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Exosomes are nanosized “off-the-shelf” lipid vesicles released by almost all cell types and
play a significant role in cell–cell communication. Exosomes have already been proven to
carry cell-specific cargos of proteins, lipids, miRNA, and noncoding RNA (ribonucleic acid).
These vesicles can be selectively taken up by the neighboring cell and can regulate cellular
functions. Herein, we have discussed three different roles of exosomes in neuroscience.
First, we have discussed how exosomes play the role of a pathogenic agent as a part of
cell–cell communication and transmit pathogens such as amyloid-beta (Aβ), further helping
in the propagation of neurodegenerative and other neurological diseases. In the next
section, the review talks about the role of exosomes in biomarker discovery in neurological
disorders. Toward the end, we have reviewed how exosomes can be harnessed and
engineered for therapeutic purposes in different brain diseases. This review is based on the
current knowledge generated in this field and our comprehension of this domain.
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1 INTRODUCTION

Exosomes, saucer-shaped vesicles of approximately 30–100 nm diameter (Théry et al., 2002b), are
one of the different types of “extracellular vesicle” (EV) that are delimited by a lipid bilayer and are
naturally released from the cell and play major roles in cell–cell communications. These vesicles are
endosomal origin, cannot replicate, i.e., do not contain a functional nucleus, and float at a density of
1.13–1.19 g ml−1 in sucrose gradients (Théry et al., 2018). The process of exosome release can be
divided into three steps: exosome biogenesis, intracellular movement of multivesicular bodies
(MVBs), and MVB fusion with the plasma membrane. In the first step of exosome biogenesis
(Figure 1), early endosomes are formed by inward invagination of the plasmamembrane or from the
trans-Golgi network. These early endosomes mature to form late endosomes. Invagination of the
endosomal membrane into the lumen leads to the formation of intraluminal vesicles (ILVs), which
finally leads to the generation of MVBs. Lastly, the generated MVBs will fuse with the plasma
membrane or alternatively with lysosomes or autophagosomes. The former results in the release of
the exosome, and the latter results in the degradation of MVBs. Several molecules are involved in this
complicated process, and the details are summarized elsewhere (Teng and Fussenegger, 2021).

Exosomes are not merely lipid vesicle; they also contain membrane-associated proteins,
transmembrane proteins, mRNA, noncoding RNAs, and other cell-specific cargos. Exosomes
are equipped with endosomal sorting complex required for transport (ESCRT), Alix, TSG101,
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HSC70, CD63, CD81, and HSP90β protein that help in the
formation and release of exosomes. CD63 and CD81 (Theos
et al., 2006; Stuffers et al., 2009) are tetraspanin family proteins
that are thought to help in exosome formation and release by an
ESCRT-independent mechanism. These proteins are enriched
in exosomes compared to the cell lysate, and these are termed
“exosomal marker proteins,” which can be identified using
Western blot with appropriate antibodies (Thompson et al.,
2016; Doyle and Wang, 2019). ExoCarta database hosts about
41,860 proteins, >7540 RNA, and 1,116 lipid molecules from
more than 286 exosomal studies; this can help us to have an idea
about the diversity of exosomal content from different cell types,
current cell state (e.g., transformed, differentiated, stimulated,
and stressed), and culture conditions (Keerthikumar et al.,
2016). A different method of isolation of exosomes from
condition media has been introduced, from the most
commonly used methods ultra-centrifugation, sucrose
gradient centrifugation, different kit-based to microfluidics-
based methods (Supplementary Table S1) (Théry et al.,
2006; Wu et al., 2017). The choice of exosome isolation

method greatly impacts the exosome quality and quantity
(Patel et al., 2019; Brennan et al., 2020). The isolated
exosomes can be characterized using nanoparticle tracking
analysis (NTA) for size distribution and surface charge,
transmission electron microscopy for size distribution and
morphology (TEM), atomic force microscopy (AFM) for size
distribution and surface morphology, and Western blotting to
check the presence and absence of protein markers (Wu et al.,
2015; Chopra et al., 2019). Experimental evidence and live-cell
imaging (Sung et al., 2020) have already shown that exosomes
are secreted by all cell types (Peters et al., 1989; Raposo et al.,
1996; Théry et al., 2002a; Morelli et al., 2004) and brain cells like
neurons, astrocytes, microglia, and oligodendrocytes are not the
exception (Potolicchio et al., 2005; Fauré et al., 2006; Krämer-
Albers et al., 2007; Taylor et al., 2007). In the late 1980s, when
exosome was first discovered, it was thought to be cellular waste
resulting from cell damage or by-products of cell homeostasis
and had no significant impact on neighboring cells (Johnstone
et al., 1987). But currently, it is crystal clear that exosomes and
their cargo can play a major role in cellular processes like in

FIGURE 1 | Schematic representation of exosome biogenesis, cargo packing, and cellular uptake. (1a,b) Early endosomes are formed from the inward budding of
the plasma membrane or Golgi network (GN). (2,3) Early endosomes mature to form late endosomes and subsequently to multivesicular bodies (MVB). (4a) MVB
docking into the plasmamembrane via SNAREs and SNAP23, and subsequent fusion with the plasmamembrane results in exosome release (5). Alternatively, MVBs can
fuse with lysosome and subsequent degradation (4b). (6) The released exosome will be taken up by the neighboring cell. The cellular uptake of exosomes can be
(7a) direct binding and receptor-mediated endocytosis, (7b)membrane fusion, (7c) phagocytosis/micropinocytosis, or (7d) lipid raft-mediated endocytosis. The ESCRT
machinery plays a key role in protein sorting, particularly for ubiquitinated cargos. During the process of exosome biogenesis, various proteins, including RNA-binding
proteins (RBPs), are selectively sequestered into exosomes; these RBPs help in RNA cargo packing into the exosome. (ER: endoplasmic reticulum; GN: Golgi network;
MVB: multivesicular bodies; ESCRT: endosomal sorting complex required for transport).

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8780582

Ghosh and Ghosh Multimodal Role of Exosome in Neuropathies and Therapeutics

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


immune response (Greening et al., 2015), signal transduction
(Gangoda et al., 2015), antigen presentation (Mittelbrunn et al.,
2011) as well as in disease state like chronic inflammation
(Lässer et al., 2016), cardiovascular and renal diseases
(Gonzalez-Calero et al., 2014), neurodegenerative diseases
(Howitt and Hill, 2016), lipid metabolic diseases (Record
et al., 2014), traumatic brain injury (Zhang et al., 2021),
mental disorder (Saeedi et al., 2019), and tumors (Salem
et al., 2016). It is now a well-established fact that exosomes
can be found in almost all biological fluids like blood (Hornung
et al., 2020), urine (Street et al., 2017), saliva (Machida et al.,
2015), breast milk (Qin et al., 2016), cerebrospinal fluid (Yagi
et al., 2017), semen (Madison et al., 2015), and amniotic fluid
(Keller et al., 2007). Exosomes isolated from these fluids will
reflect the cellular origin and its physiological state as a
“fingerprint” or “signature” of the donor cell. From this, it is
very clear that exosomes can be a potential target for biomarker
discovery and early detection of many diseases. Apart from the
role of exosomes in signal transduction and biomarker
discovery, they can also be harnessed to be used as
therapeutics in many diseases (Cooper et al., 2014; Zhuang
et al., 2011). The ability to cross blood–brain barrier (BBB), non-
immunogenicity, the option of surface engineering, and
selective cargo packaging make exosomes emerge as a
blockbuster therapeutic option in many diseases (Ghosh

et al., 2020; Zhan et al., 2020; Mishra et al., 2021). The
probable roles that can be played by exosomes are
schematically summarized in Figure 2.

2 EXOSOME AS A PATHOGENIC AGENT IN
NEUROLOGICAL DISEASES

The cells in the central nervous system (CNS) communicate
between themselves by intercellular and extracellular
interactions. The former is mediated by ions and can be
transduced and sensed by the cell through ion channels and
neurotransmitter receptors present in neurons and glial cells
(Yamazaki et al., 2007; Debanne and Rama, 2011). The latter
could consist of either wiring transmission, which is primarily
dependent on synapses or volume transmission, mediated by
exosome for major vesicular carrier or by exocytosis of
neurotransmitters (Trueta and De-Miguel, 2012; Borroto-
Escuela et al., 2015). The secretion of exosomes from CNS
cells was first demonstrated in cultured embryonic cortical
neurons, and it can be released either presynaptically at the
neuromuscular junction or postsynaptically by cortical
neurons upon activation of synaptic NMDA receptors, which
will then bind presynaptically to hippocampal neurons (Fauré
et al., 2006; Zhang and Yang, 2018). Experimental evidence has
also shown that neuron-derived exosomes are 50 times more
abundant in soma and dendrites than axons in both peripheral
nervous system (PNS) and CNS (Von Bartheld and Altick, 2011).
In the brain, the exosomes act as local or distant messengers and
communicators and can play a significant role in neural
homeostasis, modulation of synaptic plasticity, synaptic
transduction, modifying the cell surface properties of target
cells, auto-protective mechanism for neurons, sequestering
“toxic” (pathogenic) proteins, and promoting regeneration and
neuroprotection both in the CNS and the PNS (Korkut et al.,
2013; Lopez-Verrilli et al., 2013; Chivet et al., 2014; Kalani et al.,
2014; Hornung et al., 2020). In addition to interneuronal
communication, exosomes from neuronal culture when added
to astrocyte culture have shown to have an effect in extracellular
glutamate levels and modulation of synaptic activation (Morel
et al., 2013). In the opposite case, when glial cell-derived
exosomes are added to the neuronal culture, they significantly
increase the firing rate of neurons and has a neuroprotective role
under oxidative stress and starvation conditions (Smalheiser,
2007; Morel et al., 2013; Fröhlich et al., 2014). Apart from
normal brain function, it is already a proven fact that
exosomes have a role in disease progression and can act as a
pathogen delivery agent (Hornung et al., 2020; Zhang et al., 2021).
The different roles of exosomes in disease are as follows and are
schematically represented in Figure 3.

2.1 Alzheimer’s Disease
Extracellular deposition of polymerized amyloid-β (Aβ) protein,
also called plaques, and intracellular filamentous inclusions of
hyperphosphorylated tau protein, known as neurofibrillary
tangles, are the two major neuropathology involved in
Alzheimer’s disease (AD) (Yamaguchi et al., 1989; Lee et al.,

FIGURE 2 | Schematic representation of roles of exosomes in three
different fields. (A) The blue sphere represents MVB, and the red sphere
represents the exosome; this section of the figure represents the release of
pathogenic cargo from the exosome and subsequent disease
transmission. (B) Therapeutic potential of surface engineered cargo loaded
exosome and subsequent recovery from disease condition. (C) Exosomes
released from the disease-affected cell can cross the BBB and can be found in
blood circulation, which can be utilized in noninvasive biomarker discovery.
[Some component of the figure is adapted from Servier Medical Art; Servier is
licensed under a creative commons attribution 3.0 unported license (https://
smart.servier.com/)].
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1991). Several lines of evidence pointed toward the fact that the
exosomes have a role in amyloid pathology in AD. Scientists
have shown that in HeLa and N2a cells, after beta-cleavage of
amyloid precursor protein (APP) in early endosomes, a minute
fraction of Aβ peptides can be secreted from the cells in
association with exosomes; not only that but also exosomal
proteins have also been found to accumulate in the plaques of
AD patients’ brains (Rajendran et al., 2006). Intraperitoneal
injection of GW4869, the moiety responsible for inhibition of
neutral sphingomyelinase 2 (nSMase2) in the 5XFAD mouse,
shows reduced levels of brain and serum exosomes, brain
ceramide, and also reduces Aβ1–42 plaque load. This result
suggests that exosomes are involved in the generation of Aβ
plaques (Dinkins et al., 2014). In recent years, it has been
experimentally proven that exosomes isolated from AD
brains contain elevated levels of amyloid-beta oligomers;
these exosomes can act as vehicles for the neuron-to-neuron
transfer of such toxic species. Inhibition of the formation,
secretion, or uptake of exosomes has been found to reduce
both the spread of oligomers and the related toxicity (Sinha
et al., 2018). Recent experimental evidence indicates that soluble
pre-fibrillar Aβ species are more toxic than insoluble fibrils
(Ladiwala et al., 2012). Scientists have shown that the exosomes
of microglial origin are strikingly high in AD patients and in
subjects with mild cognitive impairment and are toxic for
cultured neurons. Studies have also found that the
neurotoxicity of these exosomes is due to the capability of
exosome lipids to promote the formation of soluble Aβ

species and from the trafficking of neurotoxic Aβ via
exosomes after Aβ got internalized into microglia (Joshi
et al., 2014). Apart from Aβ, exosomes are also involved in
tauopathy. A recent study shows much of the tau
phosphorylated at Thr-181 is secreted by M1C cells and
occurs via exosomal release (Saman et al., 2012). A group of
scientists developed an adeno-associated virus-based model
exhibiting rapid tau propagation from the entorhinal cortex
to the dentate gyrus and has shown that microglia spread tau via
exosomes secretion. Inhibiting exosome synthesis significantly
reduces tau propagation in-vitro and in-vivo (Asai et al., 2015).
Another group of scientists has discovered cambinol, an
inhibitor of the neutral sphingomyelinase 2 (nSMase2)
enzyme, and shown that cambinol works in a dose-
dependent manner and suppresses extracellular vesicle (EV)
production, which in turn reduce tau seed propagation
(Bilousova et al., 2018). Apolipoprotein E (apoE) and
bridging integrator-1(Bin1), the genetic risk factors for late-
onset AD (LOAD), are involved in exosome biogenesis and
cargo sorting (Cohn et al., 2021). Experiments have shown that
overexpression of BIN1 in PS19 mice promotes the release of
Tau via extracellular vesicles (Crotti et al., 2019). On the other
hand, the apolipoprotein E4 genotype is involved in the
downregulation of exosome biosynthesis and release; this will
lead to decreased elimination of materials from the endo-
lysosomal system. The failure of the endo-lysosomal system
will contribute to amyloidogenic amyloid-β precursor protein
processing, compromise trophic signaling and synaptic

FIGURE 3 | Schematic representation of the role of exosomes as the pathogenic carrier in neurodegenerative disease. Pathogenic cargo-loaded exosomes are
released from the diseased cell, and the cells that take up the exosomes get a similar kind of disease. This picture represents a similar phenomenon, taking an example of
how exosomes can carry Aβ pathogenic peptides in their lumen and cause the propagation of Alzheimer’s disease. (Aβ: amyloid-beta) (Some component of the figure is
adapted from Servier Medical Art; Servier is licensed under a creative commons attribution 3.0 unported license (https://smart.servier.com/).
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function, and interfere with a neuron’s ability to degrade
material, all of which will result in neuronal vulnerability and
a higher risk of AD development (Peng et al., 2019).

2.2 Parkinson’s Disease
Parkinson’s disease (PD) is the second most common
neurodegenerative disease (Lebouvier et al., 2009), which is
characterized by the degenerative death of dopaminergic (DA)
neurons in the substantia nigra, a significant decrease in striatal
DA content, and the appearance of Lewy bodies due to the
accumulation and aggregation of α-synuclein (α-syn) in the
cytoplasm of residual nigrostriatal neurons (Spillantini et al.,
1998). Experimental evidence has shown that α-syn is
packaged into exosomes via the endosome pathway, and it can
fuse with the plasma membrane for secretion as exosomal cargo
with the assistance of VPS4 and SUMO proteins (Cabin et al.,
2002; Lee et al., 2005). Recent studies suggest that exosomes
provide favorable conditions for α-syn aggregate formation; this,
in turn, promotes the propagation of PD pathology (Grey et al.,
2015). Scientists have already discovered the presence of
oligomeric α-syn in the exosome, which is readily taken up by
the neighboring cell and is more toxic as compared to free α-syn
(Danzer et al., 2012). In an experiment with an SH-SY5Y cell line,
overexpressing α-syn has shown to have α-syn in isolated
exosomes, and this can get transferred to normal SH-SY5Y
cells (Alvarez-Erviti et al., 2011a). Later, it was also shown
that the exosome-packed α-syn could promote the cell death
of recipient neuronal cells. These experiments provide support to
the hypothesis of exosome-mediated α-syn propagation between
neurons and facilitate PD progression (Emmanouilidou et al.,
2010). Recent research by a group of scientists suggested that the
presence of α-syn oligomers in CD11b + exosomes of microglia
origin can induce α-syn aggregation within neurons (Guo et al.,
2020). Overall, it is very clear that exosomes can act as a
pathogenic agent in PD propagation.

2.3 Frontotemporal Dementia and
Amyotrophic Lateral Sclerosis
FTD involves progressive deficits in behavior, executive
function, or language (Bang et al., 2015). Transactive
response DNA-binding protein (TDP-43), its aggregation,
and cytoplasmic translocation are thought to represent
significant steps in the pathogenesis of FTD or ALS (Hu
and Grossman, 2009). ALS is a distinct neurodegenerative
disease affecting motor neurons in the brain and spinal cord;
SOD1 was the first gene discovered to cause familial ALS and
was the most studied cause of ALS (Sheng et al., 2012). FTD
and ALS appear to be on a spectrum, and some patients
display mixed phenotypes of both diseases (Kawakami et al.,
2019). The TDP-43 gene is involved in the pathogenesis of
both the disease, but SOD1 is only related to ALS but not FTD
(Hornung et al., 2020; Jo et al., 2020). Using mouse motor
neuron-like NSC-34 cells overexpressing human wild-type or
mutant SOD1, scientists have shown that exosomes derived
from NSC-34 cells contain SOD1; this gave the evidence of
secretion and cell-to-cell transmission of SOD1 (Gomes et al.,

2007). In the similar way, TDP-43 can also get transmitted
from cell to cell (Nonaka et al., 2013; Iguchi et al., 2016).

2.4 Traumatic Brain Injury
TBI occurs due to the sudden external force in the brain that leads
to temporary or permanent neurological deficits. TBI
pathogenesis is a complex process due to primary and
secondary injuries. The primary deficit occurs immediately,
and the secondary injury can occur from minutes to days after
the primary impact and consists of a molecular, chemical, and
inflammatory cascade responsible for further cerebral damage.
The injury involves depolarization of the neurons and release of
excitatory neurotransmitters such as glutamate and aspartate that
lead to increased intracellular calcium levels, which in turn
activates caspases and free radicals that result in the
degradation of cells either directly or indirectly through an
apoptotic process. These cell deaths result in an inflammatory
response that further damages neuronal cells and the blood–brain
barrier (BBB) and promotes cerebral edema. The secondary
injury phase is followed by the recovery period that involves
reorganization at an anatomical, molecular, and functional level.
The brain parenchyma, cerebrospinal fluid, and blood make up
the volume of the intracranial compartment. An increase in
intracranial volume via mass effect from blood, both cytotoxic
and vasogenic edema, and venous congestion is also a hallmark of
TBI. This would lead to pathological brain compression and,
finally, death (Galgano et al., 2017). Exosomes are actively
participating in traumatic brain injury pathogenesis; in a case
study involving military personnel with mild TBIs (mTBI) and
chronic symptoms, it is found that there is a higher level of tau,
amyloid-beta 42, and IL-10 in neuron-derived exosomes (NDEs)
(Gill et al., 2018). A group of scientists postulated that exosomes
could mediate the induction of chronic traumatic encephalopathy
(CTE) from mTBI. They have hypothesized a pathway to show
how exosomes can mediate pathogenesis from normal to mild
deterioration after one mTBI to advanced CTE pathology after
the repeated occurrence of mTBIs. According to their hypothesis,
initial mTBI leads to the production of NDEs that contains
pathogenic complexes of PRPc-Abo-Fyn, SNGY3 + P-tau, and
IL-6-sIL-6R; this leads to damage in the donor neurons and other
neurons that receive the neurotoxic NDEs. Apart from the
neurons, microglia (MG) and astrocytes (AG) will also
produce microglia-derived exosomes (MDEs) and astrocytes-
derived exosomes (ADEs), respectively, carrying elevated levels
of APP, BACE-1, and IL-6, which will further cause neurotoxic
damage to neurons. With subsequent episodes of mTBI, this
series of processes will increase and cause neuronal apoptosis,
which will subsequently lead to the induction of CTE (Goetzl
et al., 2019). From these studies, it is believable that the NDE from
TBI patients contains neurotoxic cargo, and this NDE causes
neuronal damage in proximal or distal cells that receive it.

2.5 Glioblastoma
Apart from its role as a mediator of neurodegenerative disease,
exosomes also play a significant role as a pathogenic agent in
brain malignancies. The most frequent intrinsic tumors of the
central nervous system are glioma. It encompasses two principal
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subgroups: (World Health Organisation) WHO grade I or
“nondiffuse gliomas,” showing a more circumscribed growth
pattern, and WHO grades II–IV or “diffusely infiltrating
gliomas,” arising from glial cells or glial precursors (Wesseling
and Capper, 2018). Scientifically accepted hallmark of cancers
includes sustaining proliferative signaling, resisting cell death,
evading growth suppression, activating invasion and metastasis,
enabling replicative immortality, and inducing angiogenesis
(Hanahan and Weinberg, 2011). Exosomes play a significant
role as a pathogenic agent in all the six hallmark scenarios
(Choi et al., 2018; Oushy et al., 2018; Bian et al., 2019; Hallal
et al., 2019; Gao et al., 2020; Lucero et al., 2020). Apart from these
roles, studies have shown that glioblastoma-derived exosomes
can promote the immunosuppressive properties of microglia
when they are taken up by tumor-associated microglia (Abels
et al., 2019). Recent studies have shown that exosomes have active
participation in the acquisition of resistance to therapy in
glioblastomas (Yekula et al., 2021). From the aforementioned

evidence, it is clear that exosomes play a major role as a
pathogenic agent in maintaining the tumor microenvironment
and further metastasis of tumors.

3 EXOSOME IN BIOMARKER DISCOVERY
FOR NEUROLOGICAL DISEASES

The blood–brain barrier (BBB) is a complex physical barrier
between the brain and the peripheral circulation that regulates the
influx and efflux of molecules to the brain to preserve CNS
homeostasis and maintains the stable local ionic
microenvironment necessary for neuronal function (Armulik
et al., 2010; Kheirandish-Gozal et al., 2017). This barrier
makes it difficult for biomolecules to pass from the brain side
to the peripheral circulation and remains the main obstacle in the
discovery of biomarkers from peripheral blood or serum for
brain-related diseases. After the discovery that exosomes can

FIGURE 4 | Exosome-based biomarker discovery in neurological disorders from biofluids. Blood, cerebrospinal fluid, plasma, or serum sample can be collected
from patients, and the content of the isolated exosomes from that sample can give us the opportunity in early detection of disease to gain knowledge about disease state
and disease severity. This figure gives a snapshot of exosome release from disease states like neurogenerative disease, mental disorder, and brain malignancies and the
biomarker potential of exosomes. (AD: Alzheimer’s disease; PD: Parkinson’s disease) [Some component of the figure is adapted from Servier Medical Art; Servier is
licensed under a creative commons attribution 3.0 unported license (https://smart.servier.com/)].

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8780586

Ghosh and Ghosh Multimodal Role of Exosome in Neuropathies and Therapeutics

https://smart.servier.com/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


cross BBB and the exosomal content remains active, the interest
in exosome-based biomarker discovery in neurological disorder
has increased (Saeedi et al., 2019). Exosomal content can help us
gain insights into early disease detection, disease state, and disease
severity (Figure 4). The ability to compare the biomarkers in
exosomes originating from different cell types gives an added
advantage to biomarker analysis in CNS-derived blood exosomes
as compared to CSF (Hornung et al., 2020). Different biofluids
and their exosomal content for biomarker discovery in
neurological diseases are listed in Supplementary Table S2.

4 EXOSOME AS NEUROTHERAPEUTICS

In the previous section, we briefly introduced the role of
exosomes as a biomarker and pathogenic agent. In this
section, we will be focusing on the recent progress
surrounding exosomal surface engineering and engineering
exosome for packaging cargo of interest. We will also discuss
how exosome engineering can increase the value of exosomes as
therapeutics in different neurological disorders.

4.1 Engineered Exosome
Themain issue with exosome therapeutics is it does not have targeting
ability. There are two types of exosome engineering: surface
engineering and packaging of cargo of interest. The former endows
the exosomes with targetability, and the latter makes the exosomes a
better delivery agent and increases therapeutic value.

4.1.1 Methods of Exosome Engineering
Methods of exosome engineering involve two strategies: i) surface
engineering strategy (Richardson and Ejima, 2019) and ii)
exosome packaging strategy (Donoso-Quezada et al., 2020).

4.1.1.1 Surface Engineering Strategy
Currently availablemethods for exosome surface functionalization can
be classified into two main approaches: 1) genetic engineering and 2)
chemical modification. The former method is effective for displaying
genetically engineered proteins on the surface of exosomes, but it is
only limited to genetically encodable peptides and proteins. But the
latter chemical modification method can be used to functionalize
exosomes with a wide range of molecules by utilizing noncovalent or
covalent interactions. This method remains challenging because of the
membrane complexity and because of the various issues with the
purification steps necessary to separate the unreacted chemicals from
the exosomes (Richardson and Ejima, 2019).

(1) Genetic engineering-based surface engineering includes
designing plasmids, transfecting cells with the designed
plasmid, and exosomes isolation which itself is a challenging
and expensive task. In many works, lactadherin that localizes to
exosomes via binding of its C1C2 domain to exosome lipids has
been utilized for the generation of chimeric protein and exosome
functionalization (Delcayre et al., 2005). The protein of interest is
cloned to the C1C2 domain of the lactadherin, which results in
chimeric proteins being trafficked to the exosomes, and the
N-terminal region was displayed outward on the exosome

surface. Different scientific groups have utilized lactadherin to
display GLuc reporter protein, carcinoembryonic antigen, and
HER2 and anti-HER2 antibodies on the exosome surface
(Hartman et al., 2011; Takahashi et al., 2013; Wang et al.,
2018b). In another set, scientists have utilized exosomal
membrane protein, Lamp2b, and fused targeting peptides,
e.g., RVG and RGD peptides to the N terminus of the
protein for exosome surface functionalization and targeted
delivery to neurons (Kumar et al., 2007) and breast cancer
cell (Tian et al., 2014). Yim et al. fused CIBN to the N-terminus
of EGFP tagged CD9 (CIBN-EGFP-CD9) for the vector
preparation and fused the cargo proteins with CRY2 (cargo
protein-CRY2). This system helped to immobilize proteins to
the inner surface of exosomes and loaded cargo proteins into the
newly generated exosomes (Yim et al., 2016a). Lai et al. (2014)
have generated a lentivirus vector encoding the transmembrane
domain of PDGFR, BAP domain, and GLuc, and this construct
generates surface-engineered exosomes with Gluc and BAP
domain which gives an opportunity for in vivo multimodal
imaging to monitor tissue distribution, blood levels, and
clearance dynamics of the EV. Though the genetic
engineering-based methods have advantages, this method still
has risks of the engineered biomolecules appearing on the
internal exosome surface rather than the desired external
surface.

(2) Chemical modification involves covalent or noncovalent
interaction for exosome surface functionalization. Alkyl chains
can be utilized to anchor molecules into the lipid bilayer
membranes of exosomes through hydrophobic interactions.
Using this strategy, PEG-lipid conjugates were inserted into
exosomal membranes to increase blood circulation time
(Kooijmans et al., 2016). Wan et al. (2018) utilized lipids to
modify cell membranes for the formation of exosome-mimetic
vesicles. They conjugated nucleolin-targeting aptamer AS1411 to
cholesterol-PEG and generated surface-functionalized exosomes
for in vivo anticancer drug delivery. Functionalized exosomes can
also be generated by fusing liposomes, consisting of DOPS and
PEG-DSPE with exosomes via freeze−thaw cycles. This method
also justifies the efficient packing of liposomal cargo into the
newly generated liposome fused exosome (Sato et al., 2016).Wan
et al. (2017) have demonstrated the hybridization-mediated
assembly of DNA on the exosomal surface for the generation
of targeted exosomes. Apart from noncovalent modifications,
exosomes can be covalentlymodified; thesemodifications are less
prone to dissociate away from the exosomes, unlike noncovalent
modifications. Smyth et al. (2014) modified the exosomes with
alkyne-containing 4-pentynoic acid used carbodiimide coupling
onto amines in the exosomal membrane. Then, they used these
functionalized exosomes to conjugated azide-tagged
fluorophores via azide−alkyne Huisgen cycloaddition or click
chemistry. Wang et al. (2015) used metabolic engineering to
introduce azide groups on the surface of exosomes; they have also
used azide−alkyne Huisgen cycloaddition reaction to covalently
introduce small molecules and proteins onto the exosomal
surface. Many other works also used similar chemical-based
approaches for surface engineering of exosomes (Qi et al., 2016;
Kumar et al., 2018; Tian et al., 2018).
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4.1.1.2 Exosome Packaging Strategy
Several studies have explored the natural properties of exosomes
as nanocarriers, and in recent years, numerous techniques have
been developed to improve the immunogenicity, drug loading
efficiency, or targeting ability of exosomes. In this section, we
will discuss the state-of-the-art packaging strategies to load a
cargo of interest into the exosome. Packaging strategies include

(1) Passive loading of hydrophobic compounds: The lipidic
nature of the exosome membrane enables several
hydrophobic compounds to be passively loaded into the
exosomes by co-incubation. Using this strategy, curcumin
(Sun et al., 2010), doxorubicin, and paclitaxel (Yang et al.,
2015) have been successfully incorporated into different cell-
derived exosomes. Apart from therapeutic molecules, large
protein, e.g., the tetrameric protein catalase, has efficiently
been loaded into Raw 264.7-derived exosomes by simple
diffusion (Haney et al., 2015).

(2) Physical methods for molecule loading: The previously
discussed passive loading method is not efficient for
packaging hydrophobic molecules like DNA or RNA.
In these scenarios, physical methods like
electroporation, sonication, and extrusion-based
methods are used. Momen-Heravi et al. (2014) loaded
miRNA-155 into the exosomes using electroporation;
they concluded that higher voltages (between 0.14 and
0.2 kV) and a total exosomal protein concentration
between 500 and 1,000 μg/ml resulted in better loading
yields. Wahlgren et al. (2012) used a similar method to
load mitogen-activated protein kinase-1 siRNA (MAPK1-
siRNA), and they have found that the optimum
electroporation voltage was between 0.150 and 0.200 kV
and the exosomal protein concentration was between
250 L and 1,000 μg/ml. Larger nucleic acids, like
double-stranded DNA, have also been successfully
packaged into exosomes by electroporation; it was
found that the loading efficiency of dsDNA
significantly decreases for sizes above 750 bp
(Lamichhane et al., 2015). By using membrane-
permeabilizing agents, the issue of aggregation and
fusion of exosomes after electroporation can be
resolved (Hood et al., 2014). Another physical method
is sonication, and it is reported that sonication can
successfully incorporate doxorubicin and paclitaxel into
exosomes with more efficiency than other physical
methods (Kim et al., 2016). Though this technique is
more efficient as it is the most damaging technique for
exosomal membrane, sonication is very rarely used for
exosomal cargo packaging. Another less explored method
for exosome cargo loading is cell extrusion, where cells are
extruded through 100–400 nm pore size membrane filters
to break up the cell and then cells reform the cell
membrane to generate exosome-mimics. Using this
method, exosome-mimics have been generated from
MCF10A cells and loaded with siRNA by
electroporation (Yang et al., 2016). Similarly, catalase
was loaded into Raw 264.7-derived exosomes by

extruding the catalase mixture with exosomes (Haney
et al., 2015).

(3) Hydrophobic modification of nucleic acids: To avoid the
problem of aggregation, vesicle fusion, and variations of
surface zeta potential associated with electroporation-
based siRNA, miRNA cargo loading, hydrophobic
modification of nucleic acids has evolved as a strategy to
pack cargo into the exosomes. Didiot et al. have modified the
siRNA by adding a cholesterol moiety conjugated to the 3’
end of the passenger strand and successfully loaded the
modified cargo into U87 glioblastoma cell-derived
exosomes (Didiot et al., 2016).

(4) Labeling of target proteins for loading into exosomes: This
method gives the opportunity to utilize the protein that
plays a major role in exosomal cargo packaging; one such
protein is ESCRT which specifically shortens the
ubiquitinated proteins in the exosomes. In many
studies, scientists are leveling cargo protein with a
peptide that can selectively interact with ESCRT, which
increases the probability of cargo protein getting packed
into the exosomes (Villarroya-Beltri et al., 2014). Cheng
and Schorey (2016) fused ubiquitin to the C-terminal
region of enhanced green fluorescent protein (EGFP),
tumor antigenic protein nHer2, and Mycobacterium
tuberculosis proteins Ag58B and ESAT6; ubiquitin
labeling increases the loading of all the protein into the
exosomes. Other than ESCRT, late-domains (L-domains),
which recognizes the WW tag in the protein of interest,
also give similar opportunity in cargo loading
(Sterzenbach et al., 2017).

(5) Light-induced exosome loading: optically reversible
protein–protein interaction (EXPLORE) can be used to
load proteins into exosomes. This process involves
endogenous biogenesis processes and the delivery of cargo
proteins into the cytosol by light-mediated signal (Yim et al.,
2016b). Scientists have explored exosomal CD9-CIBN-
CRY2-based systems to pack many cargos into the
exosomes (Yim et al., 2016a; Huang et al., 2019).

4.2 Applications of Cell-Derived and
Surface-Engineered Novel Cargo-Loaded
Exosome as Neurotherapeutics
Natural exosomes have various potentials; their clinical
application is associated with some inherent limitations of
targetability, immunogenicity, and less efficient cargo delivery.
Recently, to overcome these limitations, exosome engineering
and the development of designer exosomes are coming into the
picture. In this section, we will first discuss the role of natural
exosomes as neurotherapeutics, and toward the end, we will
discuss the role of surface engineered novel cargo-loaded
exosomes as neurotherapeutics (Figure 5). Mesenchymal stem
cell (MSC) is already extensively studied for regenerative
medicine, cell therapy, and tissue engineering (Ankrum and
Karp, 2010). Accordingly, research based on exosomes derived
from MSCs (MSC-exosomes) has great value as this has the
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advantage of exosomes and also the characteristics of MSCs
(Ghosh et al., 2020). Numerous studies have demonstrated the
therapeutic value of MSC-exosomes in tumors,
neurodegenerative diseases, cardiovascular and cerebrovascular
diseases, wound repair, etc (Cui et al., 2018; Zhao et al., 2018;
Moon et al., 2019; Rao et al., 2019; Riazifar et al., 2019). MSC-
derived exosomes can exert their therapeutic effect by removing
or inhibiting pathological processes or by promoting regenerative
mechanisms. In the former case, it is known to reduce amyloid-
beta (Aβ) aggregate in AD, rescue dopaminergic neurons from 6-
OHDA-induced apoptosis in PD, reduce demyelination in
multiple sclerosis (MS), and inhibit apoptosis, inflammation,
and promotes angiogenesis in TBI and stroke (Jarmalavičiūtė
et al., 2015; Huang et al., 2017; Yang et al., 2017b; Ding et al., 2018;
Elia et al., 2019). In the latter case of regeneration, MSC-derived
exosomes exert their effect by neuroprotection, neurogenesis,
neuromodulation, and angiogenesis in many disease
conditions like AD, TBI, and stroke (Doeppner et al., 2015;
Zhang et al., 2015; Elia et al., 2019; Otero-Ortega et al., 2020).
Other than the aforementioned process, MSC-exosomes show
their effect in reducing oxidative stress, restoring the integrity of
the BBB, inhibiting tumor growth, and improving behavioral and
biochemical deficits in mental disorders like schizophrenia
(Jarmalavičiūtė et al., 2015; Chen et al., 2016; Li et al., 2019;
Tsivion-Visbord et al., 2020; Luo et al., 2021). Apart from MSC-
exosomes, other cell-derived exosomes are explored for a similar
application. Sharma et al. (2019) have shown exosomes released
by neural cultures can rescue deficits in neuronal proliferation,
differentiation, synaptogenesis, and synchronized firing in
MECP2-knockdown human primary neural cultures, a model
for Rett syndrome. Chen et al. (2020b) have shown exosomes
derived from astrocytes promoted the recovery of damaged

neurons by downregulation of the apoptosis rate and
upregulating mitochondrial function. Lopez-Verrilli et al.
(2013) have shown Schwann cells (SC)-derived exosomes
increase axonal regeneration in-vitro and increase regeneration
after sciatic nerve injury in vivo. Webb et al. (2018) demonstrated
that human neural stem cell-derived EVs improve behavior and
mobility by removing intracranial hemorrhage, reducing the
volume of the cerebral lesions and brain swelling, which
eventually leads to recovery from ischemic stroke in a pig
model. From the previous discussion, it is clear that natural
exosomes have a potential therapeutic effect; many attempts
have been made to improve the therapeutic potential and load
cargo of interest. Alvarez-Erviti et al. (2011b) have generated
engineered dendritic cells that express Lamp2b fused to the
neuron-specific RVG peptide and isolated exosomes from the
engineered cell. They have packed the exosomes with exogenous
siRNA by electroporation and demonstrated the targeted delivery
of cargo specifically to neurons, microglia, and oligodendrocytes
in the brain, resulting in a specific gene knockdown and
subsequent therapeutic effect in AD (Alvarez-Erviti et al.,
2011b). Using a similar approach, Yang et al. (2017a) have
successfully delivered miR-124 to the infarct site, which leads
to amplification of adult neurogenesis in ischemia. Tian et al.
(2018) have developed c (RGDyK)-conjugated curcumin-loaded
exosomes (cRGD-Exo), which can target the lesion region and
show strong suppression of the inflammatory response and
cellular apoptosis in the lesion region of the ischemic brain
after intravenous administration. A group of scientists
developed superparamagnetic iron oxide nanoparticles
(SPIONs) and curcumin (Cur)-loaded exosomes. By click
chemistry, they have conjugated the exosome membrane with
neuropilin-1-targeted peptide (RGERPPR, RGE); these

FIGURE 5 | Therapeutic effect of designer exosomes or cell-derived natural exosomes in neurological disorders. The left half of the exosome represents cell-
derived natural exosome, and the right half represents surface-functionalized engineered exosome. Both cell-derived and engineered exosomes have a therapeutic
effect in neurological disorders with advantages and disadvantages. [Some component of the figure is adapted from Servier Medical Art; Servier is licensed under a
creative commons attribution 3.0 unported license (https://smart.servier.com/)].
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engineered exosomes have the ability to target glioma cells and
also have imaging and therapeutic functions (Jia et al., 2018). Ye
et al. (2018) have developed methotrexate (MTX)-loaded EVs
functionalized with therapeutic [Lys-Leu-Ala (KLA)] and
targeted [low-density lipoprotein (LDL)] peptides which show
targetability toward brain tumors and show therapeutic effects.
Wang and Han (2019) have modified the exosomes and loaded a
plasmid expressing B-cell lymphoma-2 (Bcl-2) and Bcl-2-
associated X-protein (Bax) short hairpin RNA (shRNA); these
exosomes show therapeutic effect in apoptosis and neural
functions after TBI. Zhang et al. (2019) have developed c
(RGDyK) peptide conjugated, cholesterol-modified miR-210
engineered exosomes, which show upregulated expressions of
integrin β3, vascular endothelial growth factor (VEGF), and
CD34 and subsequent angiogenesis after middle cerebral artery
occlusion (MCAO). In addition to different scientific groups,
many companies are developing exosome-based
neurotherapeutics; one such company is Evox Therapeutics.
Evox Therapeutics uses a biotechnological-based approach to
generate drug-loaded brain and central nervous system targeted
engineered exosomes (https://www.evoxtherapeutics.com/).
Aruna Bio is working on pharmaceutical exosomes for drug
delivery to the brain and neurons (https://www.arunabio.
com/). Some major disadvantages of cell therapy (induced
pluripotent stem cell, iPSC), such as necrosis or abnormal cell
differentiation, tumorigenesis, immune rejection caused by cell
transplantation, and microvascular embolism, can be overcome
by exosome-based therapies (Ghosh et al., 2020). The main
advantages of exosome therapies are as followed. First,
exosomes mediate stem cell paracrine action, participate in
cell–cell communication and are already proven as the main
mechanism of disease treatment mediated by cell-based therapies.
Second, exosomes can be engineered and can be packed with a
cargo of interest like existing, newly developed compositions, and
can work as drug delivery vehicles. Third, in some cases,
exosomes have autonomous targeting capabilities which make
exosome-specific tissue or cell-targeted drug carriers (Mathieu
et al., 2019; Wei et al., 2021). From the aforementioned studies,
we can have an idea that exosome-based neurotherapeutics have
made huge progress in recent years and with the development of
new technologies, more progress will follow in upcoming days
and can be an alternative to cell-based therapies, like iPSC
therapies.

5 DISCUSSION AND FUTURE
PERSPECTIVE

Exosomes are a rising star and a complete package in the era of
advanced medical science due to their multiple roles in
cell–cell communication, biomarker discovery, disease
progression, and therapeutics. The following are some of
the benefits that exosomes have: 1) they can pass the
blood–brain barrier, and are less invasive, non-tumorigenic,
and non-immunogenic, 2) their shelf life and half-life in

patients are longer, allowing for long-term storage without
loss of function, and 3) they do not reproduce or cause a
microvascular embolism (Ghosh et al., 2020). These
advantages make the exosomes a superior tool for
biomarker discovery and therapeutic development. Apart
from advantages, the main challenges for bringing exosomes
into the clinical practice include the following: First, the urgent
need for standard, efficient, and sensitive methods with a low
biofluid volume requirement and high purity and yield for
classification and extraction of exosomes from different body
fluids and cells. Second, the identification of specific subtypes
of EVs is urgently needed, as different vesicles may exert
various biological effects. Current methods of exosome
isolation are too diverse to confirm the purity of the
product. Therefore, it is necessary to standardize the
protocols and identification methods when attempting to
use exosomes widely in clinical testing. Additionally, more
reliable biomarkers should be confirmed. Although many
molecules carried by exosomes have been documented to
serve as potential biomarkers, few of them are qualified for
application. Documented biomarkers need to be validated on a
larger scale to create a standard hallmark for diseases. Third,
for exosome-based therapeutics development, the targetability
of exosomes needs to be checked, as different culture
conditions change exosomal cargo. A standardized protocol
needs to be developed for large production of exosomes from
the cell; cell banks need to be developed. A specific purification
method and sensitive method for specific exosomal marker
identification need to be developed to avoid ambiguity. Last
but not least, the biological safety, targeted efficacy, and
adverse effects of exosomes must be confirmed before
clinical use. In recent years, to endow the exosomes with
targetability and to make exosomes more potent delivery
and therapeutic agents, exosome engineering is coming into
the picture, which will resolve many issues that cell-derived
exosomes have. In conclusion, if the abovementioned lags are
resolved and guidelines prescribed by the International Society
for Extracellular Vesicles (Théry et al., 2018) are followed, then
exosomes can be in the spotlight of clinical practice as
biomarkers and therapeutics in the near future.
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