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Artificial intelligence is one of the most exciting methodological shifts in our era. It holds the potential to transform healthcare as

we know it, to a system where humans and machines work together to provide better treatment for our patients. It is now clear

that cutting edge artificial intelligence models in conjunction with high-quality clinical data will lead to improved prognostic and

diagnostic models in neurological disease, facilitating expert-level clinical decision tools across healthcare settings. Despite the

clinical promise of artificial intelligence, machine and deep-learning algorithms are not a one-size-fits-all solution for all types of

clinical data and questions. In this article, we provide an overview of the core concepts of artificial intelligence, particularly contem-

porary deep-learning methods, to give clinician and neuroscience researchers an appreciation of how artificial intelligence can be

harnessed to support clinical decisions. We clarify and emphasize the data quality and the human expertise needed to build robust

clinical artificial intelligence models in neurology. As artificial intelligence is a rapidly evolving field, we take the opportunity to it-

erate important ethical principles to guide the field of medicine is it moves into an artificial intelligence enhanced future.
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Abbreviation: AI¼ artificial intelligence

Background—AI emulates
human intelligence,
processed by computer
programs
The history of AI stems back to the 1950s with the

introduction of the perceptron model (Rosenblatt, 1958;

Minsky et al., 2017); however, it was not until the

1990s that machine-learning techniques became more

widely utilized (Crevier, 1993). The development of ma-

chine-learning tools including support vector machine

and recurrent neural networks (Sarle, 1994; Cortes and

Vapnik, 1995; Kohavi, 1995) allowed scientists to lever-

age the computational power available in this era to

build statistical models robust to data variation, and to

make new inferences about real-world problems

(Obermeyer and Emanuel, 2016). However, arguably the

biggest advances in AI to date have come in the last

decade, as massive scale data and hardware suitable to

process these data have become available, and sophisti-

cated deep-learning methods—that aim to imitate the

working of the human brain in processing data—became

computationally feasible (Ngiam et al., 2011; LeCun

et al., 2015; Schmidhuber, 2015; Goodfellow et al.,

2016). Deep learning is now widely regarded as the

foundation of contemporary AI (Sejnowski, 2020)

(Fig. 1 and Box 1).

In medicine, AI has been most successfully used for

image classification and prediction including detecting

lung cancer and stroke based on computed tomography

scans (Zhou et al., 2002; Lee et al., 2017; Chilamkurthy

et al., 2018; Zhu et al., 2018; Ardila et al., 2019), assess-

ing the risk of sudden cardiac death and other severe

heart diseases based on electrocardiograms and cardiac

MRI (Rahhal et al., 2016; Zhang et al., 2017;

Faust et al., 2018; Hannun et al., 2019) and classifying

abnormal skin lesions based on dermatological images

(Jafari et al., 2016; Premaladha and Ravichandran, 2016;

Codella et al., 2017; Esteva et al., 2017).

There are preliminary examples of the value of AI in

neurology, for example in detecting structural brain lesions

on MRI (Brosch et al., 2014; Korfiatis et al., 2016; Akkus

et al., 2017; Zaharchuk et al., 2018). A common limita-

tion of clinical AI studies is the amount of available data

with high-quality clinical outcome labels, rather the avail-

ability of robust AI algorithms and computational resour-

ces. AI and deep learning are a framework that can

potentially answer many disease-related questions through

application of existing complex and comprehensive model

architectures, so long as training data of sufficient quantity

and quality is available (Box 2).

Deep learning to extract
high-level information from
large and complex data
There exist several deep neural network architectures

including deep neural networks, deep belief networks, re-

current neural networks and convolutional neural net-

works (see Sainath et al., 2015). There are also methods

such as Generative Adversarial Network approaches,

which utilize a pair of generator and discriminator net-

works to improve performance (Xing et al., 2019). All of

these networks can learn information from large and un-

structured data such as images and words, including

modelling non-linear and high-dimensional features. They

circumvent several limitations that have hampered efforts

to translate conventional machine-learning approaches

into medical biomarker discovery tools over the last
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decades (Ngiam et al., 2011; LeCun et al., 2015;

Schmidhuber, 2015; Goodfellow et al., 2016).

In short, deep learning deals with, and leverages, vast

amounts of information whereas traditional machine-learn-

ing methods require human intervention to reduce the size

of data using various feature reduction and feature selection

techniques (Mwangi et al., 2014; Hestness et al., 2017).

An intuitive way to appreciate how deep-learning works

comes from understanding the firing patterns of a neuron

in the brain (Savage, 2019). A neuron in the brain, as well

as a node within a deep-learning network, receives inputs

that they transform to an output according to a set of pre-

defined rules that aids learning (Fig. 2; LeCun et al., 2015;

Daubechies et al., 2019).

The similarity between neuronal function and AI is the

reason why a deep-learning network is often called an

artificial neural network (see Hassoun and Hassoun,

1995; Dreiseitl and Ohno-Machado, 2002 and Box 3).

The sheer complexity of the brain, and deep-learning net-

works, arises from the interaction between multiple neu-

rons in the brain, or multiple nodes in a deep-learning

network, and how complex network interactions between

multiple entities result in iterative learning. A deep-learn-

ing network learns by propagating information between

multiple ‘hidden network layers’ (see Fig. 3, for a sche-

matic overview). The hidden network layers comprise a

non-linear transformation of the received input, and non-

linearities make for very flexible transformations of the

input data—i.e. a deep-learning neural network can ‘self-

learn’ higher-order features from the input data.

To describe this process in more detail, the values of

single nodes in a deep-learning model is the sum of all

Figure 1 Definitions of AI: AI encompasses both ‘traditional’ machine learning and ‘contemporary’ deep-learning concepts.

Box 1 Definitions of AI quoted from the select
committee on AI, Committee Office, House of
Lords, London (see https://publications.parlia
ment.uk/pa/ld201719/ldselect/ldai/100/10005.htm)
AI: Technologies with the ability to perform tasks that would

otherwise require human intelligence, such as visual perception,

speech recognition and language translation.

Machine learning: One particular form of AI, which gives com-

puters the ability to learn from and improve with experience,

without being explicitly programmed. When provided with suffi-

cient data, a machine-learning algorithm can learn to make predic-

tions or solve problems, such as identifying objects in pictures or

winning at particular games, for example.

Neural network: Also known as an artificial neural network,

this is a type of machine learning loosely inspired by the structure

of the human brain. A neural network is composed of simple-

processing nodes, or ‘artificial neurons’, which are connected to

another layer. Each node will receive data from several nodes

‘above’ it and give data to several nodes ‘below’ it. Nodes attach a

‘weight’ to the data they receive and attribute a value to that data.

If the data does not pass a certain threshold, it is not passed on

to another node. The weights and thresholds of the nodes are

adjusted when the algorithm is trained until similar data input

results in stable outputs.

Deep learning: A more recent variation of neural networks,

which uses many layers of artificial neurons to solve more difficult

problems. Its popularity as a technique increased from the mid-

2000s onwards, as it is behind much of the wider interest in AI

today. It is often used to classify images, text or sound.

Box 2 The clinical potential of AI—a case in
point
A recent study found that AI can transform a person’s brain waves

recorded during speech production into real text. Makin et al.

(2020) studied four people with epilepsy who underwent brain

surgery and had implanted electrodes directly over the inferior

frontal cortices where words and speech are produced. The four

epilepsy patients read sentences aloud, and brain signals from

intracranial electrodes recorded during speech production were

the inputs into an encoder recurrent neural network often used

for data containing temporal information such as spontaneous

brain activity. The output of the network (after training and updat-

ing) generated written text from speech with 97% accuracy. This

highlights the clinical potential of AI if we have the right type of

data and models available to answer specific questions. This has

therapeutical implications to expedite speech rehabilitation for dis-

orders that affect people’s ability to communicate.
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incoming nodes—analogous to dendrites of a neuron—
multiplied by incoming edges—analogous to synaptic con-

nections—with an added bias score—analogous a thresh-

old for activity (action potential) as a neuron’s resting
membrane potential would be. This score is then entered

into a non-linear activation function—analogous to a

neuron’s membrane potential and the threshold required
to generate an action potential. The most common activa-

tion function in contemporary AI is the rectified linear

unit, a simple, fast and robust non-linear function, ena-

bling learning within layers (Dahl et al., 2013). The rea-

son why this function is similar to initiation of an action

potential (or lack thereof) is that it turns negative input

values into a score of zero—activation is not passed onto

the subsequent layer—and for positive values, its gradient

is always equal to its input—activation is passed onto the
subsequent layer. Unlike the hidden layers, the output

layer of a deep-learning network has a different activa-

tion function, usually Softmax (Gibbs, 2010). Softmax is

popular as it provides a score across multiple output

nodes with a sum of one. This means that a Softmax

provides a probabilistic output that is ideal to use for

prediction analysis between the deep-learning output and

clinical labels of interest.

The performance of a deep-learning network is

directed by a loss function that measures how accurate

the output of the network is to the true clinical label

value provided in the training data. There are various

loss functions available including mean squared error

loss, hinge loss and cross-entropy loss (Janocha and

Czarnecki, 2017), all quantifying model performance in

different ways, with the potential to up-weight or down-

weight certain errors—allowing the trade-off between

false positives and false negatives to be adjusted to the

particular situation.

Once a loss function is chosen, the network learns how

to perform the task by adjusting the weights between the

neurons in the different layers to minimize the numerical

value of the loss function over all the training examples.

This is done using the back-propagation algorithm

(Rojas, 1996), which determines the impact of each

weight on the outcome and makes fine adjustments

achieved by multiplying a pre-specified learning rate coef-

ficient, usually a value in the range of 0.1–0.5, to the

weights for each batch of training examples to improve

the value of the loss function (Le et al., 2011). A low

learning rate value provides a smooth gradient descent of

the loss function across training examples and enables de-

tection of robust local minima—the optimal point—of the

loss function (Smith et al., 2018). Smith et al. raise a

relevant point that researchers should not be tempted to

increase learning rate in deep-learning model (i.e. >0.6).

Higher learning rate provides faster but less reliable deep-

learning prediction, as the local minimum is hard to find

in a noisy gradient descent curve. A more reliable way to

increase learning speed is to increase the batch size (the

number of training examples utilized in one iteration of

the deep-learning model).

Increase AI model
prediction with multimodal
data
There is evidence showing that including multiple data

modalities into a single AI model can result in improved

model performance and predictive accuracy [see

Baltruaitis et al. (2017) for a review]. The scientific prop-

osition of combining several sources of data into a single

AI model remains an active field of research due to the

challenge of integrating data of varying dimensionality,

time scales and scope, but progress is evident as ensemble

methods that take advantage of collections of separately

learned models have been shown to have consistently

higher performance than a single monolithic model

(D’Mello and Westlund, 2015).

Figure 2 Biological and artificial neuron: on the left side of

the figure is a biological neuron (reused under the terms of

Creative Commons Attribution Licence—CC BY-SA 3.0—allowing

for reproduction https://commons.wikimedia.org/wiki/ File:

Neuron.svg), and on the right side of the figure is a model of an

artificial neuron [reprinted from Agatonovic-Kustrin and Beresford

(2000) with permission from Elsevier].

Box 3 Open question—biological relevance of
artificial network back-propagation?
Although feed-forward propagation in deep neural networks mir-

rors the functioning of neurons in the brain, it is more difficult to

reconcile how back-propagating errors updating in artificial net-

works is similar to the back-propagation of real neurons. Several

theoretical accounts are attempting to outline the biological basis

of the error updates that occur during back-propagation (e.g.

Whittington and Bogacz, 2019; Lillicrap et al., 2020). For example,

Lillicrap et al. (2020) proposed what they call backdrop-like learning

with feedback network where neurons learn via feedback connec-

tions that convey errors transcoded with the changes in neuronal

activity. Here, error updating of neurons is influenced by neuronal

activations not directly involved in neural feed-forward propaga-

tion. While neurons in the brain and deep-learning networks ap-

pear to have different back-propagating mechanisms, this topic

remains an active investigation in computational biology and AI.
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An example where multimodal data are likely to be

clinically effective is in epilepsy. High-dimensional

brain imaging and genetics data are two types of data

that have significantly enhanced our understanding of

epilepsy over the last decades (Jackson, 1994;

Kuzniecky et al., 1997; Scheffer and Berkovic, 1997;

Marini et al., 2003; Dibbens et al., 2013; Pedersen

et al., 2015; Jackson et al., 2017). Incorporating such

multimodal data into a single classifier is likely to re-

sult in an improved predictive AI modelling of epilepsy

than a classifier relying on only a single data type, as

these data sources contain complementary information

pertinent to the disease. Additional data sources, such

as EEG (Hosseini et al., 2020; Reuben et al., 2020)

and clinical documentation of patient characteristics

(Cohen et al., 2016), may further enrich the modelling.

These data are high-dimensional (Motsinger and

Ritchie, 2006), so there is a lot of information that

can be hard to interpret and compute with convention-

al statistical methods (Friston et al., 1994; Benjamini

and Hochberg, 1995). By using deep learning, which is

designed to deal with high-dimensional data, we can

start asking questions pertinent to the diagnosis and

treatment of epilepsy, questions that clinicians cannot

answer with current tools (see Fig. 4).

Combining multimodal data in AI models is an active

area of research (He et al., 2015; Badrinarayanan et al.,

2017; Choi and Lee, 2019), where AI models learn in-

herent cross-relationships between data modalities [see

also Duong et al. (2017) for an overview]. These

approaches extract and join the most useful parts of

each data modality, to improve AI model performance

and prediction. For example, it is possible to perform an

early fusion of data (Zeppelzauer and Schopfhauser,

2016). This requires a single deep-learning model where

data modalities are correlated, and their intrinsic rela-

tionships are important contributors to the outcome.

Here, the model is trained on the combined representa-

tions meaning that multiple data modalities are ‘fused’

throughout all layers of the model. Although early fusion

allows for better joint feature learning, it is sensitive to

missing data, which also reinforces that a focus on data

quality and completeness is imperative in clinical AI.

Another way of combining data modalities is a late fu-

sion of data (Cui et al., 2010). This approach also

requires one AI model but the assumption here is that

data modalities are not significantly correlated, but their

Figure 3 An Artificial Neural Network example: here is a schematic overview of how high-dimensional genetics and brain imaging is used

in a deep-learning model to make a probabilistic estimate (p) whether people are likely to develop epilepsy (red node) or not (green node). The

lines between layers represent connections, each associated with a weight-adjusted during feed-forward training and updated during back-

propagation until the optimal model performance.

Figure 4 Importance of labels in AI: AI can answer difficult

clinical questions in neurology.

Artificial intelligence in neurology BRAIN COMMUNICATIONS 2020: Page 5 of 11 | 5



combined contribution is an important factor of the

model outcome and accuracy. A newer model fusion

technique is joint fusion (Duong et al., 2017) that incor-

porates data at different levels of the deep-learning

model. This can work well for data of different sizes

including text and images.

Validate AI models on
previously unseen data by
splitting data into train,
test and validate sets
Any unimodal or multimodal dataset used for AI model-

ling needs to be divided into three different sub-catego-

ries, to ensure that we validate AI models based on

unseen data (Kohavi, 1995). The data-splitting frame-

work in AI consists of training data used to fit the AI

model; testing data where the final accuracy and validity

of the model is tested (Xu and Goodacre, 2018); and

validation/development data separate from the training

data instances enabling us to validate the model perform-

ance and tune parameters of the AI model (Ripley,

1996).

According to Liu and Cocea (2017), between 60–80%

of the data is often employed to train an AI model and

20–40% of data used for testing. To fine-tune AI models

and their hyper-parameters, it is important to avoid

overlap contamination between training and testing data,

to ensure that the AI model is tested with unseen and in-

dependent test data. It is advisable to withhold 10–30%

of the training data as a validation/development dataset.

The validation dataset is used to tune and optimize

hyper-parameters of the AI model as this ensures that

data leakage between training and test data does not

occur, and therefore ensuring unbiased estimates of AI

performance that are more likely to generalize to other

datasets. The desired outcome of an AI model is to gen-

erate a good data-fit which is a model that resembles the

underlying data. A well-fitted model also produces more

accurate predictions about new data (Everitt and

Skrondal, 2002; Goodfellow et al., 2016). There are fal-

lacies in model fitting that are important to be aware of

and to avoid in AI analyses. A model may fit the train-

ing data ‘too well’, leading to overfitting. This overfitting

often occurs in homogenous datasets, and although

resulting in a valid model, it is unlikely that such a

model would be generalizable (Hawkins, 2004). A model

that underfits the data has not learned the patterns in

the data well enough; this is usually caused by insuffi-

cient sample size. An essential requirement to avoid

problems with model fitting is to obtain sufficiently

large, and diverse, datasets.

Transfer learning: previous
AI models can be used as
the starting point for new
AI models
Transfer learning enables researchers to leverage the

wealth of knowledge stored in the large and rich dataset

to pre-train other AI models with (more limited) data, as

this can solve other related problems or adapt to the

characteristics of local data acquisition methods and

demographics (Dai et al., 2009; Torrey and Shavlik,

2010; Weiss et al., 2016; Tan et al., 2018). Transfer

learning may become an important part of AI-based

neurology as we want to avoid re-developing models

from scratch for all diagnostic and prognostic problems

that clinicians face (Kouw and Loog, 2019). An effective

transfer learning paradigm will support generalization of

an AI model to different populations. Predictive AI mod-

els can be altered to the local context with a significantly

smaller amount of data than that required to train a

model from scratch.

A successful example of transfer learning comes from a

study by Eitel et al. (2019) who wanted to develop a

diagnostic deep-learning model based on structural MRI

data from a small sample of 76 people with Multiple

Sclerosis and 71 healthy control subjects. This number of

subjects was insufficient to train a robust deep-learning

model from scratch, so the authors deployed transfer

learning to pre-train an AI model based on a previously

acquired, and openly released, dataset that containing

921 subjects from the Alzheimer’s Disease Neuroimaging

Initiative (Petersen et al., 2010). With ‘help’ from pre-

trained Alzheimer’s disease data, Eitel and others were

able to use transfer learning to classify people with

Multiple Sclerosis from healthy control subjects with over

87% accuracy, providing a potential diagnostic test of

Multiple Sclerosis based on their limited MRI data. This

showcases how one can leverage large datasets and trans-

fer learning for purposes well beyond the primary reason

for acquiring the original data.

Domain adaptation also offers promising ways to im-

prove generalizability and leverage large-related datasets

to train networks (Kouw and Loog, 2019). They can also

adapt the network to work better on different data—e.g.

MRI scans with different quality/resolutions, or different

scanners, or from under-represented patient groups. A de-

gree of adaptation is possible even in the extreme case

where no training labels are available in the new dataset,

by comparing unlabelled data in the new context to the

original dataset. This can be important for generalizing,

or harmonizing, the network to work with data from dif-

ferent hospitals, using different scanners for example,

where there may be insufficient data to perform transfer

learning.
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Augmented Intelligence:
the interplay between
human expertise and AI
algorithms
Although AI has the potential to transform healthcare as

we know it, its success will depend on how successful we

are at developing a symbiotic relationship between

human domain-specific expertise and predictive AI algo-

rithms, also optimized and fine-tuned by human experts.

The concept of Augmented Intelligence emphasizes the as-

sistive role of AI in advancing human capabilities and de-

cision-making [see Gennatas et al. (2020) for more

information]. An AI programme can provide a decision

or prediction after learning patterns from data, but the

interpretation and real-world implementation of AI mod-

els requires human expertise. Humans ultimately must de-

cide how AI models should be integrated into clinical

practice (Bærøe et al., 2020; Reddy et al., 2020).

Furthermore, understanding of the decisions made by

complex AI models is a critical element of confidence in

the advice they provide (Israelsen and Ahmed, 2019).

This builds on trust in the models (‘AI assurance’), and

being able to explain the decisions that they make

(‘explainability’)—distinguishing here between explaining

decisions and explaining the mechanisms by which they

arrive at those decisions (Adadi and Berrada, 2018;

Guidotti et al., 2018; Miller, 2019). The advantage of

adhering to the concept of Augmented Intelligence in a

clinical and research setting is that human experts can

use less time on automatable tasks such as identifying ab-

normal imaging features and focus on the tasks that de-

mand uniquely human skills, including asking

contextually appropriate questions about a patient’s con-

dition, interpreting and critically analysing data, and dis-

cussing individual needs and values that may determine

the best treatment decision for a given patient. Human

experts may do better at understanding unusual and rare

cases with uncommon pathologies, where it is not pos-

sible to get adequate training data for AI analysis—this is

something that makes Augmented Intelligence important

now and in the future.

The performance of an AI model must be bench-

marked against a known clinical outcome that provides

an appropriate target label for AI prediction (e.g. seizure

versus no seizure; drug response versus no drug re-

sponse; depression versus no depression). Accurate iden-

tification of these target labels requires clinical

knowledge, and we are dependent on people with exten-

sive clinical experience and expertise to provide reliable

outcome measures in our patients. Humans and

machines need to work together to ensure that the out-

puts of AI models are robust enough for clinical predic-

tion (Elshafeey et al., 2019).

In terms of identifying and prioritizing the problems

and questions where AI methods can be most useful,

the clinicians may assist in monitoring the use of algo-

rithms in particular clinical situations—to understand

at some level what the limitations of the algorithms

might be, and to flag when a decision does not seem to

be correct (either because it does not align with a sub-

jective clinical intuition, or when a patient outcome is

contrary to a prediction) to support further refinement

and improvement of algorithms and general safety

monitoring of the algorithms in practice. A common

scenario in the AI community is that different research

groups—with different AI algorithms—compete to pro-

duce the best predictive result to a specific clinical

problem or question. This competition or crowd-sourc-

ing approach is embodied in platforms such as Kaggle,

supported by Google (www.kaggle.com). Here,

researchers explore and build predictive models in a

web-based data-science environment. This encourages

collaboration between researchers and engineers to

solve intricate data-science problems or questions that

can be fed back to the clinicians for further refinement

or implementation.

AI to assist prognosis avoids
potential overdiagnosis
Improvements in the sensitivity of diagnostic technology,

whether or not driven by AI, have the potential to result

in overdiagnosis. A classic example is the availability in

South Korea of an inexpensive yet sensitive test for the

presence of thyroid cancers. Its introduction and popular-

ity resulted in an order of magnitude increase in the de-

tection rate of thyroid cancers over a decade, entirely

attributable to the detection of papillary thyroid cancer—

yet over the same period, there was virtually no change

in mortality (Ahn et al., 2014). The ‘improved’ testing

was essentially detecting an increase in benign cases,

resulting in unnecessary treatment and anxiety, and wast-

ing precious healthcare dollars. AI predictive tools trained

on patient outcome measures, rather than diagnostic sur-

rogates, prospectively avoids this problem. An outcomes-

trained predictive tool provides clinicians and patients

with the prognostic information they really need—for ex-

ample helping to answer questions such as those indi-

cated in Fig. 4.

Ethical principles are
imperative in the
fast-changing field of AI
At present, the rapid advances in precision medicine tech-

nologies, large data and AI-led analysis are outstripping
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societal and regulatory response. As the pace of AI tech-

nology continues to drive transformation in health, it is

imperative to consider the ethical and safety implications

of AI systems for research and practice. As AI pushes the

boundaries of what we can do with data, we face a re-

sponsibility to ensure that the highest standards for data

management and AI development are upheld, while also

ensuring the continuing development of AI tools to im-

prove diagnosis and treatment of disease (Topol, 2019).

Public trust and confidence in AI are crucial to its suc-

cess in medicine. Recent ethical frameworks promote

understanding of AI ethics and regulations in medicine

(Bryson and Winfield, 2017; Floridi et al., 2018; Jobin

et al., 2019), including the Royal Australian and New

Zealand College of Radiologists and the EU’s initiative to

develop a trustworthy ethical framework (see Box 4).

The US Food and Drug Administration has also called

on AI researchers to provide expert input on how to en-

sure sound governance and ethical responsibility in the

field of AI in medicine (https://www.fda.gov/files/medical

%20devices/published/US-FDA-Artificial-Intelligence-and-

Machine-Learning-Discussion-Paper.pdf). They have pro-

posed a set of rules intended to provide regulatory over-

sights of AI algorithms used in healthcare. For example,

there is a low risk of using AI if its purpose is to inform

clinical management in non-critical healthcare situations.

But AI algorithms are of high risk when they are a

driver of clinical decision-making in acute disease.

Requirements for AI-based software will need to: care-

fully review of the safety and effectiveness of such soft-

ware; address the allowable post-approval modifications

to the software; and manage unanticipated divergence in

the software’s eventual performance from the original

product which was approved (Hwang et al., 2019).

Regulatory agencies, institutions and industries will need

to formulate guidelines and policies regarding the use of

patient data to underpin commercialization of algo-

rithms developed using patient data.

Despite the apprehension of how AI can be misused, the

Commonwealth Scientific and Industrial Research

Organisation recently released an AI roadmap and alluded

to the point that we need to build trust in the field of AI

(https://data61.csiro.au/en/Our-Research/Our-Work). Integral

to building trust in AI is quality assurance, safety, security

and traceability of data and its platforms. As discussed

above, AI models are superfluous without human expertise

to tune and clinically interpret AI results—and clinicians

and scientists need to come together to build interpretable

AI models, to improve treatment and care in neurology.

Ethical, privacy and security considerations are paramount

in any advance of precision medicine and the use of large

data sets and AI. These concerns, however, can be man-

aged and should not lead to inertia as AI has the potential

to change lives (Topol, 2019).

Concluding remarks:
large-scale projects are
needed to unlock AI’s
clinical potential
Precision medicine and AI is likely to be a big part of the

future of medical practice (Collins and Varmus, 2015). AI

has the potential to create a paradigm shift in the diagno-

sis, treatment, prediction and economics of neurological

disease. People living with a neurological disease yearn for

such precision—Will I have another seizure? Will this

medication work for me? Should I have surgery? Am I

depressed? Advancements in AI technology have the poten-

tial to reduce the uncertainty surrounding diagnosis and

treatment of all neurological disease. But to achieve this, a

deep effort is needed to fund large-scale studies with data

derived from realistic clinical documentation that includes

participant outcome measures. This will create an invalu-

able asset to drive advances in the future of healthcare.
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