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Abstract

To explore the relationship between soluble ST2 (sST2) and metabolic syndrome (MetS) 
and determine whether sST2 levels can predict the presence and severity of MetS. We 
evaluated 550 consecutive subjects (58.91 ± 9.69 years, 50% male) with or without MetS 
from the Department of Vascular & Cardiology, Shanghai Jiao Tong University-Affiliated 
Ruijin Hospital. Serum sST2 concentrations were measured. The participants were 
divided into three groups according to the sST2 tertiles. Univariate and multivariable 
logistic regression models were used to evaluate the association between serum sST2 
concentrations and the presence of MetS. Serum sST2 concentrations were significantly 
higher in the MetS group than in those in the no MetS group (14.80 ± 7.01 vs 11.58 ± 6.41 
ng/mL, P < 0.01). Subjects with more MetS components showed higher levels of sST2. sST2 
was associated with the occurrence of MetS after multivariable adjustment as a continuous 
log-transformed variable (per 1 SD, odds ratio (OR): 1.42, 95% CI: 1.13–1.80, P < 0.01). 
Subgroup analysis showed that individuals with MetS have significantly higher levels of 
sST2 than those without MetS regardless of sex and age. High serum sST2 levels were 
significantly and independently associated with the presence and severity of MetS. Thus, 
sST2 levels may be a novel biomarker and clinical predictor of MetS.

Introduction

Metabolic syndrome (MetS) is a constellation of 
metabolic abnormalities comprising central obesity, 
hypertension, diabetes mellitus (DM) or hyperglycemia, 
high triglyceride (TG) levels, and low levels of high-
density lipoprotein cholesterol (HDL-C) (1). The 
prevalence rate of MetS has markedly increased 
over the past decades due to obesity resulting from 
widespread overnutrition and an inactive lifestyle. The 
International Diabetes Federation estimates that MetS 
affects one-quarter of the world’s adult population (2). 
Therefore, it has gradually become a major public health 
concern worldwide. MetS is also considered a chronic 
systemic inflammatory state and the main promoter of 

cardiovascular disease and multi-organ dysfunction (3, 
4). However, there is limited data for predicting MetS 
and evaluating its severity.

Growth stimulation expressed gene 2 protein (ST2) 
was first discovered in 1989 (5) and its only known ligand 
is IL-33 (6). Two main isoforms of ST2 were found: a 
transmembrane full-length form (ST2L) and a soluble, 
secreted form (sST2) (7). The binding of ST2L and IL33 
plays a protective role in cardiac stress (8, 9). However, 
sST2 acts as a decoy receptor of IL33 and inhibits IL33-ST2 
signaling. sST2 has been identified as a promising 
biomarker of cardiovascular disease, especially in heart 
failure (10, 11, 12, 13).
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Increasing evidence shows that MetS shares a similar 
pathophysiological process with cardiovascular disease, 
including inflammation, hypertension, atherosclerosis, and 
insulin resistance (14). Thus, it is reasonable to consider that 
sST2 levels may be able to indicate early microenvironment 
abnormalities, such as MetS, that predate the onset of 
cardiovascular disease. Therefore, the present study aimed 
to explore the diagnostic and predictive value of sST2 levels 
for the occurrence of MetS and its severity.

Materials and methods

Study design and population

This cross-sectional study evaluated 550 consecutive 
subjects from the Department of Vascular & Cardiology, 
Shanghai Jiao Tong University-Affiliated Ruijin Hospital, 
Shanghai, China. The inclusion criteria were older than 
18 years with no coronary heart disease, heart failure, 
malignant tumor and autoimmune disease. The diagnosis 
of MetS was made after enrollment.

This study was approved by the institutional review 
committee of Ruijin Hospital (Ethics Committee reference 
number: 2016-019), and was conducted in accordance 
with the principles of the Helsinki Declaration. Written 
informed consent was obtained from all the participants 
in this study.

Data collection and measures

Baseline data, including medical history, health status, 
and family history, were obtained via face-to-face 
interviews. Height, weight, and waist circumference 
were measured using standard measurements. BMI 
was calculated using weight and height (kg/m2). Blood 
pressure was measured in the left arm using a calibrated 
aneroid sphygmomanometer, with the participant in a 
seated position after at least 5 min of rest. 

Peripheral venous blood samples were collected 
and centrifuged at 1500 g at 4°C for 15 min. The serum 
obtained by centrifugation was rapidly stored at –80°C. 
Echocardiography was conducted within 1 week from 
the collection of peripheral venous blood samples. 
Fasting plasma glucose, total cholesterol, TG, HDL-C, 
low-density lipoprotein cholesterol (LDL-C), and other 
routine biochemical parameters were measured using an 
automatic analyzer. Serum sST2 was measured using the 
venous serum samples via an ELISA Kit (DST200, R&D) 
according to the manufacturer’s protocol.

Echocardiography

All subjects underwent two-dimensional transthoracic 
echocardiography. After finding the standard long axial 
section of the left ventricle, M-mode echocardiography 
was used to measure the left ventricular end systolic 
diameter, left ventricular end diastolic diameter, left 
atrial diameter (LAD), aortic dimension, interventricular 
septal thickness (IVT), and left ventricular posterior wall 
thickness (LVPWT). Simpson’s biplane method was used 
to measure left ventricular ejection fraction (LVEF). 

Definition of MetS

The most widely accepted and clinically used definitions 
of MetS were established by the World Health 
Organization, National Cholesterol Education Program 
– Third Adult Treatment Panel (NCEP-ATPIII), and 
International Diabetes Federation. These three definitions 
differ only in detail. Here, we used the definition of 
NCEP-ATPIII for MetS, and waist circumference (WC) 
was adopted as a factor that is more suitable for the 
Chinese population. Criteria of MetS were as follows 
(15): (i) Central obesity: WC ≥ 90 cm in men or ≥ 80 cm  
in women; (ii) TG ≥ 1.7 mmol/L or treatment of this 
lipid abnormality; (iii) HDL-C < 1.03 mmol/L in men or  
< 1.30 mmol/L in women; (iv) blood pressure ≥ 130/85 
mmHg or taking antihypertensive medications; and (v) 
fasting blood glucose ≥ 5.6 mmol/L, previously diagnosed 
type 2 DM, or taking antidiabetic medications including 
oral antidiabetic agents or insulin. (Criteria for type 2 DM: 
symptoms of diabetes + plasma glucose at any time ≥ 11.1 
mmol/L or fasting plasma glucose ≥ 7.0 mmol/L or oral 
glucose tolerance test 2-h ≥ 11.1 mmol/L.)

Specifically, subjects meeting three or more of the five 
criteria above were considered to have MetS while those 
meeting one or two or zero of the five criteria could be 
excluded from MetS diagnosis.

Statistical analyses

Continuous variables were presented as mean ± s.d., 
whereas categorical variables were summarized as numbers 
and percentages. Variables with a skewed distribution were 
log-transformed to make them fit a normal distribution. 
Independent Student’ s t-test, one-way ANOVA test, 
the chi-square test and linear trend test were used to 
evaluate the differences among groups, as appropriate. 
Pearson correlation analysis was used to describe the 
correlations between sST2 levels and metabolic features. 
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Subsequently, univariate and multivariable logistic 
regression models were used to evaluate the association 
between serum sST2 levels and the risk for MetS. For 
these models, we used (i) log-transformed sST2 level as 
a continuous variable analyzed per SD and (ii) tertiles 
of sST2 levels analyzed both as an ordinal variable and 
as categorical data. Subgroup analyses by age (≥60/<60 
years) and sex (male/female) were also conducted. All 
statistical tests were performed using IBM SPSS Statistics 
22.0. A two-sided P-value of < 0.05 was considered 
statistically significant. 

Results

Subject characteristics

Overall, 275 (50.0%) subjects were male. The mean 
age was 58.91 ± 9.69 years, and the mean sST2 
level was 12.88 ± 6.84 ng/mL. The baseline subject 
characteristics are shown in Table 1 by tertiles of serum 
sST2 concentrations. There were trends across tertiles 
of higher levels of BMI, WC, systolic blood pressure, 
fasting glucose, glycosylated hemoglobin (HbA1c), and 
triglyceride levels, along with lower levels of HDL. In 
addition, subjects with higher sST2 levels had higher 
concentrations of white blood count, high-sensitivity 
C-reactive protein (hsCRP), and NT-proBNP, along with 
poorer liver and renal function. Among the subjects in 
the highest and lowest tertile of sST2, 59.0 and 43.2% 
were male, respectively. The LDL-C and LVEF levels were 
not significantly different among the patients in the 
three tertiles.

sST2 levels were associated with the presence 
of MetS

sST2 concentrations were significantly higher in the MetS 
group than that in the no MetS group (14.80 ± 7.01 vs 
11.58 ± 6.41 ng/mL, P < 0.01, Fig. 1A). Subjects with 
higher MetS scores (i.e. more components of MetS) 
showed higher levels of sST2 (Fig. 1B). As shown in 
Table 2, sST2 was associated with the presence of MetS 
after multivariable adjustment as a continuous log-
transformed variable (per 1 SD, odds ratio (OR): 1.42, 95% 
CI: 1.13–1.80, P < 0.01). Analysis of the tertiles of sST2 
also showed that the adjusted risk of MetS was higher in 
subjects in the highest tertile than that in the subjects in 
the lowest tertile (OR: 2.52, 95% CI: 1.45–4.39, P < 0.01, 
Ptrend < 0.01).

Subgroup analysis by age and sex 

Subgroup analysis showed that in both men and women 
and in subjects aged <60 years and ≥60 years, MetS 
patients exhibited significantly higher levels of sST2 than 
those without MetS (Fig. 1C). Univariate and multivariable 
logistic regression analyses of the relationship between 
sST2 and MetS according to age and sex are shown in 
Table 3. After full adjustment, patients in the highest 
group of serum sST2 levels had significantly higher risk 
than those in the lowest group regardless of age and sex. 
Furthermore, as a continuous variable, sST2 retained 
significant predictive value particularly in the older group 
(adjusted OR: 1.83, 95% CI: 1.31–2.56, P < 0.01) and in 
men (adjusted OR: 1.80, 95% CI: 1.29–2.49, P < 0.01). 
This indicated that serum sST2 levels were independently 
associated with the risk for MetS in all subjects, especially 
in men and in subjects older than 60 years.

Relationship between sST2 and MetS components

We further analyzed the relationship between sST2 and 
each MetS component. Subjects with central obesity, 
hypertension, DM or hyperglycemia, hypertriglyceridemia, 
and lower HDL had significantly higher concentrations 
of serum sST2 than those without it (Fig. 2A). After 
adjustment for the full model including age, sex, BMI, 
alcohol use, smoking, and levels of creatinine, LDL-C, 
hsCRP, and NT-proBNP (model 3), the association between 
sST2 and each specific disease remained statistically 
significant (Fig. 2B and C). The ORs corresponding to a 1 
s.d. increase of log-transformed sST2 level for the presence 
of hypertension, DM, hypertriglyceridemia, and lower 
HDL were 1.71 (95% CI: 1.36–2.15, P < 0.01), 1.41 (95% 
CI: 1.15–1.73, P < 0.01), 1.27 (95% CI: 1.04–1.56, P = 0.02), 
and 1.23 (95% CI: 1.01–1.50, P = 0.04), respectively. 
Subjects in the highest level of sST2 had a significantly 
higher risk of meeting each diagnostic criterion of MetS 
than those in the lowest group, especially the blood 
pressure criteria (OR: 4.06, 95% CI: 2.39–6.92, P < 0.01).

Discussion

MetS shares a similar pathophysiological process 
with cardiovascular disease, and thus it is reasonable 
to consider that sST2 levels, as a novel biomarker of 
cardiovascular disease, may also be a biomarker of 
MetS. In this study, serum sST2 levels increased with 
an increase in the number of metabolic abnormalities.  
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Univariate and multivariable logistic regression analyses 
demonstrated that high sST2 level was an independent 
risk factor for the presence of MetS, especially in men and 
in subjects older than 60 years. Thus, serum sST2 may be 
a biomarker for MetS. To our best knowledge, this study 
is the first to provide evidence on a correlation between 
serum sST2 levels and the presence and severity of MetS in 
the Chinese population.

Several studies have demonstrated that a continuous 
low-grade chronic systemic inflammatory state is an 

important pathophysiological feature of MetS, and some 
inflammatory factors are associated with it (16). Soluble 
ST2, as an important serum biomarker, has been shown 
to be involved in some inflammation-associated diseases. 
For example, during the acute exacerbation of idiopathic 
pulmonary fibrosis with the infiltration of inflammatory 
cells in the lungs, the serum levels of sST2 significantly 
increased with the development of inflammation (17). 
Serum sST2 levels were also found to be higher in asthma, 
which is a typical inflammatory disease, and was strongly 

Table 1 Baseline characteristics of all subjected divided by serum levels of ST2.

< 8.97 ng/mL 8.97–13.70 ng/mL ≥13.70 ng/mL P value P for liner trend

Number 183 184 183
Age, years 56.74 ± 9.00 60.08 ± 8.91 59.89 ± 10.74 <0.01 <0.01
Male, sex 79 (43.2) 88 (47.8) 108 (59.0) 0.01 <0.01
BMI (kg/m2) 23.42 ± 2.95 24.28 ± 3.64 24.67 ± 3.73 <0.01 <0.01
Waist circumference (cm) 80.00 ± 9.94 82.60 ± 11.95 84.55 ± 13.20 <0.01 <0.01
Current smoking 30 (16.4) 43 (23.4) 54 (29.5) 0.01 <0.01
Alcohol use 19 (10.4) 28 (15.2) 28 (15.3) 0.29 0.17
Systolic blood pressure (mmHg) 125.25 ± 15.98 129.67 ± 18.55 134.49 ± 18.36 <0.01 <0.01
Diastolic blood pressure (mmHg) 75.31 ± 10.29 75.10 ± 11.51 76.52 ± 12.21 0.44 0.31
Family history 16 (8.7) 13 (7.1) 14 (7.7) 0.19 0.70
Medical history
 Hypertension 44 (24.0) 81 (44.0) 110 (60.1) <0.01 <0.01
 Diabetes mellitus 12 (6.6) 26 (14.1) 26 (14.2) 0.03 0.02
 Dyslipidemia 1 (0.5) 9 (4.9) 14 (7.7) <0.01 <0.01
Laboratory measurements
 WBC (×109) 5.94 ± 1.77 6.43 ± 2.01 6.61 ± 2.01 <0.01 <0.01
 Hemoglobin (g/L) 131.92 ± 15.18 131.77 ± 15.81 135.07 ± 16.74 0.08 0.06
 Platelet (×109) 191.51 ± 56.56 187.83 ± 60.94 187.62 ± 61.64 0.78 0.53
 Fasting glucose (mmol/L) 5.01 ± 0.91 5.20 ± 0.95 5.26 ± 1.10 0.04 0.02
 HbA1c (%) 5.74 ± 0.61 5.93 ± 0.79 6.11 ± 0.96 <0.01 <0.01
 ALT (IU/L) 24.15 ± 21.97 22.58 ± 15.84 27.68 ± 22.47 0.05 0.10
 Albumin (g/L) 38.71 ± 3.27 38.66 ± 3.41 38.57 ± 4.05 0.93 0.72
 Creatinine (mmol/L) 74.68 ± 17.83 77.39 ± 16.37 81.48 ± 20.51 <0.01 <0.01
 eGFRMDRD (mL/min/1.73 m2) 82.74 ± 17.66 80.48 ± 22.03 79.47 ± 21.01 0.29 0.13
 Uric acid (μmol/L) 302.45 ± 80.47 336.30 ± 93.09 355.21 ± 106.11 <0.01 <0.01
 Triglyceride (mmol/L) 1.42 ± 0.89 1.69 ± 1.10 1.81 ± 1.30 <0.01 <0.01
 Total cholesterol (mmol/L) 4.42 ± 0.88 4.39 ± 1.07 4.23 ± 1.06 0.02 0.07
 LDL-C (mmol/L) 2.61 ± 0.71 2.58 ± 0.91 2.52 ± 0.83 0.58 0.30
 HDL-C (mmol/L) 1.24 ± 0.37 1.19 ± 0.31 1.08 ± 0.30 <0.01 <0.01
 D-dimer (mg/L) 0.32 ± 0.52 0.49 ± 1.34 0.43 ± 0.69 0.17 0.23
 hsCRP (mg/L) 2.05 ± 2.22 3.95 ± 3.59 4.80 ± 3.76 <0.01 <0.01
 NTproBNP (pg/mL) 114.90 ± 162.25 165.17 ± 213.96 186.86 ± 272.67 0.01 <0.01
Echocardiography parameters
 Aortic dimension (mm) 32.51 ± 3.05 32.95 ± 3.64 33.36 ± 3.60 0.06 0.02
 LAD (mm) 36.97 ± 4.16 38.36 ± 4.38 38.82 ± 4.57 <0.01 <0.01
 LVEDD (mm) 47.40 ± 4.29 47.95 ± 4.67 48.30 ± 4.76 0.17 0.06
 LVESD (mm) 29.69 ± 3.56 30.10 ± 3.88 30.62 ± 4.24 0.07 0.02
 IVT (mm) 9.12 ± 1.28 9.41 ± 1.58 9.60 ± 1.40 0.01 <0.01
 LVPWT (mm) 8.80 ± 1.10 9.01 ± 1.36 9.23 ± 1.32 0.01 <0.01
 LVEF (%) 66.81 ± 4.80 66.44 ± 4.89 65.89 ± 5.22 0.21 0.08

Data are presented as mean ± s.d. or n (%).
ACEI, angiotensin-converting enzyme inhibitors; ALT, alanine aminotransferase; ARB, angiotensin receptor blockers; CCB, calcium channel blockers; eGFR, 
estimated glomerular filtration; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; hsCRP, high sensitivity C reactive protein; IVT, 
interventricular septal thickness; LAD, left atrial diameter; LDL-C, low-density lipoprotein cholesterol; LVEDD, left ventricular end diastolic diameter; LVEF, 
left ventricular ejection fraction; LVESD, left ventricular end systolic diameter; LVPWT, left ventricular posterior wall thickness; NTproBNP, N-terminal 
pro-brain natriuretic peptide; WBC, white blood cell.
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correlated with the severity of asthma exacerbation (18). 
However, unlike the above single-system inflammation-
associated diseases, inflammation in MetS arise from 
adipocytes, macrophages, and impaired endothelial cells 
and involves multiple systems and metabolic processes 
throughout the body (16). 

sST2 was found to be associated with the inflammatory 
process of several cells, tissues, and organs (19). In this 
study, we observed a consistent increase in sST2 and hsCRP, 
which is considered a sensitive marker of inflammation. 

Thus, we speculated that sST2 could indicate the 
inflammation level in patients with MetS, in many ways 
influencing multiple aspects. Further, we found high sST2 
levels in patients with central obesity. Monocyte-derived 
macrophages residing in adipose tissue can secrete various 
proinflammatory factors such as tumor necrosis factor-α, 
interleukin-6, and interleukin-1. Therefore, obesity itself 
is a state of inflammation, which may be reflected or 
influenced by sST2. Moreover, hypertension, DM, and 
dyslipidemia are also regarded as chronic inflammation 
processes involving multiple organs (20, 21, 22). ST2 itself 
may participate in the pathophysiological process of each 
component of MetS by affecting the inflammatory and 
immune response, thus taking part in the occurrence and 
development of MetS as well as reflecting its severity.

It is generally believed that sST2 functions through 
the IL33-ST2 axis, that is, it binds to IL33 as bait and 
blocks IL33 activation of downstream signaling pathways. 
However, whether the IL33-ST2 axis confers pro- or anti-
inflammation effects depends on the disease type. For 
example, in an ovalbumin-induced murine model of 
asthma, ST2-deficient mice developed attenuated airway 
inflammation and IL-5 production. Meanwhile, IL-33 
administration exacerbated airway inflammation in 
wild-type mice (23). In another inflammation-associated 
disease, IL-33 treatment lowered the development of 
atherosclerosis and macrophage accumulation in ApoE-/- 
mice fed with a high-fat diet. This effect can be blocked 
by sST2, thus leading to a larger atherosclerosis plaque 
(24). This characteristic may be due to the activation 
of different downstream pathways. The inflammatory 
process in MetS involves multiple organs and systems. 
Therefore, the role of sST2 in MetS may not be simply 
summarized as proinflammatory or anti-inflammatory, 
despite its relationship with disease severity. As such, 
further studies are warranted.

Each component of MetS has the potential to 
affect the endothelium and cause vascular dysfunction 
or disrupt vascular homeostasis. In turn, endothelial 

Non
-M

etS MetS
0

5

10

15

20

sS
T2

(n
g/

m
l)

***

0 1 2 3 4 5
0

5

10

15

20

MetS score

sS
T2

(n
g/

m
l)

P<0.001

Wom
en Men

Age
<6

0

Age
≥6

0
0

5

10

15

20

sS
T2

(n
g/

m
l)

Non-MetS

MetS
** *** *** ***

A B

C

Figure 1
Expression of serum soluble ST2 (sST2) levels in the different groups. (A) 
Comparison of sST2 expression between the metabolic syndrome (MetS) 
group and the no MetS group. (B) Correlation analysis between sST2 
levels and the number of MetS components. (C) sST2 expression by age 
group (<60 years and ≥60 years) and sex (male and female). *P < 0.05,  
**P < 0.01, ***P < 0.001.

Table 2 Univariate and multivariable logistic regression analysis for MetS in all subjects.

Unadjusted OR P value Adjusted OR for model 1 P value Adjusted OR for model 2 P value

Log ST2 per s.d. 1.75 (1.45–2.11) <0.01 1.67 (1.35–2.07) <0.01 1.42 (1.13–1.80) <0.01
ST2 tertiles 2.01 (1.61–2.51) <0.01 1.88 (1.47–2.42) <0.01 1.58 (1.20–2.08) <0.01
Tertile 1 1 (ref) 1 (ref) 1 (ref)
Tertile 2 2.53 (1.61–3.97) <0.01 2.23 (1.35–3.68) <0.01 1.68 (0.98–2.89) 0.06
Tertile 3 4.14 (2.63–6.49) <0.01 3.58 (2.16–5.93) <0.01 2.52 (1.45–4.39) <0.01

Model 1: adjusted for age, gender and BMI. Model 2: adjusted for age, gender, BMI, alcohol use, smoke, creatinine, LDL-C, hsCRP and NTproBNP. 
Continuous variables were entered per 1 SD.
hsCRP, high sensitivity C reactive protein; LDL-C, low-density lipoprotein cholesterol; MetS, metabolic syndrome; NTproBNP, N-terminal pro-brain 
natriuretic peptide; OR, odds ratio.
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dysfunction can aggravate MetS. Vascular dysfunction is a 
key contributor to the pathogenesis of MetS. Our research 
shows that sST2 is strongly correlated with high systolic 
blood pressure but not diastolic blood pressure, consistent 
with the findings of a previous study (25). This result 
indicates that sST2 may correlate with vascular stiffness 
and compliance. Both ST2 and IL-33 are expressed and 
act in human endothelial cells (26, 27). As such, sST2,  
which is derived from ST2 and interacts with IL-33, may 
also play an important role in vascular biology. 

Furthermore, the excessive production of reactive 
oxygen species (ROS) is another reason for endothelial 
dysfunction and metabolic disorders in MetS (28, 29). 
Fat cell and macrophage accumulation can increase 
ROS production and fatty acid concentration during 
hyperlipidemia. This in turn inhibits the efficiency of 
oxidative phosphorylation, and the production of ROS 
also increases sharply. Excessive ROS can oxidize various 
lipid components, such as oxidized LDL, which plays 
an important role in endothelial dysfunction and the 
development of MetS. Studies have shown that ROS can 
activate the IL33/ST2 axis and promote the release of 
IL33, which can in turn inhibit ROS production (8, 30). 

Therefore, the ST2-IL33 axis plays a protective role in 
endothelial dysfunction caused by oxidative stress, while 
sST2 functions in the opposite direction.

Abnormal glucose and lipid metabolism is an 
important characteristic of MetS. Studies have shown 
that sST2 is associated with glucose and lipid metabolism. 
In type 2 diabetes patients with normal blood glucose 
tolerance, circulating sST2 levels were significantly higher 
and were significantly associated with fasting blood 
glucose and HbA1c (31). Bariatric surgery in severely 
obese diabetes patients improves metabolic status, and 
circulating sST2 levels decrease with improvements in 
liver function and lipid metabolism markers (32). In line 
with these findings, we found that sST2 is correlated 
with DM and dyslipidemia. The liver is the main organ 
for glucolipid metabolism, and we also observed worse 
liver function in patients with the highest sST2 tertile.  
However, the role of the IL33-ST2 pathway in liver 
metabolism remains controversial (33, 34), and the 
involvement of sST2 in glucose and lipid metabolism 
abnormalities needs to be further studied. 

On the other hand, our present study demonstrated 
that sST2 levels were associated with cardiac hypertrophy, 

Table 3 Univariate and multivariable logistic regression analysis for MetS in subjected divided by age and gender.

Unadjusted OR P value Adjusted OR for model 1 P value Adjusted OR for model 2 P value

Age < 60 years
 Log ST2 per s.d. 1.74 (1.35–2.25) <0.01 1.62 (1.21–2.17) <0.01 1.28 (0.94–1.76) 0.12
 ST2 tertiles 2.13 (1.57–2.90) <0.01 1.99 (1.40–2.82) <0.01 1.52 (1.04–2.24) 0.03
 Tertile 1 1 (ref) 1 (ref) 1 (ref)
 Tertile 2 3.12 (1.66–5.84) <0.01 2.86 (1.40–5.83) <0.01 1.96 (0.90–4.23) 0.09
 Tertile 3 4.59 (2.46–8.54) <0.01 3.93 (1.94–7.98) <0.01 2.36 (1.09–5.12) 0.03
Age ≥ 60 years
 Log ST2 per s.d. 1.75 (1.32–2.32) <0.01 1.83 (1.32–2.54) <0.01 1.83 (1.31–2.56) <0.01
 Tertiles 1.87 (1.35–2.59) <0.01 1.80 (1.25–2.60) <0.01 1.87 (1.28–2.75) <0.01
 Tertile 1 1 (ref) 1 (ref) 1 (ref)
 Tertile 2 1.99 (1.02–3.87) 0.05 1.70 (0.82–3.52) 0.15 1.67 (0.79–3.54) 0.18
 Tertile 3 3.55 (1.82–6.91) <0.01 3.22 (1.54–6.74) <0.01 3.45 (1.60–7.44) <0.01
Women
 Log ST2 per s.d. 1.64 (1.26–2.13) <0.01 1.58 (1.19–2.10) <0.01 1.25 (0.92–1.70) 0.16
 Tertiles 1.90 (1.39–2.61) 0.01 1.86 (1.31–2.64) <0.01 1.45 (1.00–2.12) 0.05
 Tertile 1 1 (ref) 1 (ref) 1 (ref)
 Tertile 2 3.58 (1.93–6.63) <0.01 3.06 (1.57–5.96) <0.01 2.20 (1.08–4.48) 0.03
 Tertile 3 3.63 (1.89–6.97) <0.01 3.41 (1.68–6.93) <0.01 2.12 (1.00–4.59) 0.05
Men
 Log ST2 per s.d. 1.86 (1.41–2.45) <0.01 1.87 (1.35–2.58) <0.01 1.80 (1.29–2.49) <0.01
 Tertiles 2.12 (1.54–2.91) <0.01 1.98 (1.36–2.87) <0.01 1.91 (1.31–2.78) <0.01
 Tertile 1 1 (ref) 1 (ref) 1 (ref)
 Tertile 2 1.69 (0.87–3.29) 0.13 1.69 (0.77–3.73) 0.19 1.46 (0.66–3.24) 0.35
 Tertile 3 4.29 (2.27–8.11) <0.01 4.08 (1.90–8.77) <0.01 3.49 (1.63–7.44) <0.01

Model 1: adjusted for age, gender and BMI. Model 2: adjusted for age, gender, BMI, alcohol use, smoke, creatinine, LDL-C, hsCRP and NTproBNP. 
Continuous variables were entered per 1 s.d.
 hsCRP, high sensitivity C reactive protein; LDL-C, low-density lipoprotein cholesterol; MetS, metabolic syndrome; NTproBNP, N-terminal pro-brain 
natriuretic peptide; OR, odds ratio.
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as indicated by the relationship of sST2 with LAD, IVT 
and LVPWT, which is in accordance with another study 
of patients with MetS (35). However, cardiac hypertrophy 
may only be a secondary outcome of hypertension and 
inflammation, so evidence for a direct link between sST2 
and cardiac hypertrophy is lacking.

Limitations

This study has some limitations. First, it is a small-
scale and single-center study. Therefore, we could not 
completely avoid the influence of confounding factors on 
our findings. Second, we did not detect the serum level 
of IL-33, and thus it is unclear whether sST2 functions 
through IL33. Third, because of the cross-sectional design, 
we cannot determine the causal relationship between MetS 
and sST2, thus needing further investigation, especially 
basic experiments. Moreover, studies with a larger sample 
size are needed to validate the diagnostic value of sST2 
levels in MetS.

Conclusion

The present study found that high serum sST2 levels 
were significantly and independently associated with the 
presence and severity of MetS. Subjects with more MetS 
components showed higher levels of sST2. Thus, sST2 
levels may be a novel biomarker of MetS. 
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Figure 2
Relationship between soluble ST2 (sST2) and the components of metabolic syndrome (MetS). (A) Serum sST2 levels were compared between patients 
grouped by individual MetS components. (B) Full model Logistic regression for log-transformed sST2 and each component of MetS. (C) Full model logistic 
regression for sST2 tertiles and each component of MetS. *P < 0.05, **P < 0.01, ***P < 0.001 (age, sex, BMI, alcohol use, smoking, and levels of creatinine, 
LDL-C, hsCRP, and NT-proBNP were adjusted).
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