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Modeling realistic human decision-making is an important feature of good policy design

processes. The use of an agent-based modeling framework allows for quantitative

human decision-models that assume fully rational agents. This research introduces a

dynamic human decision-making sub-model. The parameterisation of human memory

and “rationality” in a decision-making model represents an important extension of

decision-making in ABMs. A data driven model of herd movement within a dynamic

natural environment is the context for evaluating the cognitive decision-making model.

The natural and human environments are linked via memory and rationality that

affect herdsmen decision-making to vaccinate cattle using a once-for-life vaccine (Rift

Valley fever) and an annual booster vaccine (Contagious Bovine Pleuropneumonia).

The simulation model uses environmental data from Samburu county, Kenya from

2004 to 2015. The cognitive parameters of memory and “rationality” are shown to

successfully differentiate between vaccination decisions that are characterized by annual

and once-for-life choices. The preliminary specifications and findings from the dynamic

cognition–pastoralist agent-based model (PastoralScape) indicate that the model offers

much to livestock vaccination modeling among small-scale herders.

Keywords: cognition, pastoralist, decision-making, vaccine, agent-base model, Kenya

INTRODUCTION

The economic sustainability of traditional pastoralist modes of livestock management is threatened
by environmental, political and cultural forces across East Africa (1, 2). The increased frequency of
droughts in East Africa over the past 20-years has sorely tested the resilience of livestock dependent
communities in the region (3, 4). The need to model the complex interaction between natural and
human system, as they affect livestock, is a research topic deserving further attention (5). The role
of human decision-making as it affects livestock health adds to the complexity of such systems.

The advent of behavioral economics, and the acknowledgment within economics that human
decision-making is more heterogeneous than previously assumed, leads one to question the oft
assumed “rational agent” hypothesis. A review of decision-making paradigms used in animal
health demonstrates the wide use of qualitative and quantitative decision frameworks (6). Within
a quantitative framework, Prospect Theory is a common means of identifying heterogeneous
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methods of decision-making (7, 8). The use of short-term
measures of human cognition is another (Choi and Iles,
under review). Empirical investigation of the role of short-term
cognitive capacity on human decision-making is based on the
Mullainathan and Shafir’s (9) “scarcity thesis”. This thesis argues
that financial stress affects human decision-making via changes
in short-term cognition [(9, 10); (Iles et al., under review)].

Modeling realistic human decision-making is no less
important with respect to animal health related decisions
(6). However, the allure and utility of assuming fully rational
agents remains strong. Constrained maximization/minimization
approaches are limited in their ability to approximate the
heterogeneity in human decision-making, necessary for
good public policy modeling (11, 12). Whether simulation,
Randomized Control Trials, or hypothetical scenarios are used
to generate data, the fully rational agent is frequently assumed
(13–16). This assumption of optimal decision-making is often
demonstrated to be often unrealistic in the case of livestock
management among the global poor (17).

Agent or individual-based modeling (ABM) provides a
tractable means of analyzing the effects of interconnected
dynamics of human and natural environments on household
decision-making and resource allocation. Such a modeling
framework allows for quantitative human decision-models
that do not assume fully rational agents. Existing ABMs
concerned with the dynamic environments of pastoralists in
East Africa are typically concerned with tribal conflict (18, 19),
decision-making (20), humanitarian crises (21), risk-sharing
and cooperation (22–24), and climate change adaptation (25).
While the present research also uses an ABM framework, its
primary contribution is the introduction of a dynamic human
decision-making sub-model. The parameterization of human
memory and “rationality” in a decision-making model represents
an important extension of decision-making in ABMs. The
preliminary PastoralScape model presented here also provides
insight into possible policy relevant extensions.

The current PastoralScape ABM documents a data driven
model of herdmovement within a dynamic natural environment.
The natural and human environments are linked via memory
and rationality that affect herdsmen decision-making to
vaccinate cattle for Rift Valley Fever (RVF) and Contagious
Bovine Pleuropneumonia (CBPP). The simulation model uses
environmental data from Samburu county, Kenya, from 2004 to
2015. The difference in the frequency of vaccinations for each
disease provides a means for assessing the effects of memory
and “rationality” on one-time and repeated decision-making.
Toward this end, the ABM introduces a Random Field Ising
Model (RFIM) to estimate the binary choice to vaccinate. Such a
decision is modeled in the context of the uncertainty of disease
transmission dynamics of each disease.

MATERIALS AND METHODS

This section is organized using the Overview, Design Concepts
and Details (ODD) structure for reporting ABMs (26). This
reporting structure aims to provide a consistent format in

reporting the objectives, structure and data used. In light of the
need to more adequately capture the details of human decision-
making, a revision to this protocol was proposed and referred
to as ODD+D (27). The addition of the “+D” represents the
addition of human decision making within the ABM. As a means
of reporting the use of a RFIM in our model, where feasible, we
follow the OOD+D protocol.

Overview
Purpose
The current preliminary PastoralScape simulation model aims
to assess the medium-run dynamics of livestock vaccine
decisions for two livestock diseases (RVF and CBPP).
Pastoralist heads-of-households in Samburu county, Kenya,
are assumed to have varying levels of cognitive ability. The
medium-run is defined as an eleven-year period. For the
purposes of clearly communicating the innovative human
decision making sub-model, along with its interaction with
the other sub-models, the livelihoods of human agents
are simplified. All heads-of-households solely practice
pastoralist cattle raising, cattle are not sold or traded, and
there is no income within the model. Heads-of-households
only make decisions related to livestock vaccination.
Herdsmen only makes decisions about the movement of
herds. Future development of the PastoralScape model will
include a local economy and more diversified streams of
household income.

The preliminary model assumes that all heads-of-households
are homogenous. As a result, their utility functions, that drive
their vaccine decision making, are fixed across agents. This
assumption is made in order to clearly communicate the decision
making sub-model and document the basic interactions between
sub-models.While the PastoralScapemodel will ultimately enable
the modeling of heterogeneous agents, the current version of the
model is not designed to do so. Nevertheless, the innovativeness
of the human decision making sub-model in the ABM readily
allows for heterogeneity.

The use of RVF and CBPP as examples for modeling human
vaccination decision-making provides two separate decisions
that involve contrasting frequency and assumed levels of
disease risk. Uncertainty is an important feature that drives
decision-making (7, 8). The RVF vaccine’s efficacy is once-
for-life, administered to protect against sporadic outbreaks
reported across Kenya. CBPP requires an annual booster with
efficacy of approximately 6-months. The differing patterns of
decision-making for these vaccines are assumed to influence
vaccination outcomes. Outbreaks of RVF are closely linked to
precipitation and mosquito populations (28–30). As a result,
expectation of RVF outbreaks may follow a medium and
long-run cyclical pattern. On the other hand, outbreaks of
CBPP are less clearly predicted. Therefore, the assumed levels
of uncertainty associated with disease outbreaks also differ
between the two livestock diseases. No recent outbreaks of
RVF in Samburu county have been recorded. The county
maintains surveillance of CBPP despite the absence of a recent
outbreak (31).
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Entities, State Variables, and Scales
Three types of agents are modeled. These are: (a) heads-of-
household, (b) cattle, and (c) herdsman. It is assumed that
all heads-of-households engage in small-scale pastoralist cattle
raising. There are no sedentary crop farmers or cattle rangers in
the model. In keeping with the cultural practices of pastoralists in
Samburu county, Kenya, each head-of-household has a herdsman
to manage cattle. Culturally, these herdsmen are young men.
Each agent type is defined by a set of attributes. Heads-of-
households are defined according to the parameters of the RFIM
and only make decisions as to whether to vaccinate livestock.
These parameters include: memory (µ), degree of rationality
(β), latent willingness to make a vaccination decision (fi), access
to public information [F(t)], and a social network (see Design
Concept section for further details of the RFIM). Cattle are
defined by: (i) sex, (ii) age, (iii) health, (iv) SIRV disease state,
and (v) location. Cattle are modeled as individual agents, not
as a single herd. Herdsmen are defined by (i) their co-location
with livestock and their movement, and (ii) their knowledge of
foraging conditions within a limited radius. Cattle and herdsmen
are able to move spatially, while heads-of-households are fixed
and uniformly distributed between five village locations.

The time-step used to progress the changes in the simulation
environment, movement of livestock, and human decisions is
7 days. The time-step of the SIRV sub-model is scaled from
daily. Environmental data (including Normalized Difference
Vegetation Index (NDVI), Foraging Condition Index and
precipitation measurement) are assumed constant during
each month.

Design Concepts
Basic Principles
The coupling of natural and human environments in this
ABM provides an important set of relationships that drive
assumed changes in financial and mental stress of pastoralist
households. The parameterisation of head-of-householdmemory
and “rationality” provides flexibility to model two important
aspects of cognitive ability (32–34). Human cognitive ability
or capacity are believed to change over time due to stress,
anxiety and the perception of these (10, 35, 36). According
to Mullainathan and Shafir’s “scarcity thesis,” perceptions of
household financial stress act as a tax on cognitive capacity [(9);
(Iles et al., under review)]. Therefore, the parameterisation of two
aspects of human cognition allows for more realistic modeling
of the cognitive dynamics in discrete decision-making. Although
the calibration of empirical data capturing short-term changes in
cognitive capacity (i.e., fluid intelligence and working memory
capacity) is not included in this preliminary PastoralScapemodel
(see 38 for details of empirical data following the 2016–2017
drought in Samburu), future work will do so. The flexibility of
the proposed human decision making sub-model motivates its
introduction to ABMs in this paper.

The PastoralScape model is depicted in Figure 1. The sub-
components of the current model are titled in blue. The solid
connecting lines reflect the direction of interaction between
model sub-components captured in PastoralScape. Three sub-
models are numbered (1, 3). Foraging Condition is calculated

FIGURE 1 | Overview of preliminary PastoralScape sub-models.

independently of PastoralScape. The decision to vaccine livestock
against RVF and CBPP is determined by the cognitive parameters
µ (memory) and β (rationality). The dotted lines depict proposed
extensions to the PastoralScape model connecting livestock and
household socio-economic variables to dynamic changes to µ

and β (Choi and Iles, under review; Iles et al., under review).
The rest of the paper focuses on sub-components and the
solid line relationships. A more detailed explanation of the
interaction between sub-models is given when explaining the
respective sub-models.

Adaptation and Learning
Head-of-household decision-making is modeled as a nested
process and one that follows an existing specification (37).
Decision-making is based on an Ising model, which incorporates
individual willingness to act (fi), public information (F) , and
network pressure (Jij), to determine decision to sell (S: +1,
−1) cattle.

Ui (t) = fi + F (t) +
∑

jǫϒi
JijSj (t − 1), (1)

where Ui is perceived incentive to act, ϒi is the neighborhood
of agent i, and t is time (37). Agents act (+1, −1) when Ui

is greater than some unobserved threshold. Ising models are
frequently used in economics to model the effect of network
pressure on decision-making (38–40). In this paper, we assume
for simplicity that Ui is identical for every head-of-household
and fixed through time. Individual willingness to act (fi), public
information [F(t)], and network pressure (Jij) play no role
in influencing the results of this paper. The values of these
parameters are fixed across all runs and do not affect results.

By incorporating the Ising specification from equation 1 into
a logit structure (see equation 2), the parameters of µ and β

are created to tune resulting probabilities of a binary choice.
The parameter µ ranges between zero and one and captures the
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degree of memory of the immediate past decision. For a head-
of-household in the model, a degree of memory (µ) equal to
one would imply that they remember exactly if and when they
last administered an RVF or CBPP vaccine. A degree of memory
equal to zero would imply that decision makers have no memory
of the immediate past decision. In this scenario each decision
is independent of the previous. The β parameter controls the
amount of irrationality in the decision process (Type 2 :β →

∞ deterministic, and Type 1 :β → 0 random process). The
degree of determinism used by the human agent is referred to as
‘rationality’. This language follows that used by Bouchaud (37).

P (Si = +1;Ui) =
µ

1+ e−βUi
. (2)

In the current preliminary model, the cognition parameters are
held constant across the population of heads-of-households. That
is, in this paper, we do not model heterogeneity of cognition
parameters among the different heads-of-households. We
assume homogenous parameters across all heads-of-households.
However, this may not always be the case. Heterogeneity in
the setting of µ and β is possible in future applications of the
model. As individuals’ perception of their current and future
financial status differ by income and livestock loss (in the case of
pastoralists), heterogeneous and dynamic cognition parameters
could be incorporated in the future (Choi and Iles, under review;
Iles et al., under review).

Details
Input Data
The simulated “world” uses environmental data from south-
western Samburu county, Kenya, from 2004 to 2015 (Figure 2).
The “world” is constructed as a rectangular grid (35 × 55 km),
which comprises 1 by 1 km sized cells. Village locations are
fixed and align with the actual locations of surveyed villages
(Figure 3). Agents reside either permanently (villages and heads-
of-households) or temporarily (herdsmen and herds) within a
given cell. When located within a cell agents have access to
all resources co-located in the cell (i.e., other human agents
and forage). It is assumed that when more than one herd
and herdsman are co-located on a given cell they interact.
Overlaying this rectangular “world” is a fixed social network
of relationships between heads-of-households. All heads-of-
households are linked to each other. For the purposes of this
preliminary PastoralScape model, the importance of relationship
weighting is equal across the social network. Due to this
assumed social network weighting, the extent of the social
network (either global or village based) has marginal effect on
vaccination decisions.

The time period (2004–2015) coincided with three distinct
droughts. The 2010–2011 and 2015–2016 droughts affectedmuch
of East Africa (3). A more localized drought in 2005–2006
affected Kenya (41). Figure 2 locates the 35 km by 55 km area
from which NDVI, FCI and precipitation data are drawn. This
area of Samburu county is classified as semi-arid. The Samburu
pastoralists are traditionally semi-nomadic, moving their cattle in
dry seasons or drought to find better forage (42). The NDVI and
precipitation data is from Google Developers (43, 44). Aggregate

FIGURE 2 | Simulated world reflecting the natural environment of

Samburu county.

FCI data is used from the PLEWS model (45). The FCI data is
scaled by the 1 km by 1 km grid NDVI values. FCI is used to
reflect available livestock forage as it is believed to provide a more
accurate measure than NDVI.

Household survey data from residents of five villages depicted
in Figure 3 inform the selection of average herd size per
household. This survey also contains repeated measures of short-
term cognition. Three rounds of data were collected from each
village between October 2017 and September 2018 (46). This
period coincided with the end of the 2015–2016 drought that
gripped much of East Africa.

Submodels
A disease transmission sub-model [see sub-model (1) in
Figure 1] uses a basic Susceptible, Infected, Recovered,
Vaccinated (SIRV) structure. RVF and CBPP each have a
separate SIRV sub-model. The transmission probabilities
estimated in two papers are used to inform the selection of
sub-model parameters (47, 48). Figure 4 outlines the structure
of the disease sub-model, while Table 1 details the transition
probabilities used for each disease. The use of Markov disease
transmission models is common in ABMs (21). The V to S
transition corresponding to a vaccine wearing off is modeled
based on the time-since-vaccination transition probability
dependent on the time spent in the vaccinated state. A herds’
disease susceptibility is dependent on a collocated animal having
the disease. The mixing of cattle affects herds’ susceptibility
(transition from S to I). All cattle within a village are located on
the same cell. Once herds move away from their home village
their susceptibility is dependent on collocating on a cell with
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FIGURE 3 | (A) Mean NDVI of south-western Samburu county (location of sample villages denoted by “X”), (B) major road network connecting sample villages Kisima

(south) to Poro (north), through Maralal.

FIGURE 4 | SIRV epidemiological transmission model.

TABLE 1 | Markov transition probabilities.

RVF CBPP

Prob_si 0.14 0.024

Prob_ir 0.0001 0.0045

Prob_id 0.3 0.009

Prob_rs 0.0 0.0

Prob_vs 0.0 0.00091

s, susceptible; i, infected; r, recovered; d, death; v, vaccinated.

other herds. Therefore, herds’ location, relative to other herds,
within the grid space affect the likelihood of disease transmission.
This results in the S to I transition to turn on and off, subject
to the collocation of herds. Livestock susceptibility to RVF and
CBPP does not account for the age or health profile of animals.

In addition to the risk of dying from RVF or CBPP, cattle
may also die of old age or starvation. The non-disease related
health of cattle is a separate sub-model [see sub-model (2) in
Figure 1]. Non-disease health is measured along a zero to one
continuum with zero representing death and one perfect health.
Livestock require 0.1 units of feed per day. Available forage is
calculated as the ratio of current available FCI relative to the
historical average for the same place. When the ratio is one or
greater, cattle are guaranteed to have food requirements met.
For values less than one, cattle receive less than their required
food, and thus livestock health degrades by 0.0175 per week.
Symmetrically, if cattle receive more than their required food,

their health improves by 0.0175 per week. Changes in livestock
nutritional in-take is assumed uniform across a single herd. The
age, gender, and health of cattle effects fertility. The occurrence of
droughts during the timespan of the model serves two purposes.
First, they help to diversify the causes of livestock death in the
model to provide a sharper contrast with disease related deaths.
Second, future versions of PastoralScapewill use the experience of
droughts to act as a stress on cognitive capacity. The experience of
such stress will provide a heterogeneous cognitive shock to heads-
of-households.

Herdmovement [see sub-model (3) in Figure 1] is determined
by herdsmen who have a 20-km radius of knowledge about
surrounding foraging condition and long-term water availability.
Herdsmen decide to move their cattle to a neighboring cell when
the foraging condition of their village cell falls below the long-
term average. Herdsmen continue tomove as long as neighboring
cells have higher FCI measures. After which time they return to
their home village. The immediate effect of herds moving away
from their home village is improved nutritional health. However,
depending on the severity of a drought, herd movement within
the grid-space may not continue to protect a herds’ health. Each
head of household manages 10 herdsmen, and each herdsmen
has a herd of 20 cattle. Thus, each head of household is assumed
to own 200 cattle. We simulate ten heads-of-households, for
a total of 2,000 head of cattle simulated. The assumption that
herdsmen have knowledge of surrounding foraging conditions
is also reflected in the independent HerderLand ABM developed
by Kennedy et al. (49). In the PastoralScape model the transition
probability of moving from Susceptible to Infected is effective
only when herds are collocated on the same cell. It is assumed
that disease mixes completely through a single herd if one of the
animals contracts the disease.

RESULTS

The livestock health sub-model captures the expected effects of
the 2006, 2010–2011, and 2015 droughts on livestock health.
Figure 5 plots the weekly aggregate measure of livestock health
between 2004 and 2015. Two large drops in livestock health
are observed in 2010 (approximately week 310) and 2012
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FIGURE 5 | Changes in Livestock health per week over 11.5 years.

TABLE 2 | Causes of livestock death resulting under different assumed values for

parameter beta (rationality).

Cause of Livestock Death

beta Old age Starvation RVF Sum

RVF + CBPP

CBPP Total

nill 1,428 9 635 1017 382 2,454

0.0 1,703 16 513 744 231 2,463

0.1 1,737 16 501 692 191 2,445

0.2 1,784 16 493 628 135 2,428

0.5 1,818 17 480 581 101 2,416

1.0 1,824 17 481 581 100 2,422

2.5 1,825 17 480 579 99 2,422

5.0 1,824 17 480 579 99 2,421

(approximately week 410). Smaller declines in livestock health
are recorded in 2006 (approximately week 110) and in 2015
(approximately week 0).

The effect of synthetic uniform changes (across separate
simulation runs, not through time within a given run) in the
assumed rationality (β parameter) of heads-of-households on
livestock deaths due to RVF and CBPP are recorded in Table 2.
Deaths due to the combined effects of RVF and CBPP diminish
in absolute and relative terms as β (rationality) increases. As β

increases from 0.0 (random) to 0.5 (more rational) the combined
total of livestock disease deaths decreases from 744 to 581 out
of ∼2,430 head of cattle that die during the simulation. Results
also remind us, though, that a trade-off exists between deaths by
disease and old age. An increase in rationality reduces deaths due
to disease, but also increases deaths due to old age.

Across a select range of µ (memory) and β (rationality)
parameter combinations, a stable number of cattle is achieved.
This stable level is achieved by altering the memory and
rationality parameters, which results in changes to the number
of livestock vaccinated for RVF and CBPP. Figure 6 presents
the number of live cattle averaged over 50 simulation runs for

each combination of µ and β . Each row of the matrix represents
results for µ values 0.7, 0.8, 0.9, and 1. Each column represents
results for β values 0, 0.5, and 1. The decline in the number of
live cattle in the model declines over time. However, the rate
of decline is more gradual as µ (memory) and β (rationality)
parameter values increase. In Figures 6E,F,H,I,K,L the rate of
decline appears most gradual. The parameter combinations of
these sub-plots are β is ≥0.5 and µ is ≥0.8.

Figure 7 presents the number of RVF and CBPP vaccination
doses given across all cattle owned by the heads-of-households
assume various combinations of µ and β parameter values.
Two distinct patterns are observed. First, across low levels of
µ (memory) the number of CBPP vaccinations outnumber
those for RVF for individual heads-of-households. This hints
at a potential difference in the role of memory for vaccination
decisions related to RVF (a cyclical, more predictable disease
requiring once-a-lifetime vaccine) vs. CBPP (a less predictable
disease requiring booster vaccines). In Figures 7B,C (where β

= 0.5 and µ = 0.7, and β = 1.0 and µ = 0.7) the number of
vaccination decisions for both RVF and CBPP declines over time.
Second, the sum of the number of RVF and CBPP vaccinations is
similar across the majority of parameter combinations. At low
levels of rationality (β), irrespective of the level of memory, the
proportion of vaccination decisions is<50%. Only once β is≥0.5
and µ is ≥0.8 does this proportion pass 50%. We discuss these
two results in more detail below.

DISCUSSION

The sensitivity analysis of the µ and β parameters enable
a comparison across decision maker typologies. The graphs
Figures 6C,J,H in represent decision makers with different
combination of µ (memory) and β (rationality). Across the
range of µ and β values graphs Figures 6C,J have parameter
combinations at opposite extremes. Graph Figure 6H represents
moderate levels of memory (µ = 0.9) and rationality (β =

0.5). This parameter combination may be not dissimilar to a
person with “standard” levels of memory and rationality—strong
but not perfect. At these strong, but not perfect, parameter
values the number of cattle in the model is one of the most
stable, after 350 weeks. The corresponding plot in Figure 7H

(graph) has positive vaccine decisions for both CBPP and RVF
at 80 percent or greater. The scenario with decision-makers with
perfect memory of the past decision (µ = 1), but low rationality
(β = 0) the graph Figure 6J in has the number of cattle in
the model rapidly declining after 350 weeks. The corresponding
graph in Figure 7J (graph) has positive vaccine choices at ∼50
percent for both CBPP and RVF. For the opposite parameter
mix of perfect rationality (β = 1) and relatively weak memory
(µ = 0.7), graph c in Figure 6, the decline in the number of
cattle alive in the model appears to decrease at an equally rapid
rate after 350 weeks. Under this parameter scenario, graph of
Figure 7F, the number of vaccination decisions start at 60% and
then progressively decline to∼40%.

The lower efficacy of the CBPP vaccine, relative to the once-
for-life RVF vaccine, and the need to decide annually whether to
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FIGURE 6 | Total herd population over time as µ and β parameters change (50 seeds used per parameter combination).

vaccinate cattle against CBPP increases the effect of changes in
the µ and β parameters. Increasing β (rationality) values from
0.0 to 0.5 generated a 57 percent decrease in CBPP related cattle
deaths, compared to a 6 percent decrease for RVF (Table 2).
Increasing µ (memory) from 0.7 to 0.9 had a disproportionate
positive effect on CBPP vaccine up-take compared to RVF
(Figure 7). The relative lower effect of µ and β on RVF vaccine
up-take is intuitive. While the risk of RVF is periodic (strongly
associated with high rainfall and mosquito vectors), the life-time
immunity given by the vaccine makes the need for heads-of-
households to use “past experience” or memory of the most
recent decision less important. Although the spread of both
diseases are uncertain, RVF risk is periodically more certain
following the onset of heavy rains generated by El Nino/Southern
Oscillation weather pattern (30). If one believes that cattle will
be exposed to high risk of RVF during the animal’s life, then
vaccinating early in the animal’s life (whether or not the present
risk of RVF is great) is sensible. The same cannot be applied to

the annual booster for CBPP. The differences in uncertainty of
disease risk for RVF and CBPP, as an explanation for the differing
effects of µ and β , is further strengthened in light of the fact
that no outbreaks of RVF or CBPP have recently been recorded
in Samburu.

The PastoralScape ABM provides a realistic simulation of
the environmental conditions of south-western Samburu by
integrating historical measurements of the environment to
drive mathematical models. This modeling realism of the
natural environment provides a foundation to model livestock
nutritional health, and herd mixing though common grazing
of cattle within villages and herd movements. While the ABM
presented captures “high-level” environmental change, it does so
in a manner that motivates secondary dynamics of cattle health.
Declines in available forage in and around villages prompts
herdsmen to move cattle to protect against further livestock
health declines. While model tuning and extended design is
required to better capture the interactions between livestock
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FIGURE 7 | Ratio of RVF and CBPP vaccination decisions for β and µ parameter combinations (50 seeds used per parameter combination).

non-disease health, herd movement and herd management, the
current PastoralScape model provides a sound basis to identify
the utility of using a RFIM to represent individual decision-
making dynamics.

The PastoralScape model offers a platform to better
understanding the relationship between natural systems
and human decision making. Disease transmission is one such
natural system. The results of the preliminary PastoralScape
ABM highlight the effect of two different cognitive measures
on vaccines with contrasting booster requirements. The effect
of altering only β (rationality) or both µ (memory) and β

(rationality) on the susceptibility of cattle to RVF and CBPP is
meaningful. Modeling the effect of dynamic cognitive capacity,
whether uniform or non-uniform across a population, on a
range of decision contexts is supported by detailed experimental
and non-experimental findings [(Choi and Iles, under review);

(36)]. The incorporation of an RFIM for decision making
within an ABM, as demonstrated by the PastoralScape model,
provides a clear avenue to extend livestock disease modeling
(6). Extending the PastoralScape model to include household
income will allow for simulations of the effect of droughts on
pastoralists’ decision-making, including preventative livestock
health measures.

The use of the RFIM, as specified by Bouchaud (37),
in the current preliminary PastoralScape ABM provides a
viable response to the need to more realistically model the
temporal dynamics of binary decision making. By considering
the short-run dynamics of changes in memory and rationality,
dynamic decision making may be incorporated into ABMs.
While such short-run changes are not currently implemented,
the authors plan to do so in future work. The constructs of
working memory capacity and fluid intelligence are measures
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that relate to β (fluid intelligence) and µ (working memory
capacity). Working memory capacity measures the ability to
recall salient information in the face of distractions (32, 50).
Fluid intelligence measures one’s ability to apply abstract
reasoning (51). Dynamic changes in cognitive capacity due
to stress is in keeping with the Mullainathan and Shafir’s
“scarcity thesis” (9).

Analyzing only µ and β (as two out of five RFIM parameters)
for their effect on the probability of vaccine up-take and cattle
mortality is deemed most manageable for such a preliminary
model. In addition, the assumption of homogeneity of parameter
levels aids the communication of the preliminary PastoralScape
model. Consideration of the effects of the other three parameters
(willingness to act, public information, and social network
pressure) on livestock vaccine decision making is planned.
The rapidly increasing combination of parameter combinations
makes this difficult (26 combinations of five continuous
parameters). The parameterµ (memory) and β (rationality) were
selected first due to their relevance to the literature concerning
individuals’ internal barriers to experiencing poverty alleviation.
The scarcity and aspiration failure these are two prominent
examples (10, 52). Analysis of the effects of fluid intelligence
(proxy for rationality) and working memory capacity (proxy
for memory) among the Samburu shows that households in
the lowest income quartile (ultra-poor households) have distinct
effect on the likelihood of tick treatment and CBPP vaccine
choice (Choi and Iles, under review).

The present research describes preliminary work
in developing a fully coupled natural and human
simulation that models livestock vaccine choice, herd

management, and resulting causes of death. In addition,
the model presented here provides a feasible alternate

to the more common but limited assumption of a fully
rational agent.
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