
Journal of

Clinical Medicine

Review

Oxidative Stress—A Key Player in the Course of Alcohol-Related
Liver Disease

Agata Michalak 1 , Tomasz Lach 2 and Halina Cichoż-Lach 1,*
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Abstract: Oxidative stress is known to be an inseparable factor involved in the presentation of
liver disorders. Free radicals interfere with DNA, proteins, and lipids, which are crucial in liver
metabolism, changing their expression and biological functions. Additionally, oxidative stress
modifies the function of micro-RNAs, impairing the metabolism of hepatocytes. Free radicals have
also been proven to influence the function of certain transcriptional factors and to alter the cell cycle.
The pathological appearance of alcohol-related liver disease (ALD) constitutes an ideal example
of harmful effects due to the redox state. Finally, ethanol-induced toxicity and overproduction of
free radicals provoke irreversible changes within liver parenchyma. Understanding the underlying
mechanisms associated with the redox state in the course of ALD creates new possibilities of treatment
for patients. The future of hepatology may become directly dependent on the effective action against
reactive oxygen species. This review summarizes current data on the redox state in the natural history
of ALD, highlighting the newest reports on this topic.
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1. Introduction

Oxidative stress is a crucial factor responsible for the pathological appearance of
diverse systemic entities. Neoplasmatic process, cardiovascular diseases, aging, and many
more phenomena are inseparably related to reactive oxygen species (ROS). Acute and
chronic liver disorders also present a well-known target for free radical activity. Oxidative
stress constitutes a major triggering factor in the course of alcohol-related liver disease
(ALD) [1–4]. Alcohol-induced liver disorders involve a broad range of molecular injuries of
hepatocytes, including steatosis, steatohepatitis, development of cirrhosis, and a possible
transformation to hepatocellular carcinoma (HCC) [5–7]. According to worldwide data,
alcohol-related liver cirrhosis (ALC) is a third cause of alcohol-derived deaths [8,9]. This
review highlights the impact of oxidative stress on the progression and complications of
ALD, summarizing already collected data. Approximately 2–10% of absorbed ethanol
is eliminated via the lungs and kidneys; the major residue is metabolized mostly by ox-
idative pathways in the liver and due to nonoxidative mechanisms in the extrahepatic
tissues [10–13]. The liver injury due to alcoholic toxicity comprises a broad range of patholo-
gies. First, DNA, proteins, and lipids are prone to be damaged by a crucial metabolite of
ethanol—acetaldehyde—together with other highly reactive oxidants [14,15]. Altered hep-
atic respiration and lipid metabolism are followed by hypoxia and impaired mitochondrial
function [16–18]. Moreover, acetaldehyde-protein adducts alter signaling pathways and
ion channel function [19,20]. As the result, hepatocytes die and provoke further mediation
of pro-inflammatory particles, leading to tissue repair and gradual fibrogenesis within the
liver, mediating the development of hepatocellular carcinoma [21–24]. Simultaneously,
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alcohol-induced autophagy followed by apoptotic cell death appears to be another crucial
mechanism in hepatocellular injury [25–29]. Figure 1 shows a natural history of ALD.
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Figure 1. Natural history of alcohol-related liver disease. (AFL—alcoholic fatty liver, AH—alcoholic
hepatitis, ASH—alcoholic steatohepatitis, ALC—alcohol-related liver cirrhosis, HCC—hepatocellular
carcinoma). Chronic alcohol consumption affects healthy liver, leading to the development of AFL in
90–100% of people; 10–35% AFL patients progress to ASH and ALC is the complication in 8–20% of
them. Finally, 2% of cirrhotic patients develop HCC. AH is an additional stage of ALD, which might
develop from AFL or ASH and directly progresses into ALC (in up to 70% cases).

2. Alcohol, High Fat Diet and Mitochondria
2.1. Ethanol Metabolism and Oxidative Stress

A major pathway of alcohol metabolism in the liver is an oxidative one, which leads
through its metabolism to acetaldehyde by alcohol dehydrogenases, cytochrome P4502E1
(CYP2E1), and catalase [30–32]. Because of a broad spectrum of enzymes capable of alcohol
metabolism, this process takes place in various tissues, however, the liver is the primary
organ. The second minor, non-oxidant pathway of alcohol breakdown is regulated via fatty
acid ethyl ester synthase and phospholipase D with the formation of fatty acid ethyl ester
and phosphatidyl ethanol [33]. CYP2E1 belongs to the P450 enzyme family that has a key
role in alcohol, drug, toxin, lipid, and carcinogen metabolism. In human organisms CYP2E1
is mainly expressed in hepatocytes. Its function is to metabolize substrates into more polar
particles—for secretion or conversion by other microsomal phase II enzymes [34]. CYP2E1
also transfers active electrons from reduced nicotinamide adenine dinucleotide phosphate
(NADPH) or reduced nicotinamide adenine dinucleotide (NAD) to oxygen and leads to
the production of ROS with this mechanism. Toxic metabolites derived from CYP2E1
activity, together with coexisting oxidative stress, are well known triggering factors respon-
sible for liver injury by exacerbating an inflammatory and fibrogenic response, reflected
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by recruitment of leukocytes and hepatic stellate cells (HSCs) [35,36]. Chronic alcohol
consumption was proved to increase the expression of CYP2E1 protein [37,38]. On the
other hand, knocking out CYP2E1 in previous models reduced alcohol-induced hepatic
oxidative stress and prevented the development of alcoholic steatosis [39,40]. ALD might
promote mitochondrial destruction and dysfunction due to excessive oxidative stress.
Physiologically, approximately 1–2% of oxygen leaks out as ROS from the mitochondrial
electron transport chain (ETC). These active molecules are essential for the regulation
of various cellular signaling loops and their excess is neutralized by cellular antioxidant
complexes with no harm for the cell [41–43]. Nevertheless, under pathological conditions,
with coexisting exposure to certain toxic agents (e.g., alcohol, high fat diets), the release
of ROS from mitochondrial ETC becomes too high. Interestingly, cholesterol overload
might diminish the expression of key DNA repair genes, exacerbating oxidative damage
to the liver and even promoting the development of liver cancer [44,45]. Furthermore,
mitochondria, which are well known as a primary source of free radicals, become para-
doxically the main target of oxidative damage because they contain relatively low levels
of antioxidants, such as a reduced glutathione (GSH) [46–49]. Its concentration in the
cytosol is definitely higher, because a special transporter protein is required to move GSH
directly to mitochondria, where GSH is not synthesized. Of note, chronic alcohol exposure
alters the function of the GSH transporter channel, resulting in a progressive deficiency
of GSH within mitochondria [50,51]. Previous investigations conducted on mitochondria
exposed to a high level of oxidative stress confirm this theory—mitochondria from those
models present irregular shapes and altered functions. Of note, oxidative stress due to
excessive alcohol ingestion can downregulate alcohol dehydrogenase activity, protecting
the liver from further injury. Chronic intake of ethanol leads finally to the stage of metabolic
adaptation (tolerance), in which an increased rate of blood ethanol clearance is observed.
Another causative factor for this situation is believed to be that substrate shuttle capacity
and transport of reducing equivalents into the mitochondria is not disturbed by chronic
alcohol consumption. On the other hand, according to the hypermetabolic state hypothesis,
changes in thyroid hormone levels increase (Na+ + K+)-activated ATPase, followed by
elevated ADP concentration. This increases the state 3 mitochondrial oxygen consumption,
intensifying NADH reoxidation. Increased oxygen consumption may become the reason
for hypoxia, especially to hepatocytes of zone 3 of the liver acinus, the region where alcohol
toxicity originates (centrilobular hypoxia hypothesis) [52–54].

2.2. Nitrosative Stress

Other cellular enzymes are also able to generate ROS and reactive nitrogen species
(RNS) including nitric oxide (NO). This group of enzymes comprises myeloperoxidase and
nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase in phagocytic
immune cells, ethanol-inducible CYP2E1 and cytochrome P4504A (CYP4A) isozymes
in endoplasmic reticulum (ER), cytosolic xanthine oxidase, and nitric oxide synthase
isozymes including its inducible form (iNOS) in activated Kupffer cells together with
recruited neutrophils [55,56]. Except for oxidative stress, nitrative stress constitutes another
important metabolic condition, resulting from the reaction of ROS with NO. Excessive
amounts of free radicals might lead to the overproduction of a potentially toxic peroxynitrite
(ONOO−) in the presence of NO [57]. Peroxynitrite is an agent which can result in the
modification of diverse proteins while nitrated tyrosine residues serve the function of a
stable marker for nitrative stress. Another essential source of oxidative stress is intestinal
NO. Indeed, alcohol-induced overproduction of NO by inducible nitric oxide synthase
(iNOS) alters barrier function. The prevention of alcohol-induced NO overproduction in
previous rat models restored proper barrier integrity. A certain mechanism responsible
for alcohol-induced gut leakiness has not been fully elucidated, however it appears that
miRNA might be potentially involved in this cascade. ZO-1 (zonula occludens-1), which
belongs to crucial tight junctional proteins implied in the regulation of intestinal barrier,
is a target gene of miR-212. Colon biopsies obtained from ALD patients revealed its
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overexpression. Consequently, alcohol-induced higher concentration of intestinal miR-212
in cell cultures was observed together with downregulation of ZO-1. Additionally, alcohol-
induced miR-212 overexpression and disruption of ZO-1 morphology in cell cultures were
significantly inhibited when iNOS was knocked down. It was confirmed in iNOS knock-
out (KO) mice model fed with alcohol, indicating a close dependency between NO and
miRNAs. These findings support the idea that iNOS serves an important role in alcohol-
induced miR-212 overexpression, which disrupts intestinal barrier integrity by inhibiting
ZO-1 expression [58]. Interestingly, too high a level of ROS and RNS even suppresses the
action of antioxidants (mitochondrial superoxide dismutase (SOD2), catalase, glutathione
peroxidase and glutathione reductase, and vitamins). In such pathological circumstances,
mitochondrial DNA may undergo oxidation, nitrosation, and/or nitration, which is finally
reflected by mitochondrial dysfunction [59–61]. Of note, mitochondrial DNA (mtDNA)
might undergo oxidation due to prolonged oxidative stress in alcoholics. Peroxynitrite
derived from the spontaneous reaction of NO with superoxide leads to mtDNA depletion.
Consistently, concentration of 8-hydroxy-2′-deoxyguanosine together with mutations and
strand breaks of mtDNA increase. Finally, even multiple mtDNA deletions occur, proved
in liver tissues from patients with ALD. Despite the presence of hundreds of copies of
mtDNA, their abundant structural aberrations can be followed by attenuated mitochondrial
respiration and ATP synthesis, aggravating hepatocyte injury. Structural disturbances of
mtDNA may involve its D-loop region, responsible for the replication and maintenance
of mtDNA [62]. As a consequence, expression of mtDNA replication-related proteins,
(e.g., mitochondrial single-stranded DNA-binding protein, mitochondrial transcription
factor A) diminishes [63,64]. Morphologically changed mtDNA also becomes the target
for mitochondrial endonuclease G and for this reason the production of mt-DNA encoded
key proteins of the oxidative phosphorylation system is impaired [65–68]. Table 1 presents
various molecules participating in the different stages of the redox state due to ALD.

Table 1. Molecules involved in the development of redox state in case of ALD.

Protein/Gene/Molecule Role in ALD—Induced Oxidative Stress

miR-212 and iNOS alcohol-induced gut leakiness

SREBP-1c and PPARα promotion of liver steatosis

reactive aldehydes (e.g., 4-HNE) promotion of liver steatosis

PAMPs and DAMPs progression of inflammation

SIRT family progression of oxidation and inflammation

miR-214 suppression of cytochrome P450

miR-223 involved in neutrophils infiltration and ROS generation

miR-155 and miR-181b-3p LPS-mediated inflammation

miR-291b involved in TLR4/NF-κB pathway

miR-34a and miR-217 inhibits the expression of SIRT1
miR—micro-RNA, iNOS—inducible nitric oxide synthase, SREBP-1c—sterol 191 regulatory element-binding
protein 1, 4-HNE—4-hydroxy-2-nonenal, PAMPs—pathogen associated molecular patterns, DAMPs—
danger/damage-associated molecular patterns, SIRT—sirtuin gene family, LPS—lipopolysaccharide, TLR4—toll-
like receptor 4, NF-κB—nuclear factor κ B, SIRT—sirtuin gene family.

2.3. Lipids, Steatosis and Steatohepatitis in ALD

Metabolism of ethanol in hepatocytes by CYP2E1 is inseparably connected with
overproduction of ROS. Oxidative stress promotes lipid peroxidation, protein carbony-
lation, and formation of 1-hydroxyethyl radical and lipid radical formation. CYP2E1
also stimulates Ω-1-hydroxylation of endobiotic substrates, e.g., fatty acids, steroids, and
prostaglandins. This conversion takes place in microsomes and constitutes an alternative for
long chain fatty acid mitochondrial β-oxidation [69]. An essential role of Ω-1-hydroxylation
of arachidonic acid (AA) has been emphasized due to a proinflammatory profile of AA-
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derived eicosanoids [70]. Excessive alcohol consumption facilitates the hydroxylation of
AA and other polyunsaturated fatty acids (PUFAs) within microsomes [71,72]. Addition-
ally, a lower level of AA in the liver was noticed in both murine and human ALD and
supplementation of CYP2E1 inhibitor caused an increase in its concentration. Hepato-
cytes ballooning and lymphocyte infiltration characterize steatohepatitis—a prominent
feature of ALD. The imbalance between de novo lipid synthesis and lipid β-oxidation
accompanying alcohol consumption leads to the accumulation of lipid droplets in hepatic
parenchyma [73]. Ethanol metabolism is also associated with up-regulation of sterol regula-
tory element binding protein 1c (SREBP-1c) and down-regulation of peroxisome proliferator
activated receptor alpha (PPARα) [74,75]. Aberrated expression of the abovementioned
receptors promotes fatty acid synthesis and simultaneously inhibits β-oxidation [76,77].
Mice fed with alcohol were found to develop more severe liver steatosis in comparison to
pair-fed mice receiving the same caloric intake, showing that an alcohol-induced metabolic
imbalance leads to steatosis [78]. Except for CYP2E1, cytosolic alcohol dehydrogenase and
mitochondrial aldehyde dehydrogenase 2 are involved in the metabolism of ethanol; reduc-
ing equivalents (reduced NAD and NADPH) and acetyl-coenzyme A (CoA) equivalents
(acetaldehyde and acetate) are created as the result. NADPH and acetate constitute the
substrates of lipid β-oxidation but also participate in de novo lipogenesis. Thus, alcohol
consumption interferes with lipid homeostasis and promotes the direction of lipogene-
sis to exacerbate alcoholic liver steatosis. Newly synthesized free fatty acids (FFAs) are
transformed into diacylglycerol (DAG) and triacylglycerol (TAG) to create lipid droplets
within hepatocytes [79,80]. Lipogenesis is limited by acetyl-CoA carboxylase (ACC) and its
transcription is upregulated by factor Srebp-1. Uncontrolled lipid droplet accumulation
and ROS are the reasons for hepatocyte ballooning and apoptosis [81]. Dead hepatocytes
trigger inflammatory response within the liver, stimulating the release of proinflammatory
agents (tumor necrosis factor alpha (TNF-α, interleukin (IL)-1b, IL-6, and transforming
growth factor β1 (TGF-β1)). Moreover, neutrophils mediate the progression of destruction
by intensifying oxidative stress and finally kill hepatocytes, creating a typical picture of
alcoholic hepatitis [82,83]. Many previous investigations support the idea of a tight relation
between ALD and oxidative stress. A decrease in the antioxidant enzyme glutathione
peroxidase-1 during chronic alcohol consumption confirms this theory. Furthermore, col-
lected data suggest that ROS cause damage among proteins, lipids, and cytoplasm [84].
Galicia-Moreno et al. demonstrated decreased levels of GSH in patients with ALC. This
reduction together with a significant increase in the concentration of oxidized glutathione
(GSSG) was the most prominent in Child–Pugh A patients, suggesting a crucial role of
oxidative stress in the early stages of ALD. However, researchers from the above-mentioned
group noticed increased content of malondialdehyde (MDA) in all examined ALC patients,
proportionally to the progression of the disease [10]. Iron overload is a well-known fac-
tor participating in chronic alcohol consumption. Former studies conducted on animals
proved a synergy between alcohol and iron in promoting lipid peroxidation, which is
reflected by an increase in MDA. Moreover, ALC patients were found to present antibod-
ies against CYP2E1 and oxidized phospholipids. According to data already collected in
this field, elevation in IgG targeting lipid peroxidation-derived antigens corresponds to
TNF-α release and the progression of liver inflammation. Oxidation of lipids is a source
of toxic products, e.g., MDA and 4-hydroxy-2-nonenal (4-HNE), which might inhibit the
function of numerous mitochondrial proteins, like aldehyde dehydrogenase-2 (ALDH2)—
participating in the metabolism of reactive acetaldehyde and 4-HNE, the sirtuin gene
family (SIRT), and NAD+-dependent deacetylase, through adduct formation with many
amino acid residues [85,86]. The abovementioned lipid peroxides may even alter the cell
membrane functions and promote fibrosis due to the activation of HSc, recruitment of
cytokines together with neutrophils, and further stimulation of macrophage Kupffer’s
cells [87]. Figure 2 shows a complex background of oxidative and nitrosative stress in the
course of ALD.
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Figure 2. Oxidative and nitrosative stress in the course of alcohol-related liver disease—main path-
ways. (SREBP-1c—sterol regulatory element-binding protein 1, PPARα—peroxisome proliferator-
activated receptor α, AMPK—AMP-activated protein kinase, Fe—iron, PAMPs—pathogen associated
molecular patterns, TLR4—toll-like receptor 4, NF-κB—nuclear factor κ B, DAMPs—danger/damage-
associated molecular patterns, SIRT—sirtuin gene family, PRMT1—protein arginine methyltrans-
ferase 1, miR—microRNA, mtDNA—mitochondrial DNA).

3. Antioxidants, ALD Exacerbation and Signaling Pathways
3.1. Acute-on-Chronic Liver Failure and Oxidative Stress

On the other hand, an increased release of reactive oxygen radicals stimulates a
defensive pathway, promoting the transcription of antioxidant genes, e.g., peroxiredox-
ins, sulifredoxin, superoxide dismutases, and glutathione reductase. A key point of this
phenomenon constitutes an activation of nuclear translocation of Nrf2 by degrading the
cytoplasmic Keap1-Nrf2. Finally, Nrf2 binds to antioxidant response elements and en-
hances antioxidant defense mechanisms [88–90]. Nrf2 knockout mice present destruction
of hepatocytes and increased mortality after binge ethanol exposure [91]. ALD is fol-
lowed by impaired β-oxidation due to excessive oxidative stress. 5-AMP-protein kinase
(AMPK) constitutes a key regulator of β-oxidation. Inhibition of AMPK activity by reactive
aldehydes (e.g., 4-HNE) contributes to increased steatosis in ALD [92–95]. In a murine
model of ALD, AMPK is covalently modified by reactive aldehydes, reducing its activity.
Oxidative stress also regulates AMPK activity. Cells treated with hydrogen peroxide were
found to present decreased cellular ATP concentrations and further activation of AMPK.
Consequently, phosphorylation and activation of AMPK regulates cellular energy due
to increased oxidative stress via β-oxidation in hepatocytes [96–101]. Oxidative stress is
involved not only in the development of ALD but also in complications in the chronic phase
of the disease. Acute-on-chronic liver failure (ACLF) is described as a sudden and acute
decompensation of LC, presenting with multiorgan failure and extremely poor survival
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(28-day mortality rate of 30–40%). It usually occurs in alcoholic- and untreated hepatitis B
associated-cirrhosis; bacterial infections and active alcoholism are major causative factors,
however, in 40% of cases no triggering event can be identified. ACLF is the manifestation
of systemic inflammatory response, acting through diverse mechanisms, e.g., excessive
oxidative stress to pathogen- or danger/damage-associated molecular patterns (DAMPs)
and/or alteration of tissue homeostasis to inflammation caused either by the pathogen itself
or through a dysfunction of tissue tolerance [102–104]. The release of bacterial pathogen
associated molecular patterns (PAMPs) is the common background of an inflammatory
pathway in ACLF, but increased oxidative stress is another unquestionable triggering factor
(sterile inflammation) [105–107]. Figure 3 shows the overall impact of alcohol intake on the
immune system and different susceptible cell subsets.
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3.2. Sirtuin-Related Pathways in ALD Natural History

The sirtuin gene family (SIRT) is hypothesized to regulate the aging process and play
a role in cellular repair. Sirtuin 6 (SIRT6), NAD-dependent histone deacetylase, has been
involved in the course of oxidative stress, also acting as the regulator of longevity, genome
stability, metabolism, and inflammation. From a metabolic point of view, SIRT6 suppresses
the biosynthesis of triglycerides and cholesterol. Sirt6 systemic knockout results in se-
vere hypoglycemia and premature death [108–111]. Hepatocyte-specific SIRT6 knockout
mice were found to develop hepatic steatosis even on a regular chow diet. Moreover,
SIRT6 also serves as a key regulator of inflammation by suppressing pro-inflammatory
cytokines (IL-1β, IL-6, and TNF α). SIRT6 has also been proved to alleviate oxidative
stress concerning brain ischemia, non-alcoholic fatty liver, and mesenchymal stem cells
by regulation of Nrf2 [112–115]. Nevertheless, little of the data concerns the role of SIRT6
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in ALD. Kim et al. tried to evaluate its function in the course of ALD [116]. They found
decreased expression of SIRT6 in the livers of ALC patients and ALD mice [117]. The
abovementioned researchers additionally created two SIRT6 knockout mouse models and
proved that animals with hepatic SIRT6 deficiency are more prone to develop ALD. In-
terestingly, induction of metallothionein 1 and 2 (MT1 and MT2), anti-oxidative stress
genes, by ethanol was significantly impaired in the liver of SIRT6 knockout mice. On
the other hand, hepatic SIRT6 overexpression reversed the ethanol induced damage in
examined mice. This protection against ALD might be explained by the enhancement
of the transcriptional induction of MT1 and MT2 genes by coactivating metal regulatory
transcription factor 1 (MTF1). MT1 overexpression decreased hepatic hydrogen peroxide
and increased GSH levels among investigated mice. SIRT6 appears to be a promising
therapeutic target for oxidative stress in ALD patients [118]. Ethanol consumption is
also known to decrease both sirtuin 1 (SIRT1) activity and expression, promoting lipoge-
nesis with inflammation [119–121]. Studies based on the improvement of the adenosine
monophosphate-activated protein kinase (AMPK)/(SIRT1) pathway in vivo and in vitro
concerning alcohol induced hepatotoxicity, revealed the upregulation of SOD and GSH
activity and decreased MDA activity [122–125]. Lee et al. in their recent survey confirmed
a crucial role of the SIRT1 pathway in alcohol exposure. They showed that melatonin
reduces oxidative stress in ALD due to the induction of SIRT1 expression. Melatonin was
found to restore SIRT1 activity in alcohol fed SIRT1-silenced mice [126].

3.3. Micro-RNA and Oxidative Stress

The levels of hepatic microRNA (miRNA) might be affected by chronic alcohol con-
sumption and miRNAs interfere with alcohol—induced oxidative stress, liver injury, in-
flammation, and the development of cancer [127–129]. Ethanol upregulates miR-214 and
indirectly suppresses cytochrome P450 oxidoreductase and glutathione reductase expres-
sion by targeting the 3′-UTR of CYP2E1 transcript [130,131]. ALD in alcoholics with recent
excessive drinking is accompanied by downregulated concentration of miR-223, the most
common miRNA within neutrophils. On the other hand, genetic deletion of the miR-223
gene enhances ethanol-induced hepatic injury, neutrophil infiltration, ROS generation, and
promotes hepatic expression of IL-6 and phagocytic oxidase [132–134]. The hepatic accumu-
lation of lipopolysaccharide (LPS) is a natural phenomenon in the course of ALD [135–137].
This bacterial antigen activates Toll Like Receptor 4 (TLR4), promoting the transcription
of Nuclear Factor kappa B (NF-κB) and the expression of miR-155 and miR-181b-3p. The
overexpression of miR-155 and miR-181b-3p causes the release of TNF together with
ROS among Kupffer’s cells and hepatic stellate cells [138–141]. Moreover, miR-291b sup-
presses Toll interacting protein (Tollip) in Kupffer’s cells, enhancing the TLR4/NF-κB
pathway [142]. MiR-155 also regulates lipid metabolism, inhibiting PPAR [143]. Under
such circumstances, the overproduction of certain proteins involved in lipid metabolism
and uptake occurs (e.g., fatty acid binding protein 4 (FABP4), acetyl-CoA-carboxylase 1
(ACC1) and low-density lipoprotein receptor (LDLR)), triggering the redox state. Of note,
miR-34a and miR-217 were proved to target SIRT1 mRNA and inhibit its protein coding in
ALD [144–147].

4. Hepatocyte, PRMT1 and Oxidative Stress

Recent surveys highlighted the potentially important role of protein arginine methyl-
transferase 1 (PRMT1) in oxidative stress related to ALD. Protein arginine methylation
belongs to post-translational modifications involved in various pathways, e.g., cell cycle
control, innate immune responses, RNA processing, apoptosis, cancer development, and ox-
idative stress. About 85% of the whole cellular arginine methylation occurs in the presence
of PRMT1. The process of methylation is catalyzed by the use of S-adenosyl methionine
(SAM) as a methyl donor; methylation involves histone and non-histone proteins. SAM
binds and inactivates the catalytic activity of CYP2E1 [148], lowering alcohol-dependent
production of superoxide in mitochondria. SAM also increases the synthesis and availabil-
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ity of glutathione, maintaining the mitochondrial respiration rate and mtDNA integrity.
Although greater concentrations of SAM have been noted in the serum of ALD patients
compared to healthy subjects, a reduced level of hepatic SAM was observed in patients
with AH, indicating that an acute inflammatory state leads to hepatic depletion of SAM. A
characteristic pattern of ALD concerns reduced ratio of SAM to S-adenosylhomocysteine
(SAH)—directly associated with higher intracellular SAH levels. SAH constitutes the
product of methionine in the hepatic transmethylation pathway whereby methyl groups
from SAM are transferred to a vast number of molecules (e.g., DNA, RNA, biogenic amines,
phospholipids) via specific methyltransferases. SAH is a potent competitive inhibitor
of most methyltransferases. Abnormal hepatic methionine metabolism is an acquired
metabolic abnormality in ALD. Of note, strategies designed to prevent SAH elevation,
e.g., betaine administration to ethanol-fed animals, also prevent alcohol-induced lipid
droplet accumulation within the liver. Refs. [149–151] Arumugam et al. revealed in their
study that increased intracellular SAH is sufficient to promote fat accumulation in hepato-
cytes, which resembles that seen after alcohol exposure [152]. Moreover, PRMT1 serves
the role of transcriptional coactivator, participating in splicing and upstream of signal
transduction [153–160]. Under physiological conditions, PRMT1 inhibits proliferation of
hepatocytes [161]. In alcohol fed mice PRMT1 loses its function and begins to prevent the
development of oxidative stress and to promote hepatocyte survival. Interestingly, PRMT1
knockout in alcohol fed mice leads to elevation of ALT, a significant increase in hepatocyte
inflammation, death, and liver fibrosis. Zhao et al. determined in their recent study that
alcohol is a factor promoting PRMT1 dephosphorylation at S297, resulting in reduced
protein methylation in livers of PRMT1 in alcohol fed mice. Phosphorylation at S297 is
responsible for PRMT1 target specificity (e.g., expression of TNFα or TRAIL, production
of asymmetric di-methyl arginine). However, the expression of oxidative stress response
genes due to PRMT1 was found to be phosphorylation independent. Thus, according
to the aforementioned study, in terms of exposure to alcohol, PRMT1 directly binds to
promoters of these genes, enhancing a recruitment of p300 acetyltransferase to SOD1 and
SOD2 promoters and preventing oxidative stress mediated death of hepatocytes. PRMT1
knockout in alcohol fed mice was followed by 40–60% reduction of the oxidative stress
response genes [162]. Therefore, PRMT1 plays the role of adaptive factor in the course
of ALD.

5. Oxidative Stress and Epigenetic Background

Direct modification of DNA is not the only possible direction of change in gene
expression due to alcohol intake. Lifestyle, combined with environmental factors, might
be involved in genetic modification in the course of redox state, as well. Epigenetic
regulation concerns DNA and histone protein modifications and changes caused by non-
coding mRNAs. DNA methylation belongs to the most common epigenetic changes,
directly influencing the expression of a gene [163,164]. Furthermore, histone proteins
might undergo acetylation and deacetylation via enzymatic modification caused by histone
deacetylases (HDACs) and histone acetyl transferase (HAT). As a result, the structure of
chromatin becomes unfolded or compacted. The redox state can inhibit the expression
of HDACs by PI3Kδ, a signaling molecule involved in various inflammatory signaling
pathways. The inhibition of PI3Kδ in patients with AH was even found to increase the
response on steroids in this group [165,166]. In addition, alcohol intake increases gene-
selective acetylation of histone H3 at lysine 9 (H3K9), levels of enzymes mediating histone
acetylation, and results in a generalized increase in DNA methylation [167,168]. These
epigenetic-derived effects of ethanol consumption directly modify inflammatory response,
through crucial pro-inflammatory cytokines, such as TNF-α, which is silenced by H3K9
methylation and activated by H3K9 acetylation [169,170].
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6. Redox State in the Liver and Potential Pharmacological Strategies

The complex role of ROS in the course of ALD gives a potential chance to create a
targeted anti-inflammatory pharmacological strategy for its treatment. The attempts to
reduce oxidative stress within mitochondria concern the use of SAM. Especially short-term
treatment of the acute mitochondrial stress observed in AH can be considered as a potential
indication for the use of SAM. A combination of SAM and prednisolone for the treatment
of severe AH showed improved response rate assessed by Lille score and a reduction
in hepatorenal syndrome [171]. However, no statistically significant difference in 28-d
mortality was noted. Similarly, long term SAM treatment in patients with ALD does not
appear to be clinically effective, with no change in overall mortality [172,173]. Uncoupling
proteins (UCPs) are known to be strongly associated with mitochondrial stress in ALD.
Overexpression of UCP2 reduced apoptosis and oxidative stress in vitro, however this issue
requires further studies [174]. N-acetylcysteine (NAC), an antioxidant therapy that derives
cysteine for glutathione synthesis, was tested in patients with AH. Initial trials did not show
a significant survival benefit [175,176]. Nevertheless, a recent study on the combination
of NAC and prednisolone, presented a reduction in infective complications and 1-month
mortality [177]. Additionally, antioxidant therapy including zinc and other trace elements
turned out to be clinically beneficial in patients with AH [178]. However, interpretation
was hampered by the use of a variety of antioxidants at differing concentrations and
durations [179]. Epigenetic background can be also perceived as a target for the treatment
of redox state. Studies concerning HDACs have not yet been done on patients with ALD
but in vitro results indicate an antioxidant effect of HDAC inhibition with upregulation of
Nrf2 expression [180].

7. Conclusions

The redox state remains a crucial pathology involved in the pathological appearance
of ALC. Nowadays we are able to capture the early beginning of this harmful cascade
in the liver. This opens up new possibilities of treatment, which might revolutionize the
management of patients with this type of liver disorder. The future of management of the
redox state seems to stay before novel therapies, focused on miRNA signaling, epigenetics,
and signaling pathways. It appears that we are able to capture oxidative stress at an
earlier and earlier phase. For this reason, the attitude toward ALC patients should be
more involved, based on up-to-date knowledge from a molecular point of view and on
epigenetic features, highlighting the individual profile of the disease in each person.
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