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Abstract

The pupil response under constant illumination can be used as a marker of cognitive pro-

cesses. In the past, pupillary responses have been studied in the context of arousal and

decision-making. However, recent work involving Parkinson’s patients suggested that pupil-

lary responses are additionally affected by reward sensitivity. Here, we build on these find-

ings by examining how pupil responses are modulated by reward and loss while participants

(N = 30) performed a Pavlovian reversal learning task. In fast (transient) pupil responses,

we observed arousal-based influences on pupil size both during the expectation of upcom-

ing value and the evaluation of unexpected monetary outcomes. Importantly, after incorpo-

rating eye blink rate (EBR), a behavioral correlate of striatal dopamine levels, we observed

that participants with lower EBR showed stronger pupil dilation during the expectation of

upcoming reward. Subsequently, when reward expectations were violated, participants with

lower EBR showed stronger pupil responses after experiencing unexpected loss. Across tri-

als, the detection of a reward contingency reversal was reflected in a slow (tonic) dilatory

pupil response observed already several trials prior to the behavioral report. Interestingly,

EBR correlated positively with this tonic detection response, suggesting that variability in the

arousal-based detection response may reflect individual differences in striatal dopaminergic

tone. Our results provide evidence that a behavioral marker of baseline striatal dopamine

level (EBR) can potentially be used to describe the differential effects of value-based learn-

ing in the arousal-based pupil response.

Introduction

Pupil diameter fluctuations offer a non-invasive signal that reflects activity of neuromodula-

tory brain regions such as locus coeruleus [1,2] and superior colliculus [3]. Functionally, these

pupil diameter fluctuations have been shown to track arousal-based influences on decision-

making at multiple timescales [4–9]. Pupil dilations also track surprise caused by unexpected

events [10–12], also when unexpected outcomes were tied to reward [13].
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Recent studies with Parkinson’s patients have shown that patients’ pupil dilations to cues

signaling monetary reward were reduced compared to age-matched controls. Crucially, dopa-

minergic medication reinstated these reward-anticipation pupil dilations [14,15], suggesting

that pupil dilations may reflect changes in reward sensitivity, which in turn are likely related to

changes in baseline dopamine levels in the striatum [16–19]. In the present study, we investi-

gated in a healthy population the extent to which the expectation and evaluation of monetary

outcomes affected pupil dilations and whether eye blink rate (EBR), a behavioral marker of

striatal dopaminergic tone [20], was related to these pupil responses.

There is compelling evidence that EBR, or the frequency of blinks per unit time, is at least

partly regulated by striatal dopamine levels [20–28], which in turn affects how individuals

learn from reinforcing feedback [29]. Higher striatal dopamine levels facilitate the learning of

positive outcomes [18,19], whereas lower striatal dopamine levels -observed in Parkinson’s dis-

ease- facilitate learning from negative outcomes [16,17]. Recently, EBR was found to predict

participants’ value-based choice strategy in a reinforcement learning task [30,31], where lower

EBR predicted a choice strategy focused on avoiding negative outcomes [31]. Consistently,

pharmacologically decreasing striatal dopaminergic tone, as indexed by decreased EBR, led to

increased punishment aversion in individuals with relatively high EBR prior to the pharmaco-

logical manipulation [30]. These studies suggest a relation between EBR and the outcome of a

reinforcement learning processes. However, whether (and how) EBR relates to the instanta-

neous expectation or evaluation of value is currently unknown. Potentially, the simultaneous

analysis of EBR and pupil responses during these types of events provide a non-invasive way to

investigate value-based learning as it takes place.

To investigate whether pupil responses and EBR could be utilized to track value-based

learning [32], we conducted a Pavlovian reversal learning experiment (Fig 1) in which proba-

bilistic cues signaled upcoming positive or negative monetary outcomes. Our design elicited

the learning of cue-outcome contingencies and triggered unexpected positive (U+) and unex-

pected negative (U-) events when value expectations were violated. At random intervals, cue-

outcome contingencies were reversed and participants were asked to report these reversals.

This task allowed us to separately study slow, tonic pupil responses during reversal detection

across multiple trials [6] and fast, transient pupil responses during the expectation [33–38] and

evaluation [13] of reward and loss. Moreover, we equated the sensory and monetary impact of

positive and negative outcomes to eliminate potential confounds due to asymmetries in stimu-

lus-driven arousal [39], (Methods).

To our knowledge, this is the first study to integrate EBR and pupillometry measures to

assess how pupil responses relate to value-based learning. Our approach allowed us to charac-

terize the utility of pupil-size recordings for the online tracking of value-based learning. Fur-

thermore, our findings advance the understanding of the interaction between arousal and

value-based processes, relevant for studies into Parkinson’s disease.

Materials & methods

Participants

In total, 32 naive participants with normal to corrected to normal vision completed the experi-

ment (19 females; mean age = 22.9; age range = 18–32 years). All participants were paid for

participation (24€, SD = 1.7€). Two participants were excluded from analyses: one due to

excessive blinking and one due to poor task performance (<50% correctly detected reversals),

leaving in total 30 participants for analysis. The study was approved by the ethics committee

of the Vrije Universiteit Amsterdam and written informed consent was obtained from all

participants.

Eye blink rate predicts transient and tonic pupil responses during reversal learning
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Task & procedure

Participants were seated in a dimly lit, silent room with their head positioned on a chin rest, 60

centimeters away from the computer screen. They performed a Pavlovian probabilistic reversal

learning task where the probability of receiving reward and loss was manipulated. As can be

seen in Fig 1a, participants continuously fixated on a central white fixation dot. After 500ms,

the fixation dot turned either yellow or purple as a cue for 1000ms, after which the fixation dot

changed back to white. After a random interval, drawn from a Gaussian distribution with a

mean of 3000ms (standard deviation 300ms) the outcome was indicated by a cash tone

(500ms) indicating reward or a white noise tone (500ms) indicating loss. Inter-trial intervals

were drawn from a Gaussian distribution with a mean of 3000ms (± 300ms).

Fig 1. Pavlovian probabilistic reversal learning task and independent pupil signals. (A): Example trial.

Participants continuously fixated a white dot at the center of the screen. After 500ms, the dot turned into a cue

(either purple or yellow) that signaled for 1000ms a monetary outcome with 80% validity. After 3000ms, the

monetary outcome (either reward or loss) was indicated by a sound. (B): Example run. The participant

monitored the reward contingency across trials and reported a detected reversal in the reward contingency

with a keypress. Yellow and purple lines indicate the reward probability of the cues, which reversed three

times during this particular run. These reward contingency reversals constituted four reversal blocks: one

block prior and 3 blocks after the experimental reversals. Dashed arrows indicate the moments in time the

participant reported a detected reversal and highlight the correspondence between reversal detection and

increases in tonic pupil size (see panel C). Grey bars below the cue reward probabilities indicate the latter half

of trials within a reversal block that were used in the analyses of transient pupil responses. (C): Example of

independently filtered tonic and transient pupil signals across a run.

https://doi.org/10.1371/journal.pone.0185665.g001
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On each trial, a purple or yellow colored cue signaled an upcoming reward (+0.10€) or loss

(-0.05€) with 80% validity (cue-color mapping was randomly determined across subjects at

the start of the experiment). Consequently, in 20% of the trials, the cue elicited an unexpected

positive (U+) or unexpected negative (U-) outcome when the reward contingency was fully

learned. At unpredictable times, the reward contingency would reverse. (Fig 1b). These rever-

sals would occur once, twice or three times within each run of ~8 minutes (mean number of

reversals = 1.98(SD = 0.27) occurring after 29(SD = 3.2) trials, range = 15–59 trials). Partici-

pants’ task was to detect reversals in the reward contingency with a keypress.

Prior to the experiment, participants were informed about the range of reversals that could

occur on a run. They practiced one experimental run to verify that the purpose of the experi-

ment was clear and they could detect reversals. Each participant performed between 7 and 10

runs of ~80 trials each (mean number of runs = 9.3(SD = 0.9); mean number of trials per

run = 78(SD = 4.6)) with small breaks in-between runs. After each experimental run, feedback

was provided about the number of correctly detected reversals that run. There was no perfor-

mance incentive other than the feedback provided about reversal detection performance.

Stimuli

Stimuli were presented on a 21-inch Iiyama Vision Master 505 MS103DT with a spatial resolu-

tion of 1024 x 768 pixels, at a refresh rate of 120Hz, with mean luminance 60 cd/m2. All exper-

iments and data analysis were performed using custom software written in Python, using the

Visionegg (v1.2.1), Numpy (v1.11.2), Scipy (v0.18.1), FIRDeconvolution (v0.02), Hedfpy

(v0.0dev1), PyPsignifit (v3.0) and MNE (v0.14) packages. The effect of light on pupil responses

was minimized by keeping the background luminance of the display constant throughout the

experiment. For similar reasons, the two visually presented stimuli -a purple and yellow col-

ored dot- were of small size (r = 0.2˚). Prior to the main experiment, we equated subjective

tone saliency of the reward and loss tone per participant using a two-interval forced choice

(2-IFC) experiment. On each trial, the loss and the reward tone were played with a 1s. inter-

stimulus interval, and the participant judged which of two tones was more salient. We varied

the intensity of the loss tone according to the method of constant stimuli [40], and fitted a psy-

chometric curve (cumulative Gaussian function) to the participant’s reports using the PyP-

signifit package [41]. The point of subjective equisalience of the sounds is the 50% point of this

curve, and this intensity value was used for the loss tone in the main experiment. Additionally,

the impact of monetary rewards and losses was equated according to prospect theory (a factor

of 2, [42]). In our experiment, this translated to per-trial rewards and losses of +0.10€ and

-0.05€, respectively.

Eye blink rate recordings

We recorded spontaneous EBR throughout the experiment and quantified blink rate from the

entire pupil size time series. This resulted in ~80 minutes of EBR estimation data per partici-

pant, which allows for robust estimation of this trait-like variable [43–47]. Although other

procedures have been described to measure spontaneous EBR [31,48], measuring EBR from

continuous eye tracking data is reliable [49]. EBR has been reported to have high measurement

reliability across assessments [46], suggesting it can be used to reliably index individual striatal

dopaminergic tone. Because spontaneous EBR is reported to be stable only during daytime

[50], data was collected before 6 P.M. Furthermore, participants were asked to sleep suffi-

ciently the night before the recording and to avoid the use of alcohol and other drugs of abuse.

Eye blink rate predicts transient and tonic pupil responses during reversal learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0185665 September 29, 2017 4 / 20

https://doi.org/10.1371/journal.pone.0185665


Data analysis

Behavioral data

For all runs, we recorded the timing of the behavioral report that indicated the participant’s

detection of a reversed state. At the start of each run, the participant had to learn the reward

contingency and had to press the spacebar when a change was detected in the learned reward

contingency. We used the timings of the experimental reversals to determine the number of

reversal blocks within a run, where each experimental reversal marked the start of new reversal

block. We categorized the timing of each behavioral report according to signal detection the-

ory [40]. A hit was defined as the first behavioral report occurring after the experimental rever-

sal. A miss was defined as the absence of a behavioral report after an experimental reversal.

Then, the hit rate was calculated as the proportion of experimental reversals to which partici-

pants detected the reversal. A false alarm was defined as a behavioral report occurring before

the first experimental reversal or occurring after the first behavioral report (a hit) within a

reversal block. Because participants were only asked to detect the presence of a reversal, but

not the absence of it, correct rejections remained undefined. Thus, the false alarm rate was

calculated as the proportion of incorrectly reported reversals relative to the total number of

reversal blocks. Detection times were quantified as the median number of trials from the

experimental reversal to "hit" behavioral reports. Detection time variability was quantified as

the standard deviation of the number of trials from experimental reversal to "hit" behavioral

reports.

We quantified participants’ response consistency in detecting reward contingency reversals

by calculating the mutual information (MI) between the experimental and reported reversals.

The experimental and reported reversals were two sequences consisting of zeros and ones that

marked the objective and subjective states of the world, respectively. MI quantifies the amount

of information obtained from one random variable through the other random variable. As

such, it measures the relation between two variables, but is not sensitive to the sign of this rela-

tion. This is important in our analysis, as participants reported only changes in the state of the

world and not the state of the world itself, rendering the sign of the reported state of the world

ambiguous. For each participant and run, we calculated the MI between experimental and

reported reversals as a function of time-shifts of the reported reversals. This resulted in a per-

participant curve that quantifies MI between experimental and reported reversals for a range

of time-shifts in the reported reversals (Fig 2g). Higher MI estimates reflected more consistent

reversal detection performance across runs. We projected the individual MI curves onto the

averaged MI curve to get a scalar value of participants’ relative reversal detection response con-

sistency. Additionally, we used the location of the peak of the average MI curve -reflecting the

optimal number of time-shifts of the reported reversals relative to the experimental reversals-

to validate our quantification of average reversal detection times obtained via the categoriza-

tion approach.

Preprocessing of eye-tracking data

The diameter of the left eye’s pupil was recorded at a 1000Hz using an EyeLink 1000 Tower

Mount (SR Research). Blinks and saccades were detected using standard EyeLink software

with default settings and Hedfpy, a Python package for preprocessing pupil size data. Periods

of data loss during blinks were removed by linear interpolation, using an interpolation time

window of 200ms before until 200ms after a blink. Blinks not identified by the manufacturer’s

software were removed by linear interpolation around peaks in the rate of change of pupil size,

using the same interpolation time window.

Eye blink rate predicts transient and tonic pupil responses during reversal learning
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As illustrated in Fig 1c, the interpolated pupil signal was filtered into transient and tonic

pupil signals. We defined pupil responses as changes in phasic or tonic pupil size that could

either be dilations (e.g. due to feedback presentation) or constrictions (e.g. following increases

in luminance due to cue presentation). To analyze transient pupil responses, the pupil signal

was band-pass filtered between 0.03Hz and 4Hz, using third-order Butterworth filters. Low-

pass filtering of the transient pupil signal removed measurement noise that did not originate

from a physiological source, as the system controlling pupil size responds in a sluggish fashion

to fast neural inputs [51]. High-pass filtering the transient pupil signal allowed us to perform

independent analyses on transient and tonic pupil responses. Furthermore, to analyze tonic

pupil responses, the pupil signal was low-pass filtered with a low-pass cutoff of 0.03Hz. After

filtering, tonic and transient pupil data were z-scored per run and resampled to 10Hz.

Blinks and saccades have strong and relatively long-lasting effects on transient pupil

responses [52,53]. To remove these influences from the data, blink and saccade regressors

were created by convolving all blink and saccade events with their standard Impulse Response

Function (IRF) [51,53,54]. These convolved regressors were used to estimate their responses in

a General Linear Model (GLM), after which we used the residuals of this GLM for further

analysis.

Fig 2. Behavioral and EBR data. (A): Average hit rate and false alarm rate across subjects (B): Response time distribution of correctly detected reversals

across subjects. (C): Relation between the hit rate and correct reversal detection time. (D): Relation between correct reversal detection time and detection

time variability. (E): EBR distribution across subjects. (F): Blink density across a run of 8 minutes averaged across subjects. (G): Mutual information (MI)

between experimental and reported reversals plotted as a function of time-shifts in the reported reversals. Across subjects, shifting the reported reversals 5

trials back towards the experimental reversal (at trial shift = 0) resulted in the highest MI estimate (dashed line). Time units on x-axis are trials. Solid lines

reflect individual MI estimates, colored by individual EBR rank (low EBR = light gray, high EBR = dark gray). (H): Individual MI estimates projected on the

average MI estimate were positively related to EBR, indicating that individuals who detected reversals more consistently across runs had relatively higher

EBR (low EBR = light gray, high EBR = dark gray).

https://doi.org/10.1371/journal.pone.0185665.g002
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Event-related analysis of transient pupil responses

Data were divided into epochs based on the condition types in the experiment. For each trial,

we calculated the baseline pupil diameter in the time window of fixation (-0.5s. until 0s. to cue

onset) and subtracted this baseline value from the pupil time course of the same trial, after

which the data epochs were averaged. For the cue interval, the two condition types were: loss

cue (L) and reward cue (R), while collapsing over cue colors. For the outcome interval, the

four condition types were: loss cue, loss outcome (LL); reward cue, loss outcome (RL); reward

cue, reward outcome (RR); and loss cue, reward outcome (LR). Pupil responses after unex-

pected reward (U+) were calculated by subtracting the pupil response to expected reward trials

(RR) from the pupil response to unexpected reward trials (LR). Pupil responses after unex-

pected loss (U-) were calculated by subtracting the pupil response to expected loss trials (LL)

from pupil responses to unexpected loss trials (RL). This method corrected for any feedback

tone-specific changes in pupil dilation.

We selected the latter half of trials of each reversal block (mean = 14.5(SD = 1.6) trials per

block, total number of selected trials per participant = 361.5(SD = 35.6)) to ensure the analy-

ses of transient pupil responses were focused on those trials where participants had fully

learned the reward contingency, resulting in maximal transient task-related pupil responses

(Fig 1b).

Deconvolution of tonic pupil responses

Tonic pupil responses were analyzed using FIRDeconvolution, a Python package which per-

forms Finite Impulse Response fitting [55]. A previous study investigating tonic pupil signals

reported a systematic decay in baseline pupil size that unfolded on a timescale of minutes [53].

To account for systematic decay in baseline pupil diameter size over time, we pre-processed

the tonic pupil signal by estimating and removing pupil diameter drift in each run using an

exponential decay function:

y ¼ ae� tx þ b ð1Þ

where parameters a, t and b were estimated per subject. Here, a is the gain/amplification fac-

tor, t is a time constant that describes how rapidly pupil size decreases over time, x is each

run’s pupil data and b is the offset of pupil size on the y-axis. Next, we applied zero-padding to

each run to avoid edge-artefacts in situations where the deconvolution interval of 120 seconds

would exceed a run’s sample limits. Tonic pupil time courses were estimated in the interval of

60 seconds before until 60 after the following 2 event types: perception of a reversal (as indi-

cated by the behavioral report) and the true experimental reversal point. Next, tonic pupil

responses were deconvolved using ordinary least squares (OLS) regression:

h ¼ ðXTXÞ� 1XTy ð2Þ

where y is the pupil signal time series and X is the design matrix consisting of a set of vectors

that contain ones at all sample times relative to the event timings of which we want to estimate

the pupil response, and zeros elsewhere. h then contains the resulting deconvolved pupil

responses of all separate event types. Design matrix X had 2400 columns (-60s. to 60s. at 10Hz,

1200 samples per event type and 2 event types per deconvolution operation).

Eye blink rate & eye blink density calculations

EBR per minute was quantified from the complete pupil size time series recordings. This

resulted in a per-participant scalar EBR estimate based on ~80 minutes of recordings.

Eye blink rate predicts transient and tonic pupil responses during reversal learning
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Because there is evidence, albeit mixed, for sex differences in EBR [45,56], we normalized

EBR based on sex. Because blinks have a strong and prolonged effect on pupil size, we

controlled for the possibility that differences in the number of blinks over time between

condition types or individuals would affect pupil size differently. To do so, we calculated

blink density over time using kernel density estimates for both the transient and tonic pupil

data.

To estimate the relation between blink density and transient pupil responses, blink events

were convolved with a standard, one-dimensional Gaussian function (kernel SD = 2s.) and

normalized per participant by dividing the convolved blink events by the total number of blink

events. The convolved, normalized blink events where divided into epochs and averaged per

experimental condition type. To estimate the relation between blink density and tonic pupil

responses, blink events were convolved with a one-dimensional Gaussian function (kernel

SD = 20s.) and normalized. The convolved, normalized blink events were used as the input sig-

nal in a deconvolution analysis similar as described above, with reversal detection (behavioral

report) as event type.

Furthermore, we investigated the stationarity of blink events within a run to exclude the

possibility that transient pupil responses were affected by systematic drift in the occurrence of

blinks. Across subjects, we calculated the average blink density of a run using transient kernel

density estimates (kernel SD = 2s.) and tested signal stationarity using the Augmented Dicky-

fuller test [57].

Statistical comparisons

We used nonparametric permutation cluster-based t-tests [58] -as implemented in the MNE

package [59,60]- to correct for multiple comparisons and to test for significant differences

between time series signals to condition types as well as their difference to baseline. Specifi-

cally, for a time series signal we calculated the cluster-based t-test statistic describing whether

the observed mean significantly deviated from zero. Then, we permuted the time series signal

by generating random sign flips of the samples and calculated the corresponding cluster-based

t-test statistic. This procedure was repeated 1024 times, resulting in a histogram of random

cluster-based t-test statistics. The p-value (corrected for multiple comparisons) was obtained

by calculating the proportion of random cluster-based t-test statistics that resulted in a larger

test statistic than the observed one.

Correlations across time between EBR and time series signals were calculated using

bootstraps [61]. Here, we randomly drew with replacement 1000 new EBR and time

series value pairs and correlated them for each time point. From the resulting bootstraps,

95% confidence intervals and p-values were calculated based on a two-sided hypothesis

test, where the p-value was the fraction of the bootstrap distribution that fell below (or

above) 0.

A nonparametric permutation cluster-based correlation test [62] was performed to correct

for multiple comparisons and to test for significant correlations between EBR and time series

signals. Specifically, we calculated the cluster-based t-test statistic corresponding to the cluster

of time points where the time series signal significantly correlated with EBR. Next, we ran-

domly permuted EBR values (N = 30) across subjects and calculated the corresponding clus-

ter-based t-test statistic. This procedure was repeated 1000 times, resulting in a histogram of

random cluster-based t-test statistics. Corrected p-values were obtained by calculating the pro-

portion of random cluster-based t-test statistics that resulted in a larger test statistic than the

observed one.

Eye blink rate predicts transient and tonic pupil responses during reversal learning
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Results

Behavior

Reversal detection performance was high (mean hit rate = 91.7%(SD = 7.3%), range = 60%-

97.7%, Fig 2a). On average, correctly detected reversals were detected after 6.4(SD = 3.2) trials

(range = 1–27 trials, Fig 2b). As expected, higher hit rates were related to faster reversal detec-

tion times (Pearson’s r(28) = -0.46, p = .01, Fig 2c) and less detection time variability (Pear-

son’s r(28) = 0.69, p< .01, Fig 2d). This pattern of findings was additionally supported by the

MI method, indicating that experimental and reported reversals shared the highest amount of

variance when the reported reversals where shifted 5 trials back in time (Fig 2g). This sug-

gested an average reversal detection time of 5 trials, which was close to the average reversal

detection times (6 trials) obtained via the categorization approach (see Methods).

On average, participants blinked 7.6(SD = 3.88) times per minute (range 1.8–16.9 Fig 2e),

an average that was lower than reported by other studies [31,48,63]. Participants with low EBR

blinked 4.5(SD = 1.5) times per minute (range 1.8–7.0), whereas participants with high EBR

blinked 10.9(SD = 2.9) times per minute (range 7.3–16.9). As reported previously [45], female

participants blinked more often than male participants (t(29) = 2.24, p = .03, independent-

samples t-test; females: 8.8(SD = 3.8), range 2.14–16.9; males: 5.7(SD = 1.8), range 1.8–12.2).

We corrected for this by normalizing EBR by sex and used the normalized EBR values in all

subsequent analyses. The general pattern of main findings remained the same when using

non-normalized EBR. The occurrence of blinks within a run (of approximately 8 minutes) was

constant, as we could reject the null hypothesis of non-stationarity in blink density across sub-

jects (ADF = -11.7, p< .001, Augmented Dickey-Fuller Test; Fig 2f). Behaviorally, individuals

with relatively high EBR reported reversals more consistently across runs, as was indicated by

a positive correlation between EBR and individual mutual information (MI) estimates, pro-

jected onto the average MI estimate (Pearson’s r(28) = 0.38, p = .04, Fig 2h). For the depiction

of subsequent results that pertain to the relation between pupil responses and EBR, we per-

formed a median split of participants according to their EBR.

Identical arousal-based pupil responses during value expectation and

outcome evaluation correlate differently with EBR

To understand the relation between value-based processes -alongside those related to arousal-

and pupil size, we first investigated transient pupil responses during the expectation of value

and their relation to EBR. Across subjects, the expectation of upcoming reward and loss caused

identical pupil responses (Fig 3a). The pupil initially constricted due to cue presentation, after

which it gradually dilated until the presentation of the outcome. As we observed no difference

in the gradual dilation pattern between reward and loss expectation events, this suggests that

the pupil reflects arousal caused by uncertainty about the upcoming outcome. Interestingly,

when we the correlated the observed transient pupil responses with individual differences in

EBR, we found that EBR was negatively correlated with the transient pupil response during

reward expectation (cluster p-value < .001, 0.8s. pre-event until 0.4s. post-event, nonparamet-

ric permutation cluster-based correlation test; Fig 3b). This indicated that the pupil of individ-

uals with relatively low EBR dilated more strongly when they were expecting reward; an

unexpected finding given the generally observed positive relationship between EBR and striatal

dopamine levels [20–27].

Next, we investigated the transient pupil response during the receipt of unexpected loss

(U-) and unexpected reward (U+), as these events allowed us to further differentiate between

the impact of arousal- and value-based signals. In this experiment, we matched subjective
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sensory and incentive impact of outcome events, thus avoiding systematic differences in stim-

ulus-driven arousal between outcome events.

We observed that both unexpected loss (U-) and unexpected reward (U+) caused transient

pupil dilation, (U- cluster p-value = 0.04, 1.2s.-2.7s. post-event, Cohen’s d = 0.74; U+ cluster

p-value = 0.02, 1.2s. until 2.8s. post-event, Cohen’s d = 0.83; non-parametric cluster-based one

sample t-test; Fig 3c). There were no response differences between U+ and U- responses, as the

difference between these pupil responses (ΔU) never reached significance (all p-values>0.7,

BF = 0.2). These findings indicate that across subjects, unexpected outcomes, irrespective of

their value, generated pupil responses reflecting surprise [10–13].

While pupil responses elicited by unexpected reward and unexpected loss did not reflect

transient value modulations, we further investigated how the observed pupil responses related

Fig 3. Arousal-based pupil responses during value expectation and outcome evaluation show different correlation patterns with EBR. (A):

Reward and loss expectation elicited identical pupil responses. (B): Reward expectation correlated significantly with EBR, indicating that reward expectation

elicits stronger pupil dilation in individuals with low compared to high EBR. (C): Violated reward and loss expectations resulted in unsigned, transient pupil

dilation. No dilation differences were observed between U- and U+ responses, which was reflected in the ΔU response. (D): ΔU correlated significantly with

EBR, indicating that the variability in the ΔU response related to individual differences in EBR (E & F): A median split on individual differences in EBR

visualizes the correlation between ΔU and EBR, where pupil dilation response patterns to unpredicted outcomes reversed for individuals with low compared

to high EBR. Horizontal significance designators indicate time points where p<0.05. Error bars are standard error of the mean. Statistics based on cluster-

based (correlation) permutation tests, n = 1000.

https://doi.org/10.1371/journal.pone.0185665.g003
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to individual differences in EBR. To quantify this, we calculated the difference between U+

and U- pupil responses (ΔU, Fig 3c) and evaluated how this differential pupil response (based

on violated reward and loss expectations) was related to EBR.

As shown in Fig 3d, the difference between unexpected reward and unexpected loss pupil

responses (ΔU) correlated significantly with EBR (cluster p-value = 0.01, 0.2s. until 1.8s. post-

event, nonparametric permutation cluster-based correlation test), even though the mean

response amplitude difference across participants hovered around zero. This result suggests

that across subject variability in the ΔU pupil response related to individual differences in

EBR. Furthermore, we observed that the correlation between ΔU and EBR became significant

shortly after outcome presentation, suggesting that the effect was partly driven by differences

in value expectation that were present in pupil size prior to outcome evaluation. We further

visualized the relation between EBR and the ΔU pupil response using a median split on EBR.

As shown in Fig 3e & 3f, the relative response amplitudes of U- and U+ responses reversed for

individuals with high compared to low EBR. In individuals with relatively low EBR, unex-

pected loss elicited stronger pupil dilation than unexpected reward, whereas the opposite

response pattern was observed in individuals with high EBR.

Overall, we observed arousal-based influences on pupil size both during value expectation

and the evaluation of unexpected outcomes. Critically, incorporating individual differences in

EBR refined these observations. Increases in pupil size during reward expectation were stron-

ger for individuals with lower compared to higher EBR. Consistent with this finding, violations

of reward expectations (unpredicted loss, U-) caused stronger pupil dilation in individuals

with lower compared to higher EBR.

Tonic pupil size tracks the perception of a reward contingency reversal

and correlates with EBR

Next, we investigated how the evidence integration of a reward contingency reversal was

reflected in the tonic pupil data (Fig 1c), as we observed earlier that higher reversal detection

hit rates predicted faster evidence integration of a reward contingency reversal (Fig 2c). As

shown in Fig 4a, reversal detection was clearly visible in the tonic pupil response locked on the

behavioral report. This report-locked pupil response started to increase significantly well

before the report (cluster p-value < 0.001, 27s. pre-event until 18s. post-event, Cohen’s d = 2.6;

non-parametric cluster-based one sample t-test). Moreover, the tonic response increase was

specific to the detection of a reversal (that was indicated by the behavioral report) and not

related to the actual experimental reversal (light green line, Fig 4a). This suggested that the

response was specific to participants’ perception of and response to the reversed reward con-

tingency. The prolonged duration of the tonic report-locked response precludes that it was

related to the motor response per se, as the typical duration of pupil responses triggered by

such an event is 2–3 seconds [8,52].

As EBR has been associated with learning from negative outcomes [30,31], we additionally

investigated whether the tonic report-locked response, potentially driven by the experience

of consecutive violations about the state of the world, related to EBR. As shown in Fig 4a

(dashed line), we observed a positive correlation between individual differences in EBR and

the tonic report-locked response (cluster p-value = 0.002, 21s. pre-event until 7s. post-event,

nonparametric permutation cluster-based correlation test). We visualized the positive corre-

lation by estimating the report-locked tonic pupil response separately based on a median

split on EBR. The dark and light grey curves in Fig 4b illustrate that individuals with high

EBR showed a relatively stronger report-locked detection response that started earlier in

time.
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Taken together, we observed that a slow dilatory response tracked participants’ detection of

a reversal in reward contingency. This pupil response started to rise well before the behavioral

report, and did not relate to the actual reversal of the reward contingency. Furthermore, we

observed a positive relation between EBR and the tonic report-locked response, indicating

stronger reversal detection responses in individuals with higher EBR.

Blink density control analyses

One could argue that the observed correlations between pupil responses and EBR could be

explained by differences in the blink occurrences over time that correlated with EBR, as blinks

profoundly modulate pupil size [52,53]. To control for this potential confound, we analyzed

blink density patterns during reversal detection, expectation of value, and the evaluation of

unexpected outcomes. Furthermore, we correlated the observed blink density patterns with

EBR measures over time.

There were no significant deviations in blink density patterns prior to reversal detection,

arguing against the hypothesis that changed blink density affected the rise in the tonic report-

locked response (Fig 5a). At the time of the behavioral report, we did observe a significant

increase in blinks (cluster p-value = 0.01; 2s. pre-event until 6s. post-event, non-parametric

cluster-based one sample t-test). However, the increase in blinks during reversal detection

could not have affected the rise of the tonic report-locked response much, as the response

already significantly increased 27 seconds prior to report. Furthermore, there were no signifi-

cant differences in blink density patterns around reversal detection between individuals with

Fig 4. Tonic, report-locked pupil responses track reversal detection and correlate with EBR. (A):

Reversal detection was reflected in a tonic, report-locked response starting 27s. prior until 13s. post-event. No

significant pupil response was observed at the time of the experimental reversal (both the report and

experimental reversal are plotted at t = 0). A positive correlation between the report-locked response and EBR

(dashed line) starting 21s. prior until 7s. post-event indicated that individuals with relatively high EBR show

stronger reversal detection responses (black solid horizontal significance designator; correlation values

correspond to Pearson r values on the right y-axis). (B): Individuals with relatively high EBR showed stronger

reversal detection responses that started earlier in time and lasted longer. Error bars are standard error of the

mean. Statistics based on cluster-based (correlation) permutation tests, n = 1000.

https://doi.org/10.1371/journal.pone.0185665.g004
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high and low EBR, evidenced by the fact that EBR measures did not correlate with blink den-

sity patterns (Fig 5a, correlation values correspond to Pearson r values on the right y-axis).

At the fast trial-based time scale we did not find evidence for differences in blink density

patterns between reward and loss expectation events (Fig 5b, left panel), nor differences in

blink density patterns between unexpected loss and unexpected reward events (Fig 5b, right

panel). Furthermore, we did not observe clusters in time where blink density patterns

Fig 5. Blink density patterns and their relation to individual differences in EBR. (A): No deviations were

observed in blink density patterns prior to the detection of a reversal. At the moment of the behavioral report,

blink density significantly increased 2s. pre-event until 6s. post event (black horizontal significance

designator). Individual differences in EBR did not correlate with blink density patterns during the interval of

reversal detection (grey dotted line, corresponding to the Pearson r values on the right y-axis). (B): No

differences in blink density pattern were observed between reward and loss expectation events (left panel)

nor between unexpected reward and unexpected loss events (right panel). (C): Blink density patterns did not

significantly correlate with individual differences in EBR during the expectation of reward and loss (left panel),

nor during the experience of unexpected reward and unexpected loss (right panel). All statistics based on

cluster-based (correlation) permutation tests, n = 1000.

https://doi.org/10.1371/journal.pone.0185665.g005
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correlated significantly with individual differences in EBR during reward and loss expectation

(Fig 5c, left panel), nor during the experience of unexpected reward or unexpected loss (Fig 5c,

right panel). This indicates that individuals with high compared to low EBR showed no sys-

tematic differences in blink density pattern around the expectation of value or the evaluation

of unexpected outcomes.

To conclude, we did not find differences in blink density patterns prior to reversal detection

or during the expectation or evaluation of value. Neither did we find that blink density patterns

correlated with individual differences in EBR during reversal detection or the expectation or

evaluation of value. This argues against the possibility that the observed differences in pupil

responses between individuals with high compared to low EBR could be explained by differ-

ences in blink density patterns in the described intervals.

Discussion

We investigated whether pupil responses and EBR could be utilized to track value-based learn-

ing in a Pavlovian reversal learning task. When studying pupil responses within trials, we

observed arousal-based influences on pupil size both during outcome expectation and the eval-

uation of unexpected monetary outcomes. We refined these findings by showing that the

observed transient pupil responses were related to individual differences in EBR, a behavioral

correlate of striatal dopaminergic tone [20–27]. This suggests that transient pupil responses

may provide an additional view into cognitive processes related to value-based learning [35–

38]. When focusing on the detection of reward contingency reversals across trials, we observed

increases in tonic pupil size already several trials prior to the behavioral report. Furthermore,

EBR correlated positively with tonic pupil size, indicating stronger tonic reversal detection

responses in individuals with higher EBR.

The observation of identical anticipatory pupil responses to upcoming rewards and losses

indicated that, averaged across participants, pupil size did not reflect the sign of the expected

outcome. This is consistent with findings of similar dilatory pupil responses to most and

least preferred stimuli [33,38]. Moreover, our finding of similar transient pupil dilation dur-

ing the experience of unexpected reward and unexpected loss emphasizes that the underlying

cause of the pupil response was surprise, associated with errors in built-up expectations

[6,11–13,64].

Additionally, we utilized EBR to investigate more subtle pupil response modulations related

to value-based learning, over and above to the observed arousal-based effects on pupil size. We

observed that across-subject variability in pupil responses during the expectation and evalua-

tion of value related to EBR. This suggests that the strength of transient pupil dilation indexes

individual value sensitivity, which affects how individuals learn from reinforcing feedback

[16–19,29]. Again, these results emphasize that pupil responses reflect arousal-based influ-

ences, as both the expectation and evaluation of value related to increases in pupil size.

Individuals with relatively low EBR anticipated reward more strongly, as indicated by their

stronger pupil size increase. This is a novel finding, as the relation between EBR and reward

expectation during Pavlovian reversal learning was not investigated before. Partly related to

this finding is a recent study that investigated whether pupil responses indexed motivational

preparation for upcoming reward in Parkinson’s patients on and off their dopaminergic medi-

cation [14]. They found that dopaminergic medication reinstated blunted pupil responses dur-

ing saccade preparation to earn reward, where higher reward incentive elicited stronger pupil

dilation than lower or no reward incentive. However, it remains difficult to compare our find-

ings with those of Manohar et al. (2015) as there have been clear pupillary abnormalities

observed in patients suffering from Parkinson’s disease [65,66].
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When reward expectations were violated, individuals with lower EBR showed a stronger

pupil response to the experienced unexpected loss. These findings show some consistency with

studies observing a link between EBR and the outcome of reinforcement learning processes

[30,31]. Cavanagh et al. (2014) observed that decreasing striatal dopamine levels, as indexed by

EBR, led to increased punishment avoidance after response conflict [30]. Moreover, Slagter

et al. (2015) showed that lower EBR predicted a value-based choice strategy focused on avoid-

ing negative outcomes [31]. These studies suggest that low EBR relates to learning from nega-

tive reinforcements, which parallels our observation of a relation between lower EBR and

stronger pupil dilation after unexpected loss. However, we also observed that higher EBR

related to stronger pupil dilation after unexpected reward, which is not consistent with Slagter

et al. (2015), where no relation was found between high EBR and a value-based choice strategy

focused on obtaining reward.

Yet, there are many differences between our experimental design and that of Cavanagh

et al. (2014) and Slagter et al. (2015) that preclude any direct comparisons. First of all, our

study focused on the relation between pupil responses and EBR during ongoing value-based

learning, whereas the aforementioned studies focused on value-based choice strategies that

were learned during reinforcement learning. EBR may relate differently to learned value-based

choice strategies and instantaneous value experiences, necessitating future experimental work

that differentiates between these two processes. Pupillometry and EBR measures combined

with detailed behavioral data might provide tools to accomplish this. A further difference can

be found in our employment of Pavlovian conditioning, whereas both Cavanagh et al. (2014)

and Slagter et al. (2015) employed operant conditioning that involved behavioral choice. Thus,

EBR may also relate differently to Pavlovian and operant conditioning mechanisms [67,68].

In the evaluation of tonic pupil responses associated with reversal detection, we observed

strong increases in pupil size. Tonic pupil size, locked to the behavioral report of a reversal,

increased several trials prior to the actual report, suggesting that it indexed participants’ uncer-

tainty about the encounter of a potential contingency reversal. This finding relates to studies

showing that increases in per-trial baseline pupil diameter predicted exploratory decision mak-

ing [5], task disengagement [4], and uncertainty about the underlying task contingency [6].

Fluctuations in baseline pupil diameter are thought to be mediated by arousal-based signals

originating from the locus coeruleus-noradrenaline (LC-NE) system [1], and are observed to

correlate with tonic LC activity [1,69] and LC BOLD responses [70]. Thus, the observed tonic

reversal detection response might index the build-up of uncertainty or the need to update cur-

rent beliefs, energized by increases in tonic LC activity. This functional role of tonic LC activity

was observed in an electrophysiological study in nonhuman primates, where a rise in tonic LC

activity was observed immediately after a reversal in task contingency, but long before the

adaptation of the monkey’s behavior [71]. Recently, a more specific hypothesis was proposed

about the role of tonic NE in the orbitofrontal cortex during reversal learning [72]. Here,

reversal detection was hypothesized to lead to a rise of tonic NE to evoke the discarding of old

cue-outcome associations, where after tonic NE levels would drop to allow stabilization of the

newly acquired contingency. Our results are in line with this hypothesis and suggest that tonic

pupil size tracks the unfolding of decision-making during reversal detection.

Apart from the potential arousal-based influences on tonic pupil size during reversal detec-

tion, we additionally observed that the tonic report-locked response correlated with EBR. This

suggests that variability in the amplitude of the reversal detection response might reflect EBR-

indexed individual differences in striatal dopaminergic tone. While our data do not allow us to

draw inferences about neuromodulatory brain processes, our findings allude to the described

role of dopamine (DA) in controlling flexible behavior [73,74]. DA is thought to gate the signal

that triggers state updating in frontal cortex via modulations of the decision threshold in the
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basal ganglia [75–77], where higher DA levels facilitate flexible state updating by reducing the

threshold to respond [75]. The positive correlation pattern between EBR and the tonic reversal

detection response might relate to this mechanism, where stronger detection responses in indi-

viduals with high EBR possibly reflect higher arousal or sensitivity to state updating after

detecting environmental change.

Our data support the current theory that arousal-based mechanisms shape pupil responses

[1,5,78]. We extend current insights by showing that the simultaneous analysis of EBR and

pupillometry measurements provide an additional view into processes related to value-based

learning. That is, across-subject variability in pupil dilations during value expectation and eval-

uation relate to individual differences in EBR-indexed striatal dopaminergic tone (but see

[79]).

Although the effects reported here are based on a young and healthy sample of the popula-

tion, our data and that of other recent studies [14,15,80] suggest pupil responses might be of

use to index reward learning processes in clinical settings, for example to study impaired

reward-based learning in Parkinson’s disease (PD). PD patients often suffer from disorders in

movement and executive functioning [81,82], that renders behavioral responses in some occa-

sions difficult to use. Indexing value-based learning indirectly via physiological measures like

pupil size reduces strong behavioral requirements on patients, making pupillometry a poten-

tially promising measure to access value-based learning.
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