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This research was aimed to investigate the accuracy of U-shaped network (UNet)-based computed tomography angiography
(CTA) and B-mode ultrasonography (US) in the perforator localization of free anterolateral thigh flap (ALTF). Based on UNet, a
fusion of deep supervision mechanism, squeeze-and-excitation module, and attention mechanism was introduced to optimize the
algorithm. Then, a CTA segmentation model, DA-UNet, was established. The segmentation performance of DA-UNet and other
algorithms was compared under the same conditions. 30 patients who were planned to receive ALTF surgery were selected as the
research objects. According to different preoperative localization methods, they were divided into group A (CTA) and group B (B-
mode US), 15 cases in each group. Combined with the actual situation during surgery, the diagnostic accordance rate, sensitivity
(Sen), specificity, and the distance between the perforator location and the actual location were compared between the two groups.
The Dice coefficient, Jaccard index, Sen, the area under curve (AUC), and average Hausdorft distance (AVD) of the DA-UNet
segmentation algorithm were 80.70%, 69.97%, 77.56%, 0.887, and 2.48, respectively. These results were significantly better than
those of other algorithms (P <0.05). In group A, the diagnostic accordance rate, Sen, and specificity of patients were 96.55%,
90.52%, and 73.58%, respectively, which were higher than 91.53%, 81.36%, and 15.60% of patients in group B significantly
(P <0.05). There was no statistical difference in the distance between the perforator location and the actual location (P > 0.05). It
showed that the accuracy of CTA under the UNet-based DA-UNet segmentation model in the perforator localization of ALTF was
better than that of B-mode US. Thus, a reference could be provided for the preparation of free ALTF and its clinical application.

1. Introduction

Anterolateral thigh flap (ALTF) is a common flap trans-
plantation technique in clinical repair and reconstruction
surgery. It has the characteristics of concealed donor site,
moderate skin thickness, large incision area, and the ability
to be prepared into various types of flaps [1]. It is used in the
preparation of fascial flaps, musculocutaneous flaps, and
island flaps [2]. The ALTF feeding artery comes from the
musculocutaneous perforators or septal perforators of the
lateral femoral circumflex artery system. The source, course,
and location of these perforators are significantly different,
which increases the difficulty of flap cutting [3]. The

preoperative perforator localization technique can help to
better understand the anatomical structure of the perforator
and its surrounding tissues, reducing the incidence of
complications [4]. Preoperative perforator localization
techniques mainly include computed tomography angiog-
raphy (CTA), B-mode ultrasonography (US), and magnetic
resonance angiography (MRA). B-mode US has the ad-
vantages of noninvasiveness, simple operation, and no site
restrictions. However, B-mode US often produces false
positive results, and there are defects in judging the specific
location of the superficial point of deep fascia [5]. MRA has
the advantages of good tissue resolution and optimal im-
aging selection, but its detection accuracy is poor and the
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diagnostic cost is high [6]. CTA has the advantages of fast
scanning speed, high resolution, and noninvasiveness. Thus,
it can detect the condition of the patients’ flap directly and
can clarify the vascular pedicle diameter and length, muscle
orientation, and other related anatomical structures during
the detection process [7]. However, CTA has the following
shortcomings in the process of preoperative perforator lo-
calization. First, in the superficial fascia of the thigh, the
development space for CTA imaging is limited, and it is
difficult to grasp the time when the contrast agent reaches
the peripheral blood vessels. These result in perforating
vessels in the superficial fascia cannot be clearly displayed,
which is easy to be missed and difficult to locate. Secondly,
the preoperative localization of CTA is performed on the
simulated image, so there is a certain deviation from the
direct localization on the skin. Finally, it is difficult of CTA to
locate the preoperative perforator by establishing a coor-
dinate system for the anterolateral thigh area whose contour
isin a curved structure. The curved structure is easy to rotate,
and the deep tissue and surface skin are prone to relative
displacement [8].

Traditional CT A image segmentation methods consist of
region growing algorithm, active contour model, and level
set method. All these methods have the shortcomings of
strong artificial dependence and poor robustness in CTA
image segmentation [9]. With the continuous development
of artificial intelligence learning algorithms in recent years,
deep learning algorithms have been widely applied in
computer vision and pattern recognition. They are widely
used in medical image segmentation, lesion identification,
and image generation and amplification due to automatic
image feature selection, powerful feature representation
capabilities, and so on [10]. The fully convolutional neural
network image segmentation algorithm, U-shaped network
(UNet), utilizes convolution to extract features in medical
image processing, so as to achieve the goal of sharing pa-
rameters. It reduces the complexity of the network model
and the number of weights, but it still needs to be further
optimized for its shortcomings of low segmentation rate,
unsophisticated segmentation results, and poor contrast
[11].

To sum up, whether the perforator can be correctly
located and selected is the key to the preparation of free
ALTF, while B-mode US and CTA commonly used in
clinical practice have certain defects in ALTF localization. As
the UNet algorithm was optimized and applied to CTA
image segmentation, the application value of CTA and
B-mode US image segmentation under U-net algorithm was
discussed in ALTF localization. It was to provide a certain
reference for the preparation of free ALTF and its clinical
application.

2. Materials and Methods

2.1. UNet-Based CTA Image Segmentation Method. The
network structure of UNet was mainly composed of an
encoder and a decoder as shown in Figure 1. The encoder
consisted of 4 downsampling layers. The input image was
continuously convoluted twice and pooled to extract the
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global features of the image. The decoder consisted of 4
upsampling layers. After upsampling and channel merging
operations on the image, the final segmentation image was
output.

The resolution of the initial CTA images was relatively
large, and these images could not be directly input into the
UNet for training due to the limited memory of the graphics
card device. The CT A images needed to be preprocessed. The
coarse-to-fine (C2F) method [12] was adopted to segment
the arteries in CTA images. After the upsampling of the
original CTA image I in the coarse segmentation, the ob-
tained coarse segmentation output image is expressed as
equation (1):

I, = U{C,[D(D)]}. (1)

In the equation, D is the downsampling operation, U is
the upsampling operation, and C; is the coarse segmentation
network.

In the process of fine segmentation, the CTA image was
cropped and zero-padding was made in the surroundings
according to I, to obtain the segmentation result of the
arterial cavity on the CTA image. The calculation method
can be expressed as equation (2):

1, = P{E,[C(L.T)]}. 2)

In equation (2), P is the zero-padding operation, C is the
minimum circumscribed rectangle cropping operation, and
F, is the fine segmentation network.

2.2. Construction of the Optimized Algorithm under UNet.
UNet had the shortcomings of unsophisticated segmenta-
tion outcomes in CTA image processing [13]. On the
grounds of UNet algorithm, deep supervision mechanism,
squeeze-and-excitation module, and the attention mecha-
nism were fused and introduced for the optimization. Then,
the optimized model was constructed, which was denoted as
deeply supervised attention-enabled UNet (DA-UNet). For
the CTA image with a resolution of I x w x h, the inter-
polation algorithm was utilized for sampling the sequence
slices, so as to get the candidate segmentation results. Then,
the fusion model was applied to fuse the candidate seg-
mentation results, and the final segmentation results can be
expressed as equation (3):

N
S, = Z Wk Cux + o (0<k<A). (3)

n=1

Here, A represents the number of segmentation cate-
gories, N denotes the number of candidate segmentation
results, and ¢, € R”“*" denotes the segmentation result of
the k-th category in the n-th candidate segmentation result.
W, € R™" represents the weighting matrix for c,;, and
oy is the bias term.

Squeeze-and-excitation module could improve the ex-
pressiveness of the network through convolutional features
[14]. In this work, the squeeze-and-excitation module was
introduced into the UNet to weight the feature channels.
After the feature map processed by convolution operation
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FIGURE 1: Image processing flow of UNet.

was subjected to the global average pooling operation, the
spatial compression vector of the image is represented as
equation (4):

b, = di(i,j), (0<k<e). (4)

1 w
wxh Z <
In equation (4), d;. represents the k-th feature channel of
the feature map D, D € R¥™¢, and e is the number of
feature map channels.
If a channel was stimulated by full connection operation
twice, the descriptor B of the channel was obtained, and its
calculation method is expressed as equation (5):

B = B[w,8 (w,B)]. ©)

\M:‘

In the equation above, w; is the weight of the first full
connection operation, & represents the ReLU activation
function, w, is the weight of the second full connection
operation, and f refers to the sigmoid activation function.

By weighting the feature map D as a weight, the output
feature map D of the squeeze-and-excitation module could
be obtained. The calculation method is expressed as equation

(6):
DZ[Elﬂl)Bz’hV"’Ec’?c]' (6)

Here, B, stands for the weighting of the c-th feature channel
in the feature map D.

The attention mechanism was mainly in the weighted
processing of the feature map [15]. As the attention mechanism
was introduced into the connection layer of UNet, the shallow
features of the encoder were weighted in the layer. Thereby, the
optimized network paid more attention to the arterial region.
For feature maps y and g, convolution layer operation and
attention control processing were made after matrix addition,
and the output feature map can be expressed as equation (7):

y=x-y, x=p[Wed(g+yl (7)

Here, W is the convolution kernel, & represents the
convolution operation, « refers to the attention coefficient
matrix, x € R“", and g is the feature map after upsampling
as g € RwhPee,

Deep supervision mechanism reduced the coarseness of
image segmentation results [16]. For images of different
resolutions processed by the convolution layer, the upsam-
pling was performed, and the output image was obtained after
normalization by Softmax. It is calculated using equation (8):

O, = softmax{fs; +U[fs, +U(fs; +U(fsy))]}- (8)

In the equation, f represents different resolutions, and
U is the upsampling operation.

The output image processed by the DA-UNet contained
the probability value of each pixel classified as background
or carotid artery in the input image. A loss function was



needed to evaluate the difference between the segmentation
result and the gold standard. In this work, the classification
cross entropy loss (CEL) was used for the evaluation of the
mechanical energy of DA-UNet processing. CEL is
expressed as equation (9):

1

C(Z.2) = —; Z,log 7~ (9)

M=
Mo

k

1

3
1

Here, M is the number of pixels in a batch of images in
the training, and e is the number of pixel categories. Z¥,
represents the binary label of pixel m for category k in the
gold standard Z, while zX represents the probability that
pixel n belongs to the category k in the segmentation
result z.

Figure 2 displays the CTA image processing flow of the
DA-UNet algorithm under the UNet. First, the initial
number of convolution kernels in the network was set, and
the convolution operation was performed on the input
CTA image. The batch normalization and maximum
pooling operations were added to the image blocks, and
then the layer-by-layer downsampling operation was
made for Max pooling. The downsampled image was
subjected to upsampling operation in the decoder, con-
volution channel weighting processing, connection layer
mechanism module, attention mechanism processing, and
finally the output layer deep supervision mechanism.
Afterwards, the output of each upsampling layer was
superimposed with the final output, a segmented CTA
image was obtained.

2.3. Evaluation Indicators of CTA Image Segmentation.
The CTA image segmentation was evaluated using Dice
coeflicient, Jaccard index, sensitivity (Sen), area under the
receiver operator characteristic curve (AUC), and average
Hausdorff distance (AVD) in this work. The Dice coeflicient
mainly evaluated the overlapping rate between the seg-
mentation result region and the gold standard region, with
the range of [0, 1]. The Dice coefficient is calculated using
equation (10):

21ANB| 2TP
|A| +|B]  2TP + FP + FN'

Dice (A, B) = (10)
The Jaccard index was a measure of regional overlapping
[17], which is calculated using equation (11):

|JAnB| TP

- _ 11
JAUB| TP + FP + FN (D)

Jaccard =

Sensitivity (Sen) was utilized to measure the probability
that a voxel that was positive in the gold standard was also
positive in the segmentation result, and it is calculated using
equation (12):

TP
Sen = —. (12)
TP + FN

AUC was used to measure the classification accuracy of
voxels in the segmentation results, and its calculation
method is expressed as equation (13):
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(13)

1( FP FN >

AUC=1-2
2\FP+TN ' EN + TP

AVD was an evaluation method for image segmentation
under spatial distance, and its calculation is described as
equation (14):

|Bl -|Al

AVD(A, B) = o

(14)

In equations (10)-(14), TP, EN, TN, and FP represent the
number of true positives, false negatives, true negatives, and
false positives, respectively. A is the model segmentation
result, while B is the gold standard.

For the experimental environment, the model of central
processing unit was Intel(R) Core(TM) i7-7800X, with the
main frequency of 3.50 GHz, the memory of 16 G, the op-
erating system of Linux, and the programming language of
Python 3.6.6. The Dice coefficient, Jaccard index, Sen, AUC,
and AVD of UNet, DA-UNet, 3D-UNet [18], Isensee-UNet
[19], and RA-UNet [20] algorithms were compared under
the same conditions.

2.4. Research Objects and Groups. Thirty patients admitted to
the hospital from June 2018 to June 2020, who were to
undergo ALTF surgery, were included as the research ob-
jects. These patients were randomly divided into group A (15
cases) and group B (15 cases). In group A, CTA was used for
the perforator localization of the free ALTF; in group B, the
simple perforator localization of the free ALTF was given.
The age range of the included objects was 18-60 years old,
with an average age of (34.62 £ 6.75) years old; 23 males and
7 females were included. The experimental process had been
approved by the ethics committee of the hospital, and all
objects included signed the informed consent forms.
Inclusion criteria were as follows: (1) patients were
between the ages of 18 and 60 years old, regardless of gender;
and (2) patients had skin and soft tissue defects of the limbs.
The exclusion criteria were as follows: (1) patients had a
history of iodine allergy; (2) patients had the positive result
of iodine allergy test; (3) patients’ lateral circumflex femoral
artery was determined as the type without thick branches;
(4) patients suffered from liver or kidney dysfunction
(glutamic-pyruvic transaminase >80 U/L); (5) patients got
pulmonary infection shown in chest X-ray examination; (6)
patients had renal insufficiency (creatinine >200 mg/L); (7)
patients had a cardiac function > grade II; (8) local ulcers in
patients were diagnosed as malignant tumors; (9) patients
had a history of mental illness once; (11) patients got severe
allergic reactions during CTA examination; (12) patients had
an anesthesia accident during anesthesia, which made the
surgery could not be performed; and (13) the lateral femoral
circumflex artery was classified with no thick branch during
the surgery, or they went with poor vascular conditions.

2.5. B-Mode US, CTA, and Image Processing. B-mode US was
performed on patients using color B-mode US diagnostic
apparatus, with LA523 high-frequency probe, and the probe
frequency was 8-12 MHz. For the B-mode US examination,
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FIGURE 2: Flow chart of CTA image processing by DA-UNet algorithm.

the supine position should be taken. The midpoint of the line
connecting the skeleton was taken as the point M, and the
probe was perpendicular to the skin surface. In the two-
dimensional images, the rectus femoris, vastus lateralis,
vastus intermedius, vastus medialis, etc., were observed. The
main, ascending, transverse, and descending branches of the
femoral artery and lateral femoral circumflex artery were
also observed in the blood flow images. The running region
of the descending branch of the lateral femoral circumflex
artery was determined. The midpoint M as the center of the
circle, and the perforating vessel in the direction of the vastus
lateralis muscle that located the descending branch of the
lateral femoral circumflex artery was sought. After the
perforating vessel in the direction of the vastus lateralis
muscle was detected, the distance from the M point was
measured immediately, which was marked on the body
surface with gentian violet.

The patients were scanned in the supine position using
the Toshiba Aquilion ViSION 320-row computed tomog-
raphy scanner. The scanning range was from the anterior
superior iliac spine to the lower edge of the patella.
Iopromide injection was used as a contrast agent, at a dose of
370 mgl/mL and an injection rate of 5m/s. The scanning
parameters included the voltage 120KV, current 300 mA,
field of view 250-400 mm, slice thickness 0.5 mm for re-
construction, and reconstruction slice spacing 0.3 mm. For

the scanning method, after iopromide injection was injected
through the cubital vein with a high-pressure syringe, the
automatic monitoring and trigger scanning mode was
adopted. The layer of the bifurcation of the main femoral
artery was taken as the monitoring layer, and the region of
interest (ROI) was set at the layer of the femoral artery.
When the CTA value in the ROI reached 280 HU, the arterial
phase scanning was automatically triggered.

After the scanning was completed, the CTA volume
data of patients were imported into the three-dimensional
image workstation for processing. Multiplanar recon-
struction, maximum intensity projection, curved planar
reconstruction, vessel probe, volume reconstruction (VR),
and other three-dimensional postprocessing techniques
were utilized for observation of the lateral femoral artery
and its branches. In the CT A images, the morphology of the
lateral circumflex femoral descending artery and the lo-
cation of the perforator were observed. The location of the
perforator was located in VR mode according to the points
of interest. Meanwhile, the iliac-patellar line was drawn,
connecting the anterior superior iliac spine to the lateral
border of the patella. The midpoint of the line was taken as
the center, and then a three-dimensional coordinate system
was constructed. Its spatial position was accurately mea-
sured through the projection point of the perforator on its
surface skin.



2.6. Surgical Methods and Postoperative Treatment.
Referring to the method of Tsai [21], free flap trans-
plantation was performed and improved. All patients were
given systemic support before surgery to correct their
anemia, hypoalbuminemia, and electrolyte imbalance.
Debridement and vacuum sealing drainage were per-
formed in the recipient area, and the surgery was per-
formed after the infection was significantly controlled. The
surgery was performed in a supine position, and con-
tinuous epidural spinal anesthesia combined with block
anesthesia or general anesthesia was used. After routine
disinfection and surgical draping, the chief surgeon
marked the perforation point with reference to the pre-
operative B-mode US or CTA measurement. With the
shape and area of the wound in the recipient area, the
patient’s skin flap implantation was designed to remove
the free skin flap. The upper, lower, and outer edges of the
patient’s skin flap were incised, and the deep fascia and
subcutaneous tissue were fixed and sutured. The flap was
lifted slowly, and the subcutaneous perforating artery was
found. Then, the actual position on the body surface of the
perforator was compared with the results of CTA and
B-mode US examinations. The length of the perforator was
measured with a sterilized stainless ruler, and the relevant
information was recorded. The vascular pedicle was freed
to the root of the perforator by the join-forces traction
method, and the flap was completely incised along the
periphery of the flap. The flap was lifted from the deep
surface and then was removed; the vascular bundle arteries
and veins were trimmed under the microscope, and the
vascular pedicle was connected with the blood supplying
arteries and veins of the recipient area. After anastomosis,
the vascular clip was loosened, and the arterial pulsation
and venous filling were observed. The wound was closed,
the drainage fluid was drained, and then the wound was
bandaged. The wound in the donor area of the thigh was
roped in and sutured. For the wound that cannot be
eliminated, epidermis or autologous medium-thickness
skin grafts on the head, abdomen, etc., were taken for
repair and transplantation.

The patients were treated with routine anticoagulation,
anti-infection, antispasmodic, and baking lamp irradiation
after surgery. The drainage tube was removed 3-4 days after
receiving subcutaneous drainage. The color, temperature,
and filling time of capillaries of the transplanted skin ALTF
were closely monitored after surgery. If the patient had a
vascular crisis, it should be treated in time.

2.7. Statistical Methods. The experimental data were pro-
cessed with SPSS19.0. The distance between the location of
perforator on the branch surface and the perforator location
confirmed during the surgery was expressed as the mean-
+standard deviation (X +s). The measurement data be-
tween the two groups were compared by the ¢ test. The
enumeration data were expressed as percentage (%) and was
tested using the y° test. P < 0.05 indicated that the difference
was statistically significant.
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3. Results and Analysis

3.1. Comparison of Dice Coefficient of Femoral Artery in CTA
Images Segmented by Different Algorithms. The Dice values
of UNet, DA-UNet, 3D-UNet, Isensee-UNet, and RA-
UNet algorithms were compared under the same circum-
stances, which are shown in Figure 3. The Dice coefficient of
UNet, DA-UNet, 3D-UNet, Isensee-UNet, and RA-UNet
were 64.05%, 91.87%, 75.92%, 70.19%, and 67.54%, re-
spectively. The Dice value of DA-UNet was remarkably
higher than that of other algorithms (P <0.05).

3.2. Comparison of Jaccard Index and Sen of Femoral Artery in
CTA Images Segmented by Different Algorithms. The com-
parison of Jaccard index and Sen of different algorithms is
presented in Figure 4. The Jaccard index and Sen of the DA-
UNet algorithm were 85.22% and 90.03%, respectively,
markedly higher than those of other algorithms (P <0.05).

3.3. Comparison of AUC and AVD of Femoral Artery in CTA
Images under Different Algorithms. The comparison of AUC
and AVD of different algorithms is presented in Figure 5.
The AUC of the DA-UNet algorithm was 0.933, and the
AVD of DA-UNet was 0.19. The AUC of the DA-
UNet algorithm was higher than that of other algorithms
(P <0.05), but its AVD value was observably lower than that
of other algorithms (P <0.01).

3.4. Comparison of Basic Data of Patients between the Two
Groups. The age, gender ratio, and skin defect range of the
two groups of patients were compared. There was no sig-
nificant difference in age, gender ratio, as well as skin defect
range between group A and group B (P > 0.05), which can be
seen in Table 1.

3.5. Comparison of the Causes of Injury and Injured Sites.
The causes of injury and injured sites of patients in the two
groups were compared and analyzed, as shown in Figures 6
and 7. In group A, 2 cases (13.33%), 3 cases (20.00%), 1 case
(6.67%), 1 case (6.67%), 2 cases (13.33%), 3 cases (20.00%),
and 3 cases (20.00%) were injured by heavy objects, traffic
accidents, mechanical crushing, falling from a height, ulcers,
postoperation, and infections, respectively. In group B, 3
cases (20.00%), 2 cases (13.33%), 1 case (6.67%), 1 case
(6.67%), 3 cases (20.00%), 3 cases (20.00%), and 2 cases
(13.33%) were injured by heavy objects, traffic accidents,
mechanical crushing, falling from a height, ulcers, post-
operation, and infections, respectively. No significant dif-
ference was found in the proportion of patients with
different causes of injury and injured sites between group A
and group B (P >0.05).

3.6. Analysis of Preoperative Localization Characteristics.
The distance between the preoperative perforator position
and the actual position determined during surgery was
compared between groups, which is shown in Figure 8.
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Under CTA, the distance between the preoperative perfo-
rator position on body surface and the actual position in
group A was (11.26 £ 4.76) mm, and that under B-mode US
in group B was (12.45 + 5.12) mm. There was no significant
difference between the two groups in the distance between
the perforator position and the actual position (P > 0.05).

The diagnostic accordance rate, Sen, and specificity of
patients in group A and group B are compared in Figure 9.
The number of perforators found during surgery in group A
and group B was 58 and 59, respectively. The diagnostic
accordance rate, Sen, and specificity of patients in group A
were 96.55%, 90.52%, and 73.58%, respectively; those in
group B were 91.53%, 81.36%, and 15.60%, respectively. The
diagnostic accordance rate, Sen, and specificity of group A
patients were all significantly higher than those in group B
(P<0.01).

4. Discussion

CTA is used for the clinical body surface localization of
perforating vessels because of its high image resolution. This
method can shorten the operation time of patients, reduce
the incidence of postoperative complications, and reduce the
postoperative burden of patients [22]. CTA has significant
advantages in the diagnosis of vascular lesions, visualization
of blood vessels, and quantitative analysis of anatomical
information, which made CTA become the gold standard for
preoperative design of breast reconstruction [23]. However,
there are still some deviations in the examination process.
With the shortcomings of CT A images, UNet was optimized
and applied to the segmentation of arterial blood vessels in
CTA images in this research. The results demonstrated that
the Dice coefficient, Jaccard index, Sen, AUC, and AVD of
DA-UNet were greatly better than those of other algorithms
(P <0.05). It was suggested that the performance of the
UNet-based DA-UNet algorithm in femoral artery seg-
mentation of CTA images was highly improved perhaps
because the C2F segmentation method was adopted.
Moreover, the deep supervision mechanism, squeeze-and-
excitation module, and attention mechanism were fused and
introduced in the optimization. The combination of these
optimization methods made the DA-UNet algorithm sig-
nificantly improve the accuracy of CTA image segmentation,
while reducing the loss of resolution. Elgohary et al. [24]
established the C2F-3D-UNet under UNet algorithm and
applied it to CTA image segmentation. The results indicated
that the Dice value, Jaccard index, Sen, AUC, and AVD for
CTA image segmentation were 80.70%, 69.97%, 77.56%,
0.887, and 2.48, respectively. The corresponding values in
the results of this work were notably higher than those of the
network, suggesting that the DA-UNet in this work had a
potential application value in CTA image segmentation.
The results of this work found no significant difference in
the distance between the perforator position and the actual
position of patients between group A and group B (P > 0.05).
The diagnostic accordance rate, Sen, and specificity of pa-
tients in group A were remarkably higher than those in
group B (P <0.01). The accuracy, Sen, and specificity of CTA
were higher than those of B-mode US. However, there was
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TaBLE 1: Comparison of basic data of the two groups.

Groups Group A (n=15) Group B (n=15) t or )f P value
Age (years old) 34.15+9.27 35.27 +£10.42 2.224 0.325
Male [cases, (%)] 11 (73.33) 12 (80.00) 2.458 0.283
Female [cases, (%)] 4 (26.67) 3 (20.00)
Skin defect range (cm) 8.70 x12.83-28.40 x 24.16 8.51x12.24-29.14 x 25.23 3.025 0.146
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/2"‘\
Infection oﬁ/is—‘: eTraffic accident
10 - o

o .

After surgery A

Ulcer & Falling at a high
altitude
—e— Group A
A~ Group B

FIGURE 6: Comparison of the causes of injury between the two groups.
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FIGURE 8: Comparison of the distance between the preoperative perforator position and the actual position in two groups.



Contrast Media & Molecular Imaging

Compliance
rate
100 @ v

Specificity Sensitivity

—e— Group A
A Group B

F1Gure 9: Comparison of accordance rate, Sen, and specificity for
preoperative localization in different groups. **Compared with
group B, P<0.01.

still a certain deviation between the perforator location
examined by CTA and the actual location. This might be
because the images obtained from CTA examination were
three-dimensional postprocessing images, and the image
processing led to some difference between the location and
the actual location [25]. On the other hand, it might be
related to factors such as the body position in CTA ex-
amination and that during the surgery, which resulted in the
rotation of the lower extremity. During the surgery, the
traction of tension was combined after the fascia and skin
were incised, so the position of the out point of perforator
changed [26]. Therefore, it was necessary to simulate the
intraoperative body position performance in the clinical
practice, so as to improve the accuracy of CTA examination.
In conclusion, CTA under the UNet algorithm had a definite
advantage over B-mode US in perforator localization of
ALTF, which was similar to the findings of Ma et al. [27].

5. Conclusion

The accuracy of UNet-based CTA and B-mode US were
analyzed in the perforator localization in the preparation of
free ALTF. The accuracy of CTA under UNet was better than
that of B-mode US in the perforator localization of ALTF.
However, there were still some deficiencies in this research.
The number of patients included was limited, the follow-up
time was short, and the incidence of postoperative adverse
events in patients was not analyzed in detail. In the future
work, the sample size would be expanded, and the incidence
of adverse events would be counted to further clarify the
mid-term and long-term clinical effects of these two
methods. All in all, this work provided a reference for the
preparation of free ALTF and its clinical application.
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The data used to support the findings of this study are
available from the corresponding author upon request.
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