy
dt

¼ k3s� t�1
y y þ xyðtÞ; ð10Þ

where k1 and k3 are the synthesis rate for S and Y, respectively. The degradation rates for the
same components are given by t�1

s and t�1
y , respectively. ξs(t) and ξy(t) are Gaussian white

noise terms with zero mean hξs(t)i = hξy(t)i = 0. The respective noise strengths are given by
hxsðtÞxsðt0Þi ¼ 2t�1

s hsidðt � t0Þ and hxyðtÞxyðt0Þi ¼ 2t�1
y hyidðt � t0Þ, respectively. In addition,

both noise processes are uncorrelated, hξs(t)ξy(t0)i = hξy(t)ξs(t0)i = 0. We solve Eqs (9–10) using
analytical scheme described in Methods section to calculate the variance associated with the
output Y and co-variance between the input signal S and the output Y [42–45, 47, 48]

s2
y ¼ hyi þ t�1

y hyi2
ðt�1

s þ t�1
y Þhsi ; s

2
sy ¼

t�1
y hyi

t�1
s þ t�1

y

: ð11Þ

In the above expression of variance s2
y , the first part on the right hand side arises due to intrin-

sic fluctuations in Y and the second part is responsible for extrinsic fluctuations, incorporated
into the output Y through the input S during gene regulation. The total variance in this motif is
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expressed in terms of output variance s2
y that follows spectral addition rule, sum of external

and internal fluctuations [32, 57, 68–71]. At this point, it is important to mention that two fluc-
tuating terms originating from different sources have been also calculated for the oscillatory
system [72]. In this study, we are interested in Fano factor as well as in information propaga-
tion through the cascade with the variation of system’s relaxation times as well as steady state
population hsi of the input component S, as both s2

y and s
2
sy depend only on the time scale

when the steady state value of both components hsi and hyi are kept fixed followed by a con-
stant k1=t

�1
s and k3=t

�1
y ratio. Similarly, for constant relaxation times, both expressions vary

with the steady state populations hsi and hyi. In this motif, we have two relaxation time scales
τs (input) and τy (output). These two time scales lead to three possible limiting conditions for
which we get three different modified expressions for Fano factor (s2

y=hyi) as well as for co-var-
iance (see Table 1).

In Table 1, Fano factor and s2
sy values are maximum at the time limit τs � τy whereas, both

are minimum at the time limit τs � τy. These results reveal that the effect of input fluctuations
into the output fluctuations gets maximized if the input signal relaxes at a much slower rate
compared to the output signal (t�1

s � t�1
y ) and will be minimized for faster input relaxation

rate compared to the output one (t�1
s � t�1

y ). However, the output signal faces an intermediate

level of fluctuations when both signals have comparable relaxation rate (t�1
s � t�1

y ).

For faster fluctuations in the input component (τs � τy), the target gene cannot sense the
rapid concentration changes of the input signal and shows an average response. In such a case,
external fluctuations have no significant contribution in the fluctuations of output and conse-
quently, suppression of the output fluctuations is executed and minimum Fano factor value is
obtained. In this connection, it is important to mention that for very large τy, the ratio τs/τy is
very low (� 1) and contribution of extrinsic fluctuations becomes insignificant in the total out-
put fluctuations. Therefore, output fluctuations only depend on the mean steady state value of
the target gene and the network motif follows a Poisson statistic, i.e., behaves like a simple
birth-death process (Fano factor s2

y=hyi ¼ 1). However, the target gene successfully character-

izes the concentration change of signaling molecule for slower input fluctuations (τs � τy). In
this time scale, the OSC motif transduces extracellular or upstream signal reliably and provides
an exact response with the achievement of maximum Fano factor. When both time scales are
approximately equal (τs � τy), extrinsic fluctuations get partially incorporated into the total
fluctuations and give an intermediate Fano factor value which is in between the two extreme
cases, slowest and fastest input fluctuations. It seems apparent that the motif can sense external
fluctuations with a greater extent in the nearly equal relaxation time scales but our result does
not show that. As both reactions are stochastic in nature, they have probabilistic character that
executes two chance factors. In one situation, the target gene can properly characterize the
input fluctuations and in the other situation, it fails to characterize the same. This results into a

Table 1. Modified form of the analytical expression given by Eq (11) for OSCmotif.

τs � τy τs � τy τs � τy

Fano factor 1þ hyi
hsi 1þ 0:5 hyi

hsi 1þ tshyi
ty hsi

s2
sy hyi 0.5hyi ts

ty
hyi

Fano factor (s2
y=hyi) and co-variance (s2

sy) for different relaxation time limit are shown in this table.

doi:10.1371/journal.pone.0123242.t001
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statistical weightage value of 0.5 in the contribution of extrinsic fluctuations in the Fano factor
expression. A similar kind of time scale effect is also shown by the co-variance expression
which governs the mutual information transduction. In Fig 2a and 2b, we show surface plots of
Fano factor and mutual information, respectively, as a function of two relaxation rate con-
stants, t�1

y and t�1
s , where we maintain the steady state population of both components by a

constant parameters ratio k1=t
�1
s ¼ k3=t

�1
3 ¼ 10. Fig 2a shows that the maximum Fano factor

value is attained by the motif only at very low input relaxation rate constant compared to the
output one. Along diagonal axis both rate constants are approximately equal. Hence, the mag-
nitude of Fano factor is within an intermediate range. The minimum level of Fano factor value
is observed at very high input rate constant compared to the output one. In Fig 2b, the 2d-plot
of mutual information also varies in a similar fashion as the Fano factor plot. As the OSC motif
performs under the definite input fluctuations, the information transduction capability of the
motif is mainly characterized on the basis of input-output relaxation time scales. As a result,
the motif can transduce the input information more reliably at faster relaxation time scale of
the output component among all the relaxation time scales of output component (see the three
limiting conditions in Table 1).

For the three relaxation time limiting cases given in Table 1, the Fano factor expression also
depends on the steady state population of the network components. However, from the Fano
factor expression it is clear that extrinsic fluctuations can contribute an appreciable amount in
the total output noise if the steady state population of output component is much higher than

Fig 2. The OSC. (a, b) Two dimensional maps of Fano factor and mutual information I(s, y), respectively, as a function of two relaxation rate constants t�1
y

and t�1
s for the ratio k1=t

�1
s ¼ k3=t

�1
y ¼ 10. (c) Fano factor and (d) mutual information I(s, y) profiles as a function of mean input signal level hsi expressed in

molecules/unit cellular volume (V). Parameters used are t�1
s ¼ t�1

y ¼ 1:0min−1 and k3 = 100/k1 min−1. The symbols are generated using stochastic simulation
algorithm [64, 65] and the lines are due to theoretical calculation. In the plot of mutual information the red and black symbols are due to Eq (7) and Eq
(8), respectively.

doi:10.1371/journal.pone.0123242.g002
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the input one. This means that for a highly populated input signal, the fluctuations in the input
do not have significant effect on the regulation of the target gene. Consequently, the regulated
gene works under an apparently constant level of the input signal. Therefore, the motif shows
low level of Fano factor value even if it belongs to the relaxation time scale limit where maxi-
mum input fluctuations are transduced. In Fig 2c, we show the Fano factor associated with the
variation of population of the signaling molecule S. In this plot, a sharp exponential decay of
the Fano factor is observed as the steady state population of the input signal increases. In Fig
2d, mutual information I(s, y) is plotted as a function of the input signal. In Fig 2c and 2d, pop-
ulation level of the input signal is systematically increased by increasing the synthesis rate con-
stant k1 whereas, the steady state population of the output Y is kept fixed by simultaneous
change of the synthesis rate constant k3, followed by a mathematical relation k3 = 100/k1
min−1. The rest of the parameter values used are t�1

1 ¼ t�1
3 ¼ 1:0min−1. In the mutual infor-

mation plot (Fig 2d), sharp exponential decay is not observed as in Fig 2c). This happens due
to the absence of explicit dependence of signaling molecule in the expression of co-variance
(see Eq (10)) and for keeping hyi fixed. In addition, in the expression of mutual information
(see Eq (8)), the input signal has a predominant effect due to s2

s that overcomes the decreasing
effect of s2

y associated with Y.

Based on the analysis provided in the aforesaid discussion, one can compare the OSC motif
with the well known motif of gene transcription and translation machinery. Here, mRNA, the
product of transcription can be considered as signaling component S generated from a fully in-
duced or a constitutive promoter at a constant rate. Similarly, protein, the product of transla-
tion plays the role of component Y translated from mRNA. If one does not take into account
the genetic switching steps (on/off state of a promoter) then one can easily compare the gene
regulation network with the OSC motif where mRNA (S) and protein (Y) represent the input
and the output component, respectively. From the conditions presented in Table 1, one can
conclude that the gene regulation motif can only attain a low level of fluctuations in the protein
level through high population and relaxation rate constant of the input component compared
to the output one. Thus, fluctuations in the protein Y, the gene product, are modulated via ki-
netic parameter as well as deterministic population of mRNA which acts as signaling compo-
nent S. Protein molecule shows minimum fluctuations under the constraints of large number
of mRNA with very low average lifetime τs. These phenomena have been verified extensively
via experimental and theoretical studies [21, 67, 68, 70, 73–78]. Similarly, an extensive study on
noise propagation in eukaryotic gene expression has been accomplished using data from two
high-throughput experiments where Fraser et al [75] have observed that the production of es-
sential and complex-forming proteins implicate low level of fluctuations compared to other
proteins and this low level of fluctuations is attained via high transcription rate and low transla-
tion efficiency. Due to a high transcription rate, a large amount of mRNA is generated. While
doing the analysis, they have used the definition of the translation efficiency, ratio of protein
synthesis and mRNA decay rate constant. Translation efficiency can be minimized for very
high decay (relaxation) rate constant of mRNA molecule, i.e., very short lifetime under a con-
stant protein production rate. From our calculation, we also get an equivalent result that suc-
cessfully explicates their noble findings.

Two step cascade
In two step cascade (TSC) motif (see Fig 1b), the output component Y is indirectly regulated by
the input component S via an intermediate component X. As the dynamical equation for the
input signal S is same as in the previous motif (Eq (9)), we do not write it here explicitly. The
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linear Langevin equations for the remaining two components X and Y are given as

dx
dt

¼ k2s� t�1
x x þ xxðtÞ; ð12Þ

dy
dt

¼ k3x � t�1
y y þ xyðtÞ: ð13Þ

In the above equations, k2 and k3 are the synthesis rate constants of X and Y component, re-
spectively. t�1

i and ξi(t) (i = x, y) are decay rate constants and Langevin force terms of the re-
spective component. As in the OSC, here the three noise terms (ξs, ξx and ξy) are of Gaussian
white type with zero mean hξs(t)i = hξx(t)i = hξy(t)i = 0. The respective noise strengths are
given by hxsðtÞxsðt0Þi ¼ 2t�1

s hsidðt � t0Þ, hxxðtÞxxðt0Þi ¼ 2t�1
x hxidðt � t0Þ and

hxyðtÞxyðt0Þi ¼ 2t�1
y hyidðt � t0Þ, respectively. In addition, the three noise processes are uncor-

related, hξs(t)ξx(t0)i = hξx(t)ξs(t0)i = 0, hξx(t)ξy(t0)i = hξy(t)ξx(t0)i = 0 and hξs(t)ξy(t0)i = hξy(t)
ξs(t0)i = 0. Solving the Langevin equations in a similar manner [42–45, 47, 48], we arrive at the
expression of variance and co-variance of the output component Y

s2
y ¼ hyi þ t�1

y hyi2
ðt�1

x þ t�1
y Þhxi

þ t�1
x t�1

y ðt�1
s þ t�1

x þ t�1
y Þhyi2

ðt�1
s þ t�1

x Þðt�1
x þ t�1

y Þðt�1
s þ t�1

y Þhsi ;

s2
sy ¼ t�1

x t�1
y hyi

ðt�1
s þ t�1

x Þðt�1
s þ t�1

y Þ :

ð14Þ

The first term on the right hand side of the variance s2
y reveals the intrinsic fluctuations in the

output component Y. The second and the third terms of the expression originate due to the
fluctuations in the X and the S component, respectively. Compared to the OSC motif, an extra
noise term appears in the variance which originates due to the addition of intermediate compo-
nent X. Hence, the magnitude of total output fluctuations in TSC becomes higher compared to
the OSC. If one inserts a new intermediate component into the TSC motif, the output fluctua-
tions will increase further. This indicates that the output fluctuations are increased with the
augmentation of cascade length. Such fluctuations integration character in each step of a cas-
cade has been verified earlier both experimentally and theoretically [29–32]. In spite of these
fluctuations enhancement property of long chain cascade networks, some long chain network
motifs like MAPK signaling pathways as well as GTRNs are identified in living systems, where
external signal gets transduced with great accuracy. This is an unusual but interesting aspect of
living beings that promotes an extra curiosity to study signaling pathways to understand the
execution of high precision signal transduction in highly fluctuating environment. While con-
sidering the dynamics of TSC, we try to decipher the criteria that leads to the understanding of
the formation of final output Y under the condition of optimum fluctuations as per the sys-
tem’s permissibility. In Eq (12), both expressions depend on the three relaxation rate constants
t�1
s , t�1

x and t�1
y as well as on the steady state population level of the network components (hsi,

hxi and hyi). Possible combinations of three relaxation times (τs, τx and τy) leads to nine differ-
ent modified expressions of Fano factor (s2

y=hyi) and co-variance (s2
sy), shown in Table 2.

From the modified expressions given in Table 2 it is easy to identify the maximum, interme-
diate and minimum value of Fano factor and co-variance under the condition τs � τx � τy, τs
� τx � τy and τs � τx � τy, respectively. In all the expressions, effect of the population level of
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the input and the intermediate component on the output is clearly visible. As our main focus in
the present study is to characterize the effect of relaxation time scales in terms of Fano factor
and co-variance, we fix the steady state population of all the network components using the re-
lations k1=t

�1
s ¼ k2=t

�1
x ¼ 10 and k3=t

�1
y ¼ 1:0. In Fig 3, we show Fano factor and mutual in-

formation for the TSC motif as a function of output relaxation rate constant t�1
y for different

values of t�1
s and t�1

x .
From the plot shown in Fig 3a, it is clear that Fano factor value increases with the increment

of output relaxation rate constant t�1
y for all sets of parameter values. As the output component

Y can track the comparably slower fluctuations of upstream input signal efficiently, fluctua-
tions of the output component increases proportionately with its relaxation rate constant. The
additive nature of fluctuations assists to amplify the Fano Factor value through total output as

Table 2. Modified forms of the analytical solution (Eq (14)) of TSCmotif.

τx � τy τx � τy τx � τy

τs � τx Fano factor 1þ hyi
hxi þ hyi

hsi 1þ 0:5 hyi
hxi þ hyi

hsi 1þ tx hyi
ty hxi þ r hyi

hsi

s2
sy hyi hyi ρhyi

τs � τx Fano factor 1þ hyi
hxi þ 0:5 hyi

hsi 1þ 0:5 hyi
hxi þ 3hyi

8hsi 1þ tx hyi
ty hxi þ

tx hyi
ty hsi

s2
sy 0.5hyi 0.25hyi 0:5 tshyi

ty

τs � τx Fano factor 1þ hyi
hxi þ tshyi

tx hsi 1þ 0:5 hyi
hxi þ 0:5 tshyi

tx hsi 1þ tx hyi
ty hxi þ

tshyi
ty hsi

s2
sy

tsrhyi
tx

t2s hyi
txty

t2s hyi
txty

Fano factor (s2
y=hyi) and co-variance (s2

sy) at different relaxation time limits are shown with ρ = τs/(τs + τy) </ 1.

doi:10.1371/journal.pone.0123242.t002

Fig 3. The TSC. (a) Fano factor and (b) mutual information I(s, y) profiles as a function of relaxation rate
constant t�1

y of Y component. k1=t
�1
s ¼ k2=t

�1
x ¼ 10 and k3=t

�1
y ¼ 1:0 are maintained throughout these plots, so

that steady state population of all the components remains unaltered. In both plots, for solid (with open
circles), dashed (with open upward triangle), dotted (with open downward triangle) and dash dotted (with
open diamond) lines we have used the relations t�1

s ¼ t�1
x ¼ 0:1min−1, t�1

s ¼ t�1
x =10 ¼ 0:1min−1, t�1

s =100 ¼
t�1
x ¼ 0:1min−1 and t�1

s ¼ t�1
x =100 ¼ 0:1min−1, respectively. The symbols are generated using stochastic

simulation algorithm [64, 65] and the lines are due to theoretical calculation. In the plot of mutual information
the red and black symbols are due to Eq (7) and Eq (8), respectively.

doi:10.1371/journal.pone.0123242.g003
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a function of t�1
y and the trend is persistent for all the four sets of parameter values used to

draw Fig 3a. Among the four sets of parameters, higher Fano factor values are achieved by two
sets of parameters. From the parameter sets t�1

s ¼ t�1
x =10 ¼ 0:1min−1 and t�1

s ¼ t�1
x =100 ¼

0:1min−1, it is evident that the intermediate component X has faster fluctuations rate than the
input component S (t�1

x � t�1
s ). As a result, it becomes possible for X to characterize the fluc-

tuations in S. At the equal relaxation time scale limits of S and X (t�1
s ¼ t�1

x ¼ 0:1min−1), we
get an intermediate Fano factor profile and a minimum profile of the same is obtained for
t�1
s =100 ¼ t�1

x ¼ 0:1min−1. This happens as the S component fluctuates in a faster time scale
compared to the X component which, in turn, forbids X to differentiate the concentration
change in S. As a result, X is unable to carry forward the variation in signal (due to S) to the Y
component of the TSC motif. In this relaxation time scale limit, the intermediate X acts as a
low pass filter that passes only low-frequency input signal. For this reason, highly fluctuating
(high-frequency) input signal is impeded by the intermediate component that inhibits fluctua-
tions propagation through the motif.

In Fig 3b, mutual information I(s, y) flow varies with the relaxation rate of Y and we observe
that TSC motif transduces information more reliably at faster fluctuations in Y due to proper
characterization of the input signal variation and is applicable for different choice of parame-
ters sets. For the four sets of parameters, mutual information follows the increasing trend of
Fano factor but, it is important to mention that for t�1

s =100 ¼ t�1
x ¼ 0:1min−1, I(s, y) value is

almost zero. This happens due to slow fluctuations in X compared to S which impedes the flow
of information of the input signal into the downstream component. As a result, the intermedi-
ate component cannot discriminate the variation of external signal and gives a constant re-
sponse to the change in the environment. Although the Fano factor is minimum at this time
frame, the TSC motif is unable to adapt due to the approximately zero mutual information pro-
cessing ability. Hence, the network motif opts for a relaxation time scale where both fluctua-
tions and mutual information processing capacity adopt an optimum value. Our observation
of enhancement of information processing capacity, in a TSC motif, with increase in fluctua-
tions is in agreement with recent theoretical formalism of Bowsher et al [37].

Next, we extend our calculation for a generalized motif of linear long chain cascade (see Fig
1c) considering n numbers of different intermediate components (X1, X2, .., Xn) that are pres-
ent in between the input and the output component. Using the concept of TSC motif, we obtain
the expressions of Fano factor for three limiting relaxation rate conditions as

1þ hyi
hxni

þ � � � þ hyi
hx1i

þ hyi
hsi

for ty � txn � � � � � tx1 � ts;

1þ cn
hyi
hxni

þ � � � þ c1
hyi
hx1i

þ cs
hyi
hsi

for ty � txn � � � � � tx1 � ts;

1þ txnhyi
tyhxni

þ � � � þ tx1hyi
tyhx1i

þ tshyi
tyhsi

for ty � txn � � � � � tx1 � ts:

where c1, � � �, cn </ 0.5, cs </ 0.5 and τx1, τx2, � � �, τxn are the relaxation time of the X1, X2, � � �, Xn

component, respectively. The expressions given above are three simplified forms of Fano factor
expressions for linear long chain signal transduction motif or GTRN cascade with n number of
different intermediate components. The main motivation to evaluate these simplified forms is

Relaxation Time Scale and Signal Transduction

PLOS ONE | DOI:10.1371/journal.pone.0123242 May 8, 2015 13 / 26



that using the expressions, one can easily get a gross quantitative idea about the output fluctua-
tions of any linear chain network cascade with large number of intermediate components. If
one knows the steady state population level of the network components as well as lifetime of
the same then only using those parameters one can calculate Fano factor quantity that will pro-
vide a hint about the networks fluctuations. This is the main advantage of the present formal-
ism that makes easier the study of stochastic features of several unexplored systems.

In the aforesaid discussion, we have searched for the effect of relaxation time scale on signal
transduction machinery through linear type of GTRN motifs. These results suggest us to ex-
tend our analysis to motifs having branched pathway. The branched pathway motifs are gener-
ated with the help of lateral combinations of more than one linear pathway motifs. Therefore,
our next objective is to investigate the relaxation time scale effect on a family of branched net-
work such as feed forward loop (FFL) [2, 12, 33, 38]. FFL appears more frequently in gene net-
works of E. coli, S. cerevisiae and other living organisms. It consists of three genes which are
characterized by three different transcription factors S, X and Y where X regulates Y and S reg-
ulates both X and Y. Thus, S directly as well as indirectly, via X, regulates Y leading to positive
(activation) or negative (repression) transcription interaction. Sign of the direct regulation
path is equal to the indirect path for coherent feed forward loop (CFFL) but opposite sign of
two regulatory pathways is the basis for incoherent feed forward loop (ICFFL). Although eight
FFL are possible from structural configuration, we study only two most abundant network mo-
tifs, type-1 CFFL and ICFFL. The FFL networks have two input signals, one signal induces the
S encoded transcription factor gene and the other induces the X encoded gene. For the sake of
simplicity, we investigate these motifs under the effect of constant input signal. In the following
subsections, we discuss the role of different time scales on the two FFL motifs.

Coherent feed forward loop
In type-1 CFFL motif, both S and X either positively or negatively regulate the promoter of the
target gene Y. The expression level of output Y is controlled by the concentration of two up-
stream transcription factors. If both S and X are required to control the production of Y, the
motif behaves as AND like logic gate otherwise it behaves as an OR like logic gate. Keeping this
in mind, we examine these two architectures and investigate which one of these two faces maxi-
mum fluctuations in a noisy environment.

OR like gate. In OR like CFFL (OCFFL) motif (Fig 1d), any one of the two upstream com-
ponents (S and X) is sufficient to control the expression of Y. Hence, in the dynamical equation

of Y, we introduce two different synthesis rate constants, k
0
3 and k3 for the direct and the indi-

rect regulation pathways, respectively. These two rate constants give freedom to tune up the ex-
tent of interaction amid the transcription factor and the target gene in an independent way.
The first term defines the extent of interaction to express Y via direct pathway and the second
one is responsible for the indirect pathway. From the logical condition, either of the two inter-
actions of this motif is predominant over the other, i.e., if the direct regulation is stronger then
the indirect regulation must be weaker, or vice versa. When the direct regulation path is more
prominent, the motif behaves like the OSC but if the indirect path plays a pivotal role, then it
performs as the TSC. Keeping this in mind, we write the stochastic dynamical equations as

dx
dt

¼ k2s� t�1
x x þ xxðtÞ; ð15Þ

dy
dt

¼ k
0
3sþ k3x � t�1

y y þ xyðtÞ: ð16Þ
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While writing the above equations, we do not explicitly show the dynamical equation for S
component but use the previously written Eq (9) for the OSC. Here the three noise terms (ξs, ξx
and ξy) are of Gaussian white type with zero mean hξs(t)i = hξx(t)i = hξy(t)i = 0. The respective
noise strengths are given by hxsðtÞxsðt0Þi ¼ 2t�1

s hsidðt � t0Þ, hxxðtÞxxðt0Þi ¼ 2t�1
x hxidðt � t0Þ

and hxyðtÞxyðt0Þi ¼ 2t�1
y hyidðt � t0Þ, respectively. In addition, the three noise processes are un-

correlated, hξs(t)ξx(t0)i = hξx(t)ξs(t0)i = 0, hξx(t)ξy(t0)i = hξy(t)ξx(t0)i = 0 and hξs(t)ξy(t0)i = hξy(t)
ξs(t0)i = 0. Using usual method of solution [42–45, 47, 48], we evaluate the following expression
of variance and co-variance

s2
y ¼ hyi þ t�1

y b2hxi
ðt�1

x þ t�1
y Þ þ

t�1
y g2hsi

ðt�1
s þ t�1

y Þ

þp
t�1
x t�1

y ðt�1
s þ t�1

x þ t�1
y Þhsi

ðt�1
s þ t�1

x Þðt�1
x þ t�1

y Þðt�1
s þ t�1

y Þ ;

s2
sy ¼ t�1

y hyi
ðt�1

s þ t�1
y Þ �

t�1
s t�1

y bhxi
ðt�1

s þ t�1
x Þðt�1

s þ t�1
y Þ ;

ð17Þ

where α, β, γ and p are k2=t
�1
x ; k3=t

�1
y , k

0
3=t

�1
y and α2 β2 + 2αβγ, respectively. All the rate con-

stants define their usual meaning in the above kinetic equations (Eqs (14–15)). To understand
the effect of relaxation time scale on this model, we take all possible relations among the three
relaxation time constants and obtain nine conditions using which modified expressions of
Fano factor and co-variance are calculated (see Table 3).

Similar to our previously discussed motifs, the OCFFL motif also accomplishes maximum,
intermediate and minimum values of Fano factor and co-variance for the three separate relaxa-
tion time limiting conditions τs � τx � τy, τs� τx � τy and τs � τx � τy. These modified
(maximum, intermediate and minimum) forms are given in Table 3. For OCFFL, we do not ex-
plore graphically the role of relaxation rate constant t�1

y on Fano factor and mutual informa-

tion. Due to the presence of an interesting feature in this motif by the virtue of direct and
indirect contribution of two regulatory pathways in gene regulation via S and X, respectively,

we look at the dependence of the rate constants k
0
3 and k3. Since, on the basis of the dominating

power amid the two rate constants, the OCFFL motif can reduce to either OSC or TSC, we in-
vestigate the effect of these synthesis rate constants on the fluctuations and mutual information

Table 3. Modified forms of the analytical solution (Eq (17)) of OCFFLmotif.

τx � τy τx � τy τx � τy

τs � τx Fano factor 1þ b2hxi
hyi þ ðg2þpÞhsi

hyi 1þ 0:5 b2hxi
hyi þ ðg2þpÞhsi

hyi 1þ b2tx hxi
ty hyi þ r ðg2þpÞhsi

hyi

s2
sy hyi � txbhxi

ts
hyi � txbhxi

ts
rðhyi � txbhxi

ts
Þ

τs � τx Fano factor 1þ b2hxi
hyi þ ðg2þ0:5pÞhsi

hyi 1þ 0:5 b2hxi
hyi þ ð0:5g2þ3p

8 Þhsi
hyi

1þ b2tx hxi
ty hyi þ tsðg2þpÞhsi

ty hyi

s2
sy hyi − 0.5βhxi 0.5hyi − 0.25βhxi tsðhyi�0:5bhxiÞ

ty

τs � τx Fano factor 1þ b2hxi
hyi þ ðrg2þtsp

tx
Þhsi

hyi
1þ 0:5 b2hxi

hyi þ tsðg2þ0:5pÞhsi
ty hyi 1þ b2tx hxi

ty hyi þ tsðg2þpÞhsi
ty hyi

s2
sy ρ(hyi − βhxi) tsðhyi�bhxiÞ

ty

tsðhyi�bhxiÞ
ty

Fano factor (s2
y=hyi) and co-variance (s2

sy) at different relaxation time limits are shown where ρ = τs/(τs + τy) </ 1, a ¼ k2=t
�1
x , b ¼ k3=t

�1
y , g ¼ k0

3=t
�1
y and p =

α2 β2 + 2αβγ.

doi:10.1371/journal.pone.0123242.t003
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propagation. We show Fano factor and mutual information I(s, y) as a function of k
0
3 in Fig 4.

For both plots, we maintain a constant pool of the steady state population level of the Y compo-

nent using the relation ð10k3 þ k
0
3Þ=t�1

y ¼ 10 and set a high value of the relaxation rate con-

stant t�1
y ¼ 10min−1. Only in this relaxation time domain, the output component can track

fluctuations in the upstream signal very accurately.
In Fig 4, we increase the influence of direct regulatory pathway with the help of augmenta-

tion of the S dependent synthesis rate constant k
0
3 of the Y component. By doing this, we in-

crease the contribution of the OSC motif in the OCFFL but decrease the contribution of X

dependent synthesis rate constant k3 due to the relation ð10k3 þ k
0
3Þ=t�1

y ¼ 10. In Fig 4a, Fano

factor profile slowly goes down with k
0
3 for t

�1
s ¼ t�1

x =10 ¼ 0:1min−1 and t�1
s ¼ t�1

x =100 ¼
0:1min−1. At these two limits, fluctuations can propagate through this motif very smoothly.

For very low value of k
0
3, the OCFFL motif behaves as a TSC with high Fano factor value. On

the other hand, for high value of k
0
3, the OCFFL motif behaves as a OSC with comparatively

low Fano factor value. For the rest of the two parameter sets (t�1
s ¼ t�1

x ¼ 0:1min−1 and

t�1
s =100 ¼ t�1

x ¼ 0:1min−1), the Fano factor value increases with k
0
3 as fluctuations propaga-

tion is hindered by the intermediate component X due to the indirect pathway. At these limits,

for low value of k
0
3, the motif attains a lower Fano factor value but as the value of k

0
3 increases,

the extent of OSC character plays a dominant role which in turn increases the Fano factor
value and fluctuations propagation becomes smooth via the direct pathway without any sort of
intermediate obstacle.

In Fig 4b, we show the mutual information I(s, y) in between the input signal S and the out-

put Y as a function of k
0
3. The profile shows an increasing trend and is valid for all sets of pa-

rameter considered. Information processing is mainly affected by fluctuations and number of
intermediate component(s) in between the input and the output of the corresponding network.

Hence, at low value of k
0
3, lesser amount of signal is transmitted compared to high value of k

0
3

due to the transition from effective TSC character to effective OSC character as k
0
3 is increased.

Fig 4. The OCFFL. (a) Fano factor and (b) mutual information I(s, y) profiles as a function of S dependent synthesis rate constant k0
3 of Y component. The

relations k1=t
�1
s ¼ k2=t

�1
x ¼ 10, ð10k3 þ k0

3Þ=t�1
y ¼ 10 and t�1

y ¼ 10min−1 are maintained so that steady state population of all the components remain
unaltered. In both plots, for solid (with open circles), dashed (with open upward triangle), dotted (with open downward triangle) and dash dotted (with open
diamond) lines we have used t�1

s ¼ t�1
x ¼ 0:1min−1, t�1

s ¼ t�1
x =10 ¼ 0:1min−1, t�1

s =100 ¼ t�1
x ¼ 0:1min−1 and t�1

s ¼ t�1
x =100 ¼ 0:1min−1, respectively. The

symbols are generated using stochastic simulation algorithm [64, 65] and the lines are due to theoretical calculation. In the plot of mutual information the red
and black symbols are due to Eq (7) and Eq (8), respectively.

doi:10.1371/journal.pone.0123242.g004
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Among the four parameter sets considered, exceptionally low I(s, y) value is obtained for
t�1
s =100 ¼ t�1

x ¼ 0:1min−1 due to faster fluctuations rate of S component than X and Y com-
ponents. Living systems having the OCFFL motif have a great advantage of adopting either of
the two linear cascades (OSC or TSC) with the variation of weightage on direct or indirect
pathway of gene regulation. Thus, any system when gives an extra importance on the TSC, at-
tains maximum output fluctuations with minimummutual information but attains reverse re-
sults by giving importance to the OSC motif. A trade off between output fluctuations and
mutual information may be accomplished by the system using these two pathways, direct and
indirect. Therefore, the essence of this motif is that during evolution it has been designed in a
way that makes a living system more adaptable within any diverse environmental situation.

AND like gate. In the AND like CFFL (ACFFL) motif (Fig 1e), both S and X jointly regu-
late the target gene Y. Thus, in the dynamical equation of Y, the synthesis term is expressed in
terms of both S and X. Other than this synthesis part, rest of the equations of all the dynamical
components are the same as the OCFFL motif,

dx
dt

¼ k2s� t�1
x x þ xxðtÞ; ð18Þ

dy
dt

¼ k3sx � t�1
y y þ xyðtÞ: ð19Þ

In the above set of equations, all the rate constants define kinetic significance of the corre-
sponding network components. Here, we also do not rewrite the dynamical equation for S and
use the previous equation (Eq (9)). Here ξs, ξx and ξy are Gaussian white noise with zero mean
hξs(t)i = hξx(t)i = hξy(t)i = 0. The respective noise strengths are given by
hxsðtÞxsðt0Þi ¼ 2t�1

s hsidðt � t0Þ, hxxðtÞxxðt0Þi ¼ 2t�1
x hxidðt � t0Þ and

hxyðtÞxyðt0Þi ¼ 2t�1
y hyidðt � t0Þ, respectively. In addition, the three noise processes are uncor-

related, hξs(t)ξx(t0)i = hξx(t)ξs(t0)i = 0, hξx(t)ξy(t0)i = hξy(t)ξx(t 0)i = 0 and hξs(t)ξy(t 0)i = hξy(t)
ξs(t 0)i = 0. We solve the set of dynamical equations considering an approximation hsxi = hsihxi
[42–45, 47, 48] as reactions in between the two components S and X are uncorrelated with
each other and obtain simplified analytical form of variance and co-variance of the target gene
Y as

s2
y ¼ hyi þ t�1

y hyi2
ðt�1

x þ t�1
y Þhxi þ

t�1
y hyi2

ðt�1
s þ t�1

y Þhsi

þ 3t�1
x t�1

y ðt�1
s þ t�1

x þ t�1
y Þhyi2

ðt�1
s þ t�1

x Þðt�1
x þ t�1

y Þðt�1
s þ t�1

y Þhsi ;

s2
sy ¼ t�1

y hyi
ðt�1

s þ t�1
y Þ þ

t�1
x t�1

y hyi
ðt�1

s þ t�1
x Þðt�1

s þ t�1
y Þ :

ð20Þ

It is interesting to note that for both TSC and ACFFL, we get almost equivalent variance ex-
pression (see Eq (12) and Eq (19)) except for two factors. These extra terms are the third and
the fourth term on the right hand side of Eq (19). The third term arises due to direct regulation
of Y by S. The fourth term is multiplied by a numerical factor 3. From these extra terms, it is
obvious that ACFFL shows higher fluctuating property than TSC due to the additive nature of
two positive regulatory pathways (both direct and indirect) [2, 21, 78–80]. From Eq (19), we
get all possible reduced forms of Fano factor and co-variance expressions using nine possible
relations among the three relaxation time scales (see Table 4).
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As shown in the calculation for previous motifs, it is clear from Table 4 that, for ACFFL,
Fano factor and co-variance achieve maximum, intermediate and minimum values for τs � τx
� τy, τs � τx� τy and τs� τx � τy, respectively. At these time scales, the modified forms of
both Fano factor and co-variance are almost similar with the modified forms of TSC (see
Table 2) but terms like hyi/hsi and hyi appear with multiplicative factor greater than 1. This
leads to a high level of fluctuating environment for the ACFFL motif. The main reason behind
the elevation of output fluctuations is the addition of fluctuations due to input signal S into the
total fluctuations of the output component Y in two ways, direct and indirect pathways. Due to
the such types of fluctuations addition phenomena, we get a higher Fano factor value. Similarly,
we also obtain high level of mutual information I(s, y) transduction due to the presence of two
subsequent pathways by which the target gene reliably accumulates signal information with
greater extent and transcribes gene products precisely with the variation of input signal. To ver-
ify these features, we show Fano factor and mutual information as a function of relaxation rate
constant t�1

y for four different parameter sets of relaxation rate constants in Fig 5.

Table 4. Modified forms of the analytical solution (Eq 18) of ACFFLmotif.

τx � τy τx � τy τx � τy

τs � τx Fano factor 1þ hyi
hxi þ 4 hyi

hsi 1þ 0:5 hyi
hxi þ 4 hyi

hsi 1þ tx hyi
ty hxi þ 4r hyi

hsi

s2
sy 2hyi 2hyi 2ρhyi

τs � τx Fano factor 1þ hyi
hxi þ 2:5 hyi

hsi 1þ 0:5 hyi
hxi þ 13hyi

8hsi 1þ tx hyi
ty hxi þ 4 tx hyi

ty hsi

s2
sy 1.5hyi 0.75hyi 1:5 tshyi

ty

τs � τx Fano factor 1þ hyi
hxi þ

ðrþ3
ts
tx
Þhyi

hxi
1þ 0:5 hyi

hxi þ 2:5 tshyi
tx hsi 1þ tx hyi

ty hxi þ 4 tshyi
ty hsi

s2
sy ð1þ ts

tx
Þrhyi ð1þ ts

tx
Þ tshyi

ty
ð1þ ts

tx
Þ tshyi

ty

Fano factor (s2
y=hyi) and co-variance (s2

sy) at different relaxation time limits are shown where ρ = τs/(τs + τy) </ 1.

doi:10.1371/journal.pone.0123242.t004

Fig 5. The ACFFL. (a) Fano factor and (b) mutual information I(s, y) profiles as a function of relaxation rate constant t�1
y of Y component. The relations

k1=t
�1
s ¼ k2=t

�1
x ¼ 10 and k3=t

�1
y ¼ 0:1 are maintained so that steady state population of all the components remain unaltered. In both plots, for solid (with

open circles), dashed (with open upward triangle), doted (with open downward triangle) and dash dotted (with open diamond) lines we have used t�1
s ¼ t�1

x ¼
0:1min−1, t�1

s ¼ t�1
x =10 ¼ 0:1min−1, t�1

s =100 ¼ t�1
x ¼ 0:1min−1 and t�1

s ¼ t�1
x =100 ¼ 0:1min−1, respectively. The symbols are generated using stochastic

simulation algorithm [64, 65] and the lines are due to theoretical calculation. In the plot of mutual information the red and black symbols are due to Eq (7) and
Eq (8), respectively.

doi:10.1371/journal.pone.0123242.g005
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In Fig 5a, highest Fano factor value is obtained for the parameter sets t�1
s ¼ t�1

x =10 ¼ 0:1

min−1 and t�1
s ¼ t�1

x =100 ¼ 0:1min−1. Both sets are due to faster fluctuations of the interme-
diate component X. On the other hand, lowest Fano factor value is attained for t�1

s =100 ¼
t�1
x ¼ 0:1min−1 and is due to faster fluctuations of input signal S. For t�1

s ¼ t�1
x ¼ 0:1min−1,

the motif shows an intermediate Fano factor value. In all cases, Fano factor value increases
with the relaxation rate constant of the target gene Y. Similar trend is also observed for the mu-
tual information I(s, y) profile (Fig 5b). Therefore, this motif has high information processing
capacity in spite of the presence of high level of fluctuations. Such high input signal processing
phenomena facilitate the networks reliability for signal transduction in GTRN and makes this
motif a highly abundant one among rest of the CFFL present within the family of cellular net-
works. In this connection, it is important to mention that the network architecture can facili-
tate cellular fitness advantage in adverse environment due to increase of fluctuations. Thus,
high fluctuations in output gene expression trigger phenotypic heterogeneity in clonal cell pop-
ulations and can induce drug resistance [26, 81]. A similar type of CFFL is also liable for drug
resistance of human cancer cells.

Incoherent feed forward loop
The last motif considered in the present work is another class of FFL known as Incoherent feed
forward loop. We focus only on the type-1 incoherent feed forward loop (ICFFL) (Fig 1f). In
this motif, two regulatory pathways act in an opposite manner. Here, input signal S positively
regulates the target gene Y through the direct pathway. However, the intermediate component
X represses the expression of Y. As a result, S initially activates both X and Y rapidly but after
some time, population level of X reaches a threshold to repress the production of Y. While
modeling the repression phenomenon, we consider the Hill coefficient to be one. Thus, the
Langevin equations for the dynamical quantities can be written as

dx
dt

¼ k2s� t�1
x x þ xxðtÞ; ð21Þ

dy
dt

¼ k3gðxÞs� t�1
y y þ xyðtÞ: ð22Þ

In the above equation, g(x) = K/(K + x) is a nonlinear repressive function that depends on the
concentration of X and K, the ratio of unbinding to binding rate constants of transcription fac-
tor X at the promoter region of Y gene. Here we consider K = 1. In addition, we also consider
hg(x)si = hg(x)ihsi as the kinetic equations for both S and X are uncorrelated with each other
and hxi/(K + hxi)� 1 as steady state concentration of the X component is much higher than
the unbinding-binding constant (x� K). For this motif, we use the earlier kinetic equation for
S (see Eq (9)). Here ξs, ξx and ξy are Gaussian white noise with zero mean hξs(t)i = hξx(t)i =
hξy(t)i = 0. The respective noise strengths are given by hxsðtÞxsðt0Þi ¼ 2t�1

s hsidðt � t0Þ,
hxxðtÞxxðt0Þi ¼ 2t�1

x hxidðt � t0Þ and hxyðtÞxyðt0Þi ¼ 2t�1
y hyidðt � t0Þ, respectively. In addition,

the three noise processes are uncorrelated, hξs(t)ξx(t0)i = hξx(t)ξs(t0)i = 0, hξx(t)ξy(t0)i = hξy(t)
ξx(t0)i = 0 and hξs(t)ξy(t0)i = hξy(t)ξs(t0)i = 0. Solving the set of kinetic equations, we get the
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simplified mathematical form of variance and co-variance [42–45, 47, 48]

s2
y ¼ hyi þ t�1

y hyi2
ðt�1

x þ t�1
y Þhxi þ

t�1
y hyi2

ðt�1
s þ t�1

y Þhsi

� t�1
x t�1

y ðt�1
s þ t�1

x þ t�1
y Þhyi2

ðt�1
s þ t�1

x Þðt�1
x þ t�1

y Þðt�1
s þ t�1

y Þhsi ;

s2
sy ¼ t�1

y hyi
ðt�1

s þ t�1
y Þ �

t�1
x t�1

y hyi
ðt�1

s þ t�1
x Þðt�1

s þ t�1
y Þ :

ð23Þ

In the above variance expression, two S dependent fluctuations terms are present with opposite
sign thus compensating each other. The variance expression is quite similar to the expression
of TSC (see Eq (12)) but differs in the sign of the last term and the appearance of an extra term
due to direct regulation of Y by S. If one calculates the magnitude of variance for both TSC and
ICFFL using unique steady state population level of all three components and the correspond-
ing relaxation time scale, a higher value of s2

y will be observed for TSC compared to ICFFL. To

check the validity of this effect, we consider all possible relations among the three relaxation
times of the corresponding network components and get nine possible relations. Using these
relations, modified forms of Fano factor and co-variance are calculated and are given in
Table 5. From these modified expressions, it is clear that ICFFL exerts lesser amount of fluctua-
tions compared to the other motifs considered in this work while developing the target gene
product Y. Development of low fluctuations thus gets reflected in the Fano factor value. This
happens due to repression of target gene by X which effectively reduces fluctuations associated
with Y [2, 21, 78–80]. It is important to note that, in Table 5, under some relaxation time scale
limits, the Fano factor expressions are free from terms with hsi, the S dependent fluctuations.
This happens due to a simultaneous contribution of direct and indirect pathways which cancel
each other by having equal magnitude but opposite sign. As a consequence, some of the co-var-
iance values also become zero. This suggests that at these time scale limits, the system cannot
incorporate the information of the input signal properly, thereby transducing information
about the input signal unreliably to the target gene. Keeping this in mind, we explore the nature
of Fano factor and mutual information I(s, y) as a function of relaxation rate constant t�1

y of Y

component using four different sets, i.e., t�1
s ¼ t�1

x ¼ 0:1min−1, t�1
s ¼ t�1

x =10 ¼ 0:1min−1,
t�1
s =100 ¼ t�1

x ¼ 0:1min−1 and t�1
s ¼ t�1

x =100 ¼ 0:1min−1.

Table 5. Modified form of the analytical solution (Eq (23)) of ICFFLmotif.

τx � τy τx � τy τx � τy

τs � τx Fano factor 1þ hyi
hxi 1þ 0:5 hyi

hxi 1þ tx hyi
ty hxi

s2
sy 0 0 0

τs � τx Fano factor 1þ hyi
hxi þ 0:5 hyi

hsi 1þ 0:5 hyi
hxi þ hyi

8hsi 1þ tx hyi
ty hxi

s2
sy 0.5hyi 0.25hyi 0:5 tshyi

ty

τs � τx Fano factor 1þ hyi
hxi þ

ðr�ts
tx
Þhyi

hsi
1þ 0:5 hyi

hxi þ 0:5 tshyi
ty hsi 1þ tx hyi

ty hxi

s2
sy ð1� ts

tx
Þrhyi ð1� ts

tx
Þ tshyi

ty
ð1� ts

tx
Þ tshyi

ty

Fano factor (s2
y=hyi) and co-variance (s2

sy) at different relaxation time limits are shown where ρ = τs/(τs + τy) </ 1.

doi:10.1371/journal.pone.0123242.t005
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In Fig 6a, Fano factor value gradually increases with the relaxation rate constant t�1
y . Very

low level of Fano factor value is attained by the motif for t�1
s ¼ t�1

x =10 ¼ 0:1min−1 and t�1
s ¼

t�1
x =100 ¼ 0:1min−1. For these two sets, input fluctuations flow successfully through the direct
and indirect pathways. Thus, two S dependent fluctuating terms that are equal in magnitude
but opposite in sign compensate each other, consequently suppressing the fluctuations associ-
ated with the network. On the other hand, for the other two parameter sets, a high level of
Fano factor values is found. This happens due to slower rate of fluctuations in the intermediate
X. The input fluctuations that come through the indirect pathway are filtered out by X for its
low pass filter nature. As a result, two S dependent fluctuating terms do not completely cancel
each other. In these parameter sets, the fluctuating part that contributes to the direct pathway
shows its prominent effect than the fluctuations due to indirect pathway which finally gets re-
flected in the total output fluctuations. Likewise, in Fig 6b, mutual information I(s, y) values
are near to zero for the first two parameter sets giving low level of Fano factor [56] and signifi-
cant I(s, y) values for the rest of the parameter sets.

Conclusions
In this paper, we have analyzed transmission of a fluctuating input signal through some bio-
chemical signaling networks. We have analytically calculated Fano factor associated with the
output and mutual information between the input and the output for two linear and three
branched motifs to comprehend the significance of these networks in biological systems. On
the basis of linear noise approximation, we have solved linear and nonlinear Langevin equa-
tions and verified the analytical results with exact stochastic simulation data of the correspond-
ing networks and found that the approximation method is quite accurate as proposed earlier
[48, 59]. In the analytical calculation, we have considered that all noise terms (ξs, ξx and ξy) are
Gaussian in nature and the effect of cross correlation between two noise terms is zero. We have

Fig 6. The ICFFL. (a) Fano factor and (b) mutual information I(s, y) profiles as function of relaxation rate constant t�1
y of Y component. k1=t

�1
s ¼ k2=t

�1
x ¼ 10

and k3=t
�1
y ¼ 1010, ratios are maintained throughout these plots, so steady state population of all the components remain unaltered. In both plots, for solid

(with open circles), dash (with open upward triangle), dot (with open downward triangle) and dash dot (with open diamond) lines, we use the following sets of
parameters: t�1

s ¼ t�1
x ¼ 0:1min−1, t�1

s ¼ t�1
x =10 ¼ 0:1min−1, t�1

s =100 ¼ t�1
x ¼ 0:1min−1 and t�1

s ¼ t�1
x =100 ¼ 0:1min−1, respectively. K = 1. The symbols are

generated using stochastic simulation algorithm and the lines are from theoretical calculation. The symbols are generated using stochastic simulation
algorithm [64, 65] and the lines are due to theoretical calculation. In the plot of mutual information the red and black symbols are due to Eq (7) and Eq
(8), respectively.

doi:10.1371/journal.pone.0123242.g006
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calculated Fano factor and mutual information for five motifs with the variation of relaxation
rate constants associated with all network components and have studied effect of input signal
on these two measurable quantities. Our study not only takes care of an individual motif but
also presents a comparative study of all the biochemical motifs in the light of Fano factor and
mutual information. For graphical presentation of the output of each motif, we have tuned syn-
thesis and relaxation rate constants of each network component in such a way so that the
steady state population of the same remains constant. In addition, the aforesaid strategy pre-
serves the total population of the component in each motif. Adoption of such a strategy helps
us to apprehend how Fano factor and mutual information values get affected from one motif to
another under equal population of network component.

We have started our calculations considering linear type of cascades. The first motif we have
considered is OSC where the motif can precisely characterize the information of input signal at
faster relaxation time of the output component compared to the input one. This accuracy grad-
ually decreases with the increment of input relaxation rate. We have also shown that the OSC
motif is unable to differentiate the variation of input signal at high population limit of the
input component. We then compare this motif with the standard gene regulation network to
explicate such time scale effect on gene regulation and found some significant circumstances in
which the gene regulatory network can tune up optimum fluctuations for both essential and
nonessential proteins. Our analysis is at par with the results of Fraser et al [75] where they have
performed analysis using several experimentally determined gene regulation rates.

The second motif considered is TSC where an intermediate component is present between
the components of OSC. Through our analysis, we have observed that Fano factor of output
gets amplified in magnitude and is in agreement with the analysis provided by Bowsher et al
[37]. In addition, similar kind of relaxation time scale effect for propagation of fluctuations is
also present in this motif, as observed in OSC. Our analysis suggests that relaxation time scale
of the intermediate component is a crucial factor for signal transmission in this motif and can
control fluctuations associated with the output. The intermediate component acts as a low pass
filter for very fast fluctuations and hinders input fluctuations that flow through the TSC motif.
After analyzing the TSC motif, we have introduced n number of intermediate components in
between the input and the output component to generate a generalized linear long chain cas-
cade and derived simplified form of Fano factor expression for three distinct time scale limits.
We have shown that the output fluctuations increase with number of intermediate compo-
nents, which is in agreement with previously published experimental and theoretical results.
The main utility of these expressions is that one can easily calculate fluctuations associated
with any linear long chain cascade without enough knowledge of the parameter values of
the network.

Next, we have chosen FFL, a group of branched pathways that are abundant in the signal
transduction machinery of living systems and are generated by lateral combination of OSC and
TSC with different modes of interaction. At first, we have studied OCFFL from FFL group and
calculated Fano factor and mutual information with the extent of direct (OSC) and indirect
(TSC) contribution of input signal to the target gene. In our calculation of Fano factor, we have
observed two opposing behavior while tuning the control parameter. In one case, Fano factor
decreases slowly while in the other situation it shows an increasing trend. These results togeth-
er suggest that OCFFL performs differently for diverse relaxation time scale limits. Further-
more, depending on the contribution of the direct and the indirect pathway, it can acquire the
character of OSC and TCF motif, respectively. Such quality of OCFFL helps a living system to
survive in diverse environmental conditions. We then extend our analysis to ACFFL where a
high value of Fano factor and mutual information is observed. Such high values of Fano factor
and mutual information reveal that ACFFL motif can transduce the signal with high reliability
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and supports its ubiquitous presence in several biological species. The last motif we have con-
sidered is ICFFL where output fluctuations are suppressed as the target gene is simultaneously
regulated negatively (via indirect pathway with TSC character) as well as positively (via direct
pathway with OSC character) by the input signal. This leads to a very low value of Fano factor
[56] and mutual information for ICFFL motif. Such low value suggests that living system con-
taining this motif faces minimum fluctuations with low mutual information propagation.

To conclude, we emphasize that our methodology is a general one and is applicable for
studying the dynamics of other network motifs under single cell environment. At this point, it
is important to mention that enough single cell data are not available for FFL. Our theoretical
results thus can act as a starting point to experimentally verify the stochastic dynamics of the
network motifs. The results we have derived in the present work can be tested by performing
experiment at a single cell level.

Supporting Information
S1 Table. Tables for chemical reactions, propensity function and rate constant for different
motifs.
(PDF)
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