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Background
Hepatocellular carcinoma (HCC) is one of the most frequent 
and malignant types of liver cancer.1,2 Approximately 780 000 
new cases of HCC are reported each year.2,3 Although the sur-
vival of HCC has been improved as a result of advances in 
treatment modalities, the prognosis remains unfavorable, with 
an estimated 5-year survival rate of only 12%.4 Although image 
technologies such as magnetic resonance imaging and con-
trast-enhanced computed tomography can provide useful 
information for diagnosis and treatment, the performance of 
imaging technologies remains unsatisfactory in staging and 
grading HCC.5 Therefore, suitable molecular predictors are 
extremely needed for HCC therapy and prognosis prediction.

Cancers generally preceed along with widespread expression 
alterations of both protein-coding mRNAs and noncoding 
RNAs (ncRNAs).6,7 Recent advancements in high-throughput 
sequencing have allowed for the identification of various HCC 
biomarkers. For example, it has been reported that integrator 
complex subunit 6 (INTS6) is significantly downregulated and 
carnitine deficiency-associated gene expressed in ventricle 3 

(CDV3) is overexpressed in HCC tissues, both of which are 
indications of unfavorable survival.8,9

MicroRNAs (miRNAs) and long noncoding RNAs (lncR-
NAs) are 2 major types of ncRNAs.7,10 MicroRNAs are short 
ncRNAs with ~20 nucleotides in length, whereas lncRNAs are 
ncRNAs with more than 200 nucleotides in length.10 Both types 
of ncRNAs participate in a broad range of biological processes 
(BPs), such as cell proliferation, differentiation, and apoptosis.10 
They primarily function through regulating gene expression by 
binding mRNAs at posttranscriptional level.11 A recently pro-
posed hypothesis indicates that mRNAs and lncRNAs compet-
ing for shared miRNAs can serve as competing endogenous 
RNAs for each other.11 Accumulating evidence has underlined 
the key roles of ncRNAs in tumorigenesis and their potential as 
biomarkers for diagnosis and prognosis prediction. For example, 
the miRNA hsa-miR-630 plays a tumor-suppressing role in 
HCC, and low expression level of hsa-miR-630 is associated 
with poor survival.12 In addition, the lncRNA SNHG20 is 
reported to be overexpressed in HCC tissues and high expres-
sion level of SNHG20 predicts unfavorable survival.13,14

To reveal the dynamic regulation of mRNAs, miRNAs, and 
lncRNAs in HCC and identify prognostic markers, we first 
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comprehensively analyzed the expression data of HCC and 
identified differentially expressed mRNAs (DEmRNAs), 
lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs) 
between HCC and normal samples. Weighted gene coexpres-
sion network analysis (WGCNA) was conducted, and an 
miRNA-mRNA network and an lncRNA-mRNA regulation 
network were subsequently constructed to delineate the 
dynamic regulation of transcriptome in HCC. Finally, a com-
bination of topological analysis and survival analysis were fur-
ther implemented to identify prognostic factors of HCC.

Materials and Methods
Data source and preprocessing

HCC expression data from The Cancer Genome Atlas was 
downloaded from UCSC Xena (https://xenabrowser.net/data-
pages/).15 Gene expression data (IlluminaHiSeq pancan nor-
malized) of 421 samples (371 tumor and 50 normal samples) 
and miRNA expression data (miRNA mature strand expres-
sion RNAseq) of 420 samples (371 tumor and 49 normal sam-
ples) were included in the data set. Samples with both gene 
expression data and miRNA expression data were selected for 
further study. In total, 414 samples (365 tumor and 49 normal 
samples) matched the criterion and were used in our study.

Gene expression data were annotated according to the gene 
transfer format annotation file (Release 26, GRCh38.p10) 
provided by GENCODE.16 Genes annotated with “protein-
coding” were considered as mRNAs, while those annotated 
with “lincRNA,” “antisense,” “sense intronic,” “processed tran-
script,” “sense overlapping” “3prime overlapping ncRNA” and 
“noncoding” were considered as lncRNAs.

In addition, the clinical information of the liver hepatocel-
lular carcinoma (LIHC) samples involved in our study was also 
downloaded in March 2019. The clinical information included 
age, sex, histological grade of the tumor, tumor-node-metasta-
sis (TNM) stage, overall survival (OS), and OS status.

Differential expression analysis

The expression data matrix of 365 tumors and 49 normal sam-
ples were normalized by betaqn method of R. Based on the 
normalized data set, differential expression analysis between 
the tumor and normal samples was performed using limma 
package (version 3.10.3, http://bioconductor.org/packages/
release/bioc/html/limma.html)17 of R and the significance was 
tested by unpaired t test. The resulting P value of each gene was 
further adjusted by Benjamini and Hochberg (BH) method to 
achieve the corresponding adj. P value. The selection criteria of 
DEmRNAs, DEmiRNAs, and DElncRNAs were|log fold 
change (FC)| >1 and adj. P value <.05.

Functional annotation of DEmRNAs

Gene ontology (GO) terms enriched by DEmRNAs were ana-
lyzed by The Database for Annotation, Visualization and 

Integrated Discovery (DAVID) (version 6.7, https://david-d.
ncifcrf.gov/).18 The resulting terms included BPs, cellular com-
ponents (CCs) and molecular functions (MFs). Kyoto 
Encyclopedia of Genes and Genomes (KEGG)19 pathways 
enriched by the DEmRNAs were analyzed by Gene Set 
Enrichment Analysis (GSEA, version 3.0, http://software.
broadinstitute.org/gsea/index.jsp).20 The selection criterion of 
GO and KEGG terms was set as adj. P value <.05.

Weighted gene coexpression network analysis

As a method of systems biology, WGCNA describes the gene 
correlation patterns across different samples.21 It could also be 
used to identify potential biomarkers based on the correlations 
among gene modules and correlations between modules and 
phenotype.22 The WGCNA package (version 1.61, https://
cran.r-project.org/web/packages/WGCNA/)21 of R was used 
to construct a weighted coexpression network, identify genes 
and gene modules, and calculate topological features. Specifically, 
the expression values of DEmRNAs, DEmiRNAs, and 
DElncRNAs were extracted from the expression data set and 
the clinical information was integrated. The data matrix was 
normalized using betaqn method of R and was used as input. 
Then the input data matrix was preprocessed by removing genes 
with median absolute deviation (MAD) beyond 75th percentile 
and MAD less than .01. In addition, missing values were 
removed from the data. Pearson coefficient was first calculated 
for each pair of genes, followed by defining adjacency functions 
and subsequently clustering genes into different modules. The 
minimum module size was set as 50. In addition, the correla-
tions between phenotype and gene modules were also calculated 
and phenotype-related modules were thus obtained.

LncRNA/miRNA-mRNA coexpression network

To construct an lncRNA-mRNA network and an miRNA-
mRNA coexpression network for genes in disease-related mod-
ules, the Pearson correlation coefficient of each pair of mRNA 
and lncRNA/miRNA was calculated and adjusted using the 
corr. test method from the psych package in R (version 1.8.12, 
https://cran.r-project.org/web/packages/psych/index.html).23 
The parameters were ci = F and adjust = “BH”. The selection cri-
teria for lncRNA-mRNA and miRNA-mRNA pairs were set as 
adj. P value <.05 and r ⩾ .8 or ⩽–0.5. Based on the resulting 
lncRNA-mRNA and miRNA-mRNA pairs, coexpression net-
works were constructed using Cytoscape (version 3.7.0, https://
cytoscape.org/release_notes_3_7_0.html).24

Survival analysis

The prognosis-associated information including OS and OS 
status was collected. Genes with high connectivity in coexpres-
sion networks were used as candidate genes for survival analy-
sis using Kaplan-Meier method.25 Specifically, the correlation 
between each gene and prognosis was analyzed by stratifying 
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samples into high- and low-expression groups, based on the 
median expression value of the corresponding gene. The asso-
ciation between genes and prognosis were then analyzed by 
Kaplan-Meier survival plotting. Meanwhile, P value was calcu-
lated using log-rank test and genes with P < 0.01 were consid-
ered as potential prognosis-associated genes.

Validation of prognosis-associated miRNAs in 
independent data set

The prognosis-associated miRNAs were further validated in 
independent data sets. The expression data set of HCC was 
searched in the Gene Expression Omnibus database. The dif-
ferential expression of miRNAs was validated in HCC and 
normal tissues and the association of miRNAs with prognosis 
was validated in HCC and matched adjacent tissues. Finally, 
GSE36915, including miRNA expression data of 68 HCC and 
21 nontumor liver tissues were selected for validation of dif-
ferential expression. The data set was deposited by Shih et al26 
and was based on the platform of GPL8179 (Illumina Human 
v2 MicroRNA expression beadchip). GSE31384, including 
166 pairs of HCC and matched noncancerous liver tissues, 
were selected for prognosis validation. This data set was depos-
ited by Wei et al27 and was based on the platform of GPL14140 
(CapitalBio custom Human microRNA array).

The expression data of miRNAs in GSE36915 were down-
loaded and normalized by betaqn method in R. Then, unpaired 
t test was used to compare the difference of miRNAs between 
tumor group and normal group. P < .05 was regarded as signifi-
cant level.

The expression data of miRNAs in GSE31384 were 
downloaded. Samples were divided into high-expression 
group and low-expression group based on the median expres-
sion value of each miRNA. Kaplan-Meier survival plotting 
and log-rank test were conducted. P < .05 was regarded as 
significant level.

Results
DEmRNAs, DEmiRNAs, and DElncRNAs

The integrated data set contained expression data of 19 187 
mRNAs, 713 lncRNAs, and 2172 miRNAs. Differential 
expression analysis showed that a total of 541 genes (397 
DEmRNAs, 37 DElncRNAs and 107 DEmiRNAs) were 
upregulated and 679 genes (395 DEmRNAs, 241 DElncRNAs, 
and 43 DEmiRNAs) were downregulated (Figure 1A; Table 
1). Two-way hierarchical clustering was then performed based 
on the expression levels of the top 10 upregulated and down-
regulated genes. As a result, the tumor and normal samples 
could be completely separated (Figure 1B).

Figure 1. Screening and hierarchical clustering analysis of differentially expressed genes: (A) Volcano plot of differentially expressed genes between 

tumor and normal samples. The horizontal red dash line indicated where adj. P value = .05 and the vertical red dash lines indicated where|logFC| = 1.0. 

Red and green dots indicated significantly upregulated and downregulated genes, respectively. (B) Two-way hierarchical clustering analysis of top 10 

upregulated and downregulated genes. Tumor and normal samples were shown as red and cyan along the horizontal bar and genes were shown along 

the vertical bar. Upregulated genes were shown as red and downregulated genes were shown as green.
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Functional annotation of DEmRNAs

To reveal the functions and pathways involved in HCC devel-
opment and progression, functional annotation was performed 
based on the DEmRNAs identified above. GO analysis using 
DAVID showed that DEmRNAs were significantly enriched 
in terms related to plasma membrane structure and sensory per-
ception, such as “GO:00016021~integral to membrane,” 
“GO:0007186~G-protein-coupled receptor protein signaling 
pathway,” “GO:0007608~sensery perception of smell” and 
“GO:0007606~sensory perception of chemical stimulus” 
(Figure 2). Meanwhile, KEGG analysis using GSEA showed 
that DEmRNAs were enriched in 93 terms, including 90 
upregulated pathways, normalized enrichment score (NES) >0, 
and 3 downregulated pathways (NES < 0). These pathways 

were closely related to metabolism and cell proliferation, such as 
“valine leucine and isoleucine degradation,” “tryptophan metab-
olism,” “fatty acid degradation,” “DNA replication,” and “p53 
signaling pathway” (Figure 3).

Weighted gene coexpression network analysis

The expression data of the DEmRNAs, DEmiRNAs, and 
DElncRNAs and the clinical information of samples were 
extracted and used as input for WGCNA. A total of 848 genes 
were identified by WGCNA and were clustered into 3 mod-
ules (Figure 4A). The modules were designated as module 
(ME)turquoise, MEgrey, and MEblue module, each contained 
334, 259, and 255 genes, respectively. Overall, genes belong to 
the same module showed strong correlations (Figure 4B). 
Besides, genes in MEturquoise showed strong correlations 
with genes in MEblue, whereas genes in MEgray showed 
weaker correlations with genes in other modules (Figure 4B). 
In addition, genes in MEturquoise and MEblue module 
showed high intraconnectivity and interconnectivity degrees, 
whereas genes in MEgray module located at the margin of the 
network and showed low connectivity (Figure 4C). Module-
phenotype correlation analysis showed that there was almost 
no significant correlation between each module and sex or vital 

Figure 2. Gene ontology (GO) analysis: (A) The most significant GO biological processes, cellular components and molecular functions enriched by 

differentially expressed mRNAs. (B) Phylogenetic tree constructed using genes enriched in GO terms in (A). GO indicates gene ontology.

Table 1. Statistical data of genes.

MRNA LNCRNA MIRNA TOTAL

Total number 19 817 713 2172 22 702

Upregulated 397 37 107 541

Downregulated 395 241 43 679

Abbreviations: lncRNA, long noncoding RNA; miRNA, microRNA.
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status (Figure 4D). In contrast, MEturquoise and MEblue 
modules were correlated with disease status with statistical sig-
nificance (Figure 4D).

lncRNA/miRNA-mRNA coexpression network

According to WGCNA results, genes in MEturquoise and 
MEblue modules were selected for further analysis. The cor-
relation coefficient of each pair of lncRNA-mRNA or miRNA-
mRNA and the corresponding statistical significance were 
calculated. Long ncRNA-mRNA and miRNA-mRNA pairs 
with significant correlations (adj. P value <.05 and r ⩾ .8 or 
⩽–0.5) were selected to construct an lncRNA-mRNA and an 
miRNA-mRNA coexpression networks. The lncRNA-mRNA 
coexpression network contained 193 nodes (165 mRNAs and 
28 lncRNAs) and 2208 edges (Figure 5A). Nodes with high 
connectivity included small nucleolar RNA C/D Box 9 
(SNORD9), corticotropin-releasing hormone binding protein 
(CRHBP), C-type lectin domain family 1 member B 
(CLEC1B), growth differentiation factor 2 (GDF2) and olfac-
tory receptor family 5 subfamily L member 2 (OR5L2). The 
network consisted of 1 major subnetwork and 3 minor 

subnetworks. The major subnetwork included 25 lncRNAs. A 
subnetwork contained these lncRNAs and coexpressed 
mRNAs were extracted and shown in Figure 5B.

The miRNA-mRNA coexpression network contained 184 
nodes (168 mRNAs and 16 miRNAs) and 1374 edges (Figure 
5C). MiRNAs in the major subnetwork and coexpressed 
mRNAs were extracted to construct a new subnetwork (Figure 
5D). Nodes with high connectivity degree included 
MIMAT0002806 (hsa-miR-490-3p), MIMAT0030021 (hsa-
miR-7706), MIMAT0019880 (hsa-miR-4746-5p), and 
MIMAT0004556 (hsa-miR-10b-3p).

Survival analysis

Top 20 mRNAs in MEturquoise and MEblue modules were 
selected according to connectivity degrees and were used as can-
didate genes for Kaplan-Meier survival analysis. Other candidate 
genes included the 28 lncRNAs and 16 miRNAs in MEturquoise 
and MEblue modules. A total of 16 genes (P < .01), including 9 
mRNAs and 7 miRNAs, were identified as potential prognostic 
factors (Figure 6). These genes were beta-1,4-galactosyltrans-
ferase 3 (B4GALT3), complement component 7 (C7), CRHBP, 

Figure 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis: (A) Dotplot of the most significant KEGG pathways. The number of genes 

enriched by KEGG terms was indicated by circle size. The significance was indicated by color from blue (low) to red (high). (B) Joyplot of the most 

significant KEGG pathways. The significance was indicated by color from green (low) to red (high). (C and D) Enrichment plot of “aline leucine and 

isoleucine degradation” (C) and “olfactory transduction” (D). KEGG indicates Kyoto Encyclopedia of Genes and Genomes.
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Figure 5. LncRNA-mRNA and miRNA-mRNA coexpression network. (A) The lncRNA-mRNA coexpession network. (B) A network consisting of the 25 

lncRNAs from the major subnetwork of (A) and coexpressed mRNAs. (C) The miRNA-mRNA coexpession network. (D) A network consisting of miRNAs 

from the major subnetwork of (C) and coexpressed mRNAs. lncRNA indicates long noncoding RNA; miRNA, microRNA.

Figure 4. Weighted gene coexpression network analysis (WGCNA): (A) Gene dendrogram derived from hierarchical clustering. Three different modules 

were indicated by gray, blue, and turquoise underneath the dendrogram. (B) Hierarchical clustering analysis. Coexpression level was indicated by color 

temperature. (C) Coexpression network. genes in different modules were indicated by dots with the corresponding colors. (D) Module-phenotype 

relationships. Correlation coefficients were indicated by color from green (low) to red (high), and P values were shown in corresponding grids. WGCNA 

indicates weighted gene coexpression network analysis.
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heterogeneous nuclear ribonucleoprotein C1/C2 (HNRNPC), 
NGG1 interacting factor 3 like 1 (NIF3L1), phosphatidylinositol 
glycan anchor biosynthesis class U (PIGU), RNA-binding motif 
protein 19 (RBM19), serine/threonine kinase 25 (STK25), tight 
junction-associated protein 1 (TJAP1), MIMAT0002806, 
MIMAT0003882 (hsa-miR-767-5p), MIMAT0004677 (hsa-
miR-34c-3p), MIMAT0019880, MIMAT0022297 (hsa-miR-
5589-5p), MIMAT0022298 (hsa-miR-5589-3p), and 
MIMAT0000102 (hsa-miR-105-5p). High expression was asso-
ciated with better survival for C7, CRHBP, MIMAT0002806, 
and MIMAT0022298, and high expression was associated worse 
prognosis for the remaining 12 genes (Figure 6).

Validation of prognosis-associated miRNAs in an 
independent data set

GSE36915 and GSE31384 were subjected for validation of dif-
ferential expression and association with prognosis of the 7 miR-
NAs, respectively. Three miRNAs, including MIMAT0019880, 
MIMAT0022297, and MIMAT0022298 were not included in 
the 2 data sets. Therefore, validation was conducted for 

MIMAT0000102, MIMAT0002806, MIMAT0003882, and 
MIMAT0004677. As shown in Figure 7A, the expression levels 
of MIMAT0000102, MIMAT0003882, and MIMAT0004677 
were significantly decreased in HCC compared with normal tis-
sues (P < .05). This result is consistent with the previous analysis. 
The expression level of MIMAT0002806 was higher in HCC 
than that in normal tissues, which was in line with previous anal-
ysis; however, the difference did not reach to significance level 
(P > .05).

As shown in Figure 7B, all 4 miRNAs were significantly 
associated with prognosis (P < .05). The expression of 
MIMAT0000102, MIMAT0003882, and MIMAT0004677 
was negatively associated with prognosis and the expression of 
MIMAT0002806 was positively associated with prognosis. 
This result was in agreement with the previous analysis.

Discussion
In our study, we comprehensively analyzed the expression data 
of HCC and identified DEmRNAs, DElncRNAs, and 
DEmiRNAs between tumor and normal samples. Based on 
WGCNA and coexpression analysis, an miRNA-mRNA 

Figure 6. Kaplan-Meier survival analysis of candidate genes.
Red and blue lines indicated patient groups with expression levels above and below median value, respectively.
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Figure 7. Validation of prognosis-associated miRNAs in an independent data set: (A) The differential expression level of 4 miRNAs in GSE36915 and (B) 

Kaplan-Meier survival analysis of 4 miRNAs in GSE31384. miRNA indicates microRNA; HR indicates hazard ratio.
Red and black lines indicated patient groups with expression levels above and below median value, respectively.

network and an lncRNA-mRNA regulation network were 
constructed. Following topological analysis and survival analy-
sis, we further identified 9 DEmRNAs and 7 DEmiRNAs that 
were potential prognostic biomarkers. MIMAT0000102, 
MIMAT0003882, and MIMAT0004677 were successfully 
validated in independent data sets.

In total, 792 DEmRNAs were identified. According to our 
GO analysis, DEmRNAs were mainly enriched in CCs related 
to plasma membrane structure and BPs related to sensory per-
ception. The membrane structure is an essential component for 
intercellular communication. Deregulation of membrane struc-
ture is frequently occurred in cancers and contributes to cancer 
cell proliferation and metastasis. Besides, it has also been 
reported that taste and smell functions are also deregulated in 
reported in cancer patients.28 Differential expressions of olfac-
tory receptors, such as OR5L2 between HCC and normal sam-
ples were identified. Olfactory receptor contains more than 380 
family members and is the largest gene family in human.29 In 
recent years, ectopic expression of olfactory receptors was found 
to be related to many physiological processes, such as would 
healing, cytokinesis, and myocardial function.30-32 Besides, dys-
regulation of olfactory receptors was reported to regulate cell 

proliferation, apoptosis, and migration in several cancers.33-35 A 
recent study demonstrated that olfactory receptors could be 
used as biomarkers in human breast cancer tissues.36 In addi-
tion to alterations in intercellular communication and sensory 
perception, cellular metabolism and cell cycle are also fre-
quently deregulated in cancers.37,38 Consistent with this, our 
KEGG analysis showed that DEmRNAs were significantly 
enriched in various KEGG pathways related to the metabo-
lism of amino acids, carbohydrates, and fatty acids, indicating 
universal metabolic remodeling in HCC. Meanwhile, 
DEmRNAs were also significantly enriched in KEGG path-
ways such as DNA replication and p53 signaling, suggesting 
that the cell cycle of HCC may be out of control to a large 
extent. Taken together, our results indicated a wide range of 
biological functions and pathways in HCC were dysregulated.

To analyze the dynamic regulation of lncRNAs, miRNAs, 
and mRNAs, we constructed an lncRNA-mRNA coexpression 
network and an miRNA-mRNA coexpression network. 
Generally, nodes with high connectivity degree are correlated 
with important biological functions.39,40 In the 2 coexpression 
networks, SNORD9, CRHBP, CLEC1B, GDF2, OR5L2, 
MIMAT0002806, MIMAT0030021, MIMAT0019880, and 
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MIMAT0004556 were genes with high connectivity, indicat-
ing that they may play important roles in the development and 
progression of LIHC.

Our subsequent survival analysis confirmed that 3 of the 
hub genes, CRHBP, MIMAT0002806, and MIMAT0019880, 
were prognosis-associated genes, further supporting their 
essential roles in HCC. Patients with low expression of CRHBP 
and MIMAT0002806 had a worse prognosis than those with 
high expression levels, whereas patients with low expression of 
MIMAT0019880 had a better prognosis. The expression of 
CRHBP is significantly suppressed in HCC and reduced 
CRHBP expression is proposed as a negative predictor of clini-
cal prognosis.41,42 MIMAT0002806 is upregulated in HCC 
and may promote cancer progression by enhancing cell prolif-
eration and stimulating epithelial to mesenchymal transition.43 
Few clues have been reported about whether MIMAT0019880 
is associated with HCC. However, based on our results, we 
speculated that MIMAT0019880 may also be potential prog-
nostic indicators of HCC.

In addition to CRHBP, MIMAT0002806, and 
MIMAT0019880, 13 other genes, including B4GALT3, C7, 
PIGU, HNRNPC, and MIMAT0004677 (hsa-miR-34c-3p), 
were also identified to be prognosis-associated genes. B4GALT3 
encodes a protein-mediating glycosylation, and suppression of 
B4GALT3 may promote nuclear factor-κB phosphorylation in 
HCC, thereby enhancing cell motility and cancer progres-
sion.44 Higher serum C7 protein level of HCC has been pro-
posed as an indicator of poor response to transarterial 
chemoembolization.45 Both PIGU and HNRNPC have been 
confirmed to be overexpressed in HCC and the high expres-
sion level of these 2 genes is associated with unfavorable prog-
nosis.46,47 In addition, MIMAT0004677 plays an oncogenic 
role in HCC through promoting cancer progression by directly 
targeting NCKAP1 and low expression of MIMAT0004677 is 
an indicator of favorable survival.48 Consequently, B4GALT3, 
C7, PIGU, HNRNPC, and MIMAT0004677 may be potential 
prognostic indicators of HCC.

The main advantage of our study was that a combination of 
WGCNA, topological analysis, and survival analysis was 
implemented to identify HCC prognostic factors. Several 
prognostic factors including CRHBP, MIMAT0002806, and 
MIMAT0019880 were eventually identified. Among them, 
MIMAT0019880 was a novel HCC biomarker, which has 
never been proposed as an indicator of HCC prognosis. 
However, independent data sets are still needed to verify the 
prognostic significance of the biomarkers identified in our 
study. In addition, experimental investigations should also be 
conducted to provide an insight into the underlying roles of the 
prognostic biomarkers in HCC.

Conclusion
In conclusion, we analyzed the dynamic transcriptome regula-
tion in HCC and identified 9 DEmRNAs and 7 DEmiRNAs 
that might be potential prognostic biomarkers for HCC. 

MIMAT0000102, MIMAT0003882, and MIMAT0004677 
were successfully validated in independent data sets. These 
genes correlated significantly with prognosis and might con-
tribute to HCC diagnosis and treatment in future clinical prac-
tice if implemented into decision-making processes.

Author Contributions
SPQ, QYS and JX analyzed the data and drafted the manuscript. 
WWY and HWF designed the study and obtained the fundings. 
All authors reviewed the final version of the manuscript.

ORCID iD
Hengwei Fan  https://orcid.org/0000-0001-5367-7806

RefeRenCes
 1. Maluccio M, Covey AJ. Recent progress in understanding, diagnosing, and 

treating hepatocellular carcinoma. CA Cancer J Clin. 2012;62:394-399.
 2. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391: 

1301-1314.
 3. Ghouri YA, Mian I, Rowe JH. Review of hepatocellular carcinoma: epidemiol-

ogy, etiology, and carcinogenesis. J Carcinog. 2017;16:1.
 4. Khalaf N, Ying J, Mittal S, et al. Natural history of untreated hepatocellular car-

cinoma in a US cohort and the role of cancer surveillance. Clin Gastroenterol Hep-
atol. 2017;15:273-281.e271.

 5. Zhang YC, Xu Z, Zhang TF, Wang YL. Circulating microRNAs as diagnostic 
and prognostic tools for hepatocellular carcinoma. World J Gastroenterol. 
2015;21:9853-9862.

 6. Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks 
of cancer. Science. 2017;357:eaal2380.

 7. Liz J, Esteller M. LncRNAs and microRNAs with a role in cancer development. 
Biochim Biophys Acta. 2016;1859:169-176.

 8. Lui KY, Zhao H, Qiu C, et al. Integrator complex subunit 6 (INTS6) inhibits 
hepatocellular carcinoma growth by Wnt pathway and serve as a prognostic 
marker. BMC Cancer. 2017;17:644.

 9. Xiao H, Zhou B, Jiang N, et al. The potential value of CDV3 in the prognosis 
evaluation in Hepatocellular carcinoma. Genes Dis. 2018;5:167-171.

 10. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861.
 11. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as 

targets for anticancer drug development. Nat Rev Drug Discov. 2013;12: 
847-865.

 12. Chen WX, Zhang ZG, Ding ZY, et al. MicroRNA-630 suppresses tumor 
metastasis through the TGF-beta- miR-630-Slug signaling pathway and corre-
lates inversely with poor prognosis in hepatocellular carcinoma. Oncotarget. 
2016;7:22674-22686.

 13. Liu J, Lu C, Xiao M, Jiang F, Qu L, Ni R. Long non-coding RNA SNHG20 
predicts a poor prognosis for HCC and promotes cell invasion by regulating 
the epithelial-to-mesenchymal transition. Biomed Pharmacother. 2017;89: 
857-863.

 14. Zhang D, Cao C, Liu L, Wu D. Up-regulation of LncRNA SNHG20 predicts 
poor prognosis in hepatocellular carcinoma. J Cancer. 2016;7:608-617.

 15. Haeussler M, Zweig AS, Tyner C, et al. The UCSC Genome Browser database: 
2019 update. Nucleic Acids Res. 2019;47:D853-D858.

 16. Harrow J, Frankish A, Gonzalez JM, et al. GENCODE: the reference human 
genome annotation for the ENCODE project. Genome Res. 2012;22: 
1760-1774.

 17. Ritchie ME, Phipson B, Wu D, et al. LIMMA powers differential expression 
analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 
43:e47.

 18. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of 
large gene lists using DAVID bioinformatics resources. Nat Protoc. 
2009;4:44-57.

 19. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res. 2000;28:27-30.

 20. Damian D, Gorfine M. Statistical concerns about the GSEA procedure. Nat 
Genet. 2004;36:663.

 21. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation net-
work analysis. BMC Bioinformatics. 2008;9:559.

 22. Giulietti M, Occhipinti G, Principato G, Piva F. Identification of candidate 
miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-
expression network analysis. Cell Oncol (Dordr). 2017;40:181-192.

https://orcid.org/0000-0001-5367-7806


10 Evolutionary Bioinformatics 

 23. Jason M. Psych issues. JEMS. 2013;38:14.
 24. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for 

integrated models of biomolecular interaction networks. Genome Res. 2003;13: 
2498-2504.

 25. Bland JM, Altman DG. Survival probabilities (the Kaplan-Meier method). BMJ. 
1998;317:1572.

 26. Shih TC, Tien YJ, Wen CJ, et al. MicroRNA-214 downregulation contributes to 
tumor angiogenesis by inducing secretion of the hepatoma-derived growth factor 
in human hepatoma. J Hepatol. 2012;57:584-591.

 27. Wei R, Huang GL, Zhang MY, et al. Clinical significance and prognostic value 
of microRNA expression signatures in hepatocellular carcinoma. Clin Cancer 
Res. 2013;19:4780-4791.

 28. Spotten LE, Corish CA, Lorton CM, et al. Subjective and objective taste and 
smell changes in cancer. Ann Oncol. 2017;28:969-984.

 29. Firestein S. How the olfactory system makes sense of scents. Nature. 
2001;413:211-218.

 30. Zhang X, Bedigian AV, Wang W, Eggert US. G protein-coupled receptors par-
ticipate in cytokinesis. Cytoskeleton (Hoboken). 2012;69:810-818.

 31. Busse D, Kudella P, Gruning NM, et al. A synthetic sandalwood odorant 
induces wound-healing processes in human keratinocytes via the olfactory recep-
tor OR2AT4. J Invest Dermatol. 2014;134:2823-2832.

 32. Jovancevic N, Dendorfer A, Matzkies M, et al. Medium-chain fatty acids modu-
late myocardial function via a cardiac odorant receptor. Basic Res Cardiol. 
2017;112:13.

 33. Massberg D, Simon A, Haussinger D, et al. Monoterpene (-)-citronellal affects 
hepatocarcinoma cell signaling via an olfactory receptor. Arch Biochem Biophys. 
2015;566:100-109.

 34. Kalbe B, Schulz VM, Schlimm M, et al. Helional-induced activation of human 
olfactory receptor 2J3 promotes apoptosis and inhibits proliferation in a non-
small-cell lung cancer cell line. Eur J Cell Biol. 2017;96:34-46.

 35. Weber L, Al-Refae K, Ebbert J, et al. Activation of odorant receptor in colorectal 
cancer cells leads to inhibition of cell proliferation and apoptosis. PLoS ONE. 
2017;12:e0172491.

 36. Weber L, Massberg D, Becker C, et al. Olfactory receptors as biomarkers in 
human breast carcinoma tissues. Front Oncol. 2018;8:33.

 37. Shender V, Arapidi G, Pavlyukov M, et al. The role of intercellular communica-
tion in cancer progression. Russ J Bioorg Chem. 2018;44:473-480.

 38. Pascual G, Dominguez D, Benitah SA. The contributions of cancer cell metabo-
lism to metastasis. Dis Model Mech. 2018;11:dmm032920.

 39. Yuan L, Chen L, Qian K, et al. Co-expression network analysis identified six 
hub genes in association with progression and prognosis in human clear cell renal 
cell carcinoma (ccRCC). Genom Data. 2017;14:132-140.

 40. Vallabhajosyula RR, Chakravarti D, Lutfeali S, Ray A, Raval A. Identifying 
hubs in protein interaction networks. PLoS ONE. 2009;4:e5344.

 41. Xia HB, Wang HJ, Fu LQ , et al. Decreased CRHBP expression is predictive of 
poor prognosis in patients with hepatocellular carcinoma. Oncol Lett. 2018;16: 
3681-3689.

 42. Ho DW, Kai AK, Ng IO. TCGA whole-transcriptome sequencing data reveals 
significantly dysregulated genes and signaling pathways in hepatocellular carci-
noma. Front Med. 2015;9:322-330.

 43. Zhang LY, Liu M, Li X, Tang H. miR-490-3p modulates cell growth and epi-
thelial to mesenchymal transition of hepatocellular carcinoma cells by targeting 
endoplasmic reticulum-Golgi intermediate compartment protein 3 (ERGIC3). J 
Biol Chem. 2013;288:4035-4047.

 44. Fang T, Lv H, Lv G, et al. Tumor-derived exosomal miR-1247-3p induces can-
cer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat 
Commun. 2018;9:191.

 45. Yu SJ, Kim H, Min H, et al. Targeted proteomics predicts a sustained complete-
response after transarterial chemoembolization and clinical outcomes in patients 
with hepatocellular carcinoma: a prospective cohort study. J Proteome Res. 
2017;16:1239-1248.

 46. Cao J, Wang P, Chen J, He X. PIGU overexpression adds value to TNM staging 
in the prognostic stratification of patients with hepatocellular carcinoma. Hum 
Pathol. 2019;83:90-99.

 47. Tremblay MP, Armero VE, Allaire A, et al. Global profiling of alternative RNA 
splicing events provides insights into molecular differences between various 
types of hepatocellular carcinoma. BMC Genomics. 2016;17:683.

 48. Xiao CZ, Wei W, Guo ZX, et al. MicroRNA-34c-3p promotes cell proliferation 
and invasion in hepatocellular carcinoma by regulation of NCKAP1 expression. 
J Cancer Res Clin Oncol. 2017;143:263-273.


