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Visitors can play an important role in the spread of infections. Here, we

incorporate an epidemic model into a game theoretical framework to inves-

tigate the effects of travel strategies on infection control. Potential visitors

must decide whether to travel to a destination that is at risk of infectious

disease outbreaks. We compare the individually optimal (Nash equilibrium)

strategy to the group optimal strategy that maximizes the overall population

utility. Economic epidemiological models often find that individual and

group optimal strategies are very different. By contrast, we find perfect

agreement between individual and group optimal strategies across a wide

parameter regime. For more limited regimes where disagreement does

occur, the disagreement is (i) generally very extreme; (ii) highly sensitive

to small changes in infection transmissibility and visitor costs/benefits;

and (iii) can manifest either in a higher travel volume for individual optimal

than group optimal strategies, or vice versa. The simulations show qualitat-

ive agreement with the 2003 severe acute respiratory syndrome (SARS)

outbreak in Beijing, China. We conclude that a conflict between individual

and group optimal visitor travel strategies during outbreaks may not gener-

ally be a problem, although extreme differences could emerge suddenly

under certain changes in economic and epidemiological conditions.
1. Introduction
Visitors can play an important role in the transmission and spread of infectious

diseases. They can serve as susceptible hosts and be infected while staying in

one place and then act as mobile sources of case imports to other populations

[1–3]. On the one hand, more visitors can lead to substantial benefits for the

local economy and businesses. On the other hand, some infectious diseases

spread aggressively in major tourism destinations (e.g. Hong Kong, New York,

Singapore, Toronto, Beijing), and a large number of visitors can have unexpected

impacts on public health [3–5]. For example, severe acute respiratory syndrome

(SARS) was introduced to Beijing, China by a few infected visitors in early

March 2003, resulting in a large epidemic [6–11]. Other examples where visitors

have played a role in regional or international spread include pandemic influenza

[12–14], Ebola fever [15] and Middle East respiratory syndrome coronavirus

(MERS-CoV) [16]. Enforcing restrictions on incoming visitors could be an efficient

way to control local disease outbreaks [7,17–19], but the decision to restrict

visitors must be weighed carefully due to the economic and social repercussions.

Game theory attempts to analyse situations where individuals must make

decisions in a group environment and where each individual’s decision influ-

ences the pay-off received by the others in the group [20]. Many interventions

(such as vaccination and social distancing) create positive externalities, i.e.

benefits to those who did not participate in the intervention, because of

herd immunity generated by interruption of transmission. Hence, many pre-

vious models have illustrated the discrepancy between the optimal individual

strategy that maximizes personal interest, and the strategy that serves the
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group best by minimizing the overall health burden on the

population [21–26]. Although several factors may alter

this picture and have been explored in successive work—

such as the beneficial effects of social norms and prosocial

vaccination [27,28]—these models often illustrate a conflict

between group and individual optima across a very broad

region of parameter space, covering most epidemiologically

and economically relevant regimes [21,22,24,25].

However, this previous research has been mostly con-

cerned with individuals making decisions in a closed

population where the disease is already established and is

spreading [21–25,29–33], and does not consider multi-

population interactions or the strategic considerations faced

by a visitor deciding whether to travel to an affected area

during an outbreak. In the context of travel decisions, game

theory can be used to answer questions such as whether

travelling or not travelling to a location is optimal according

to a criterion of self-interest, and the answers it provides can

be contrasted with optimal control strategy from the health

authority perspective, in terms of maximizing overall

population utility.

In this work, we incorporate an epidemic model (based

on the classic susceptible–infectious–recovered (SIR)

model) into a game theoretical framework to investigate the

effects of strategic decisions about travel on local disease con-

trol. In contrast with many previous game theoretical

analyses of decision making in epidemiological systems in a

closed population, for this visitor’s game, we find perfect

agreement between the individual and group optimal strat-

egies for a range of epidemiologically and economically

plausible parameter values. This agreement can be observed

in two forms: individual and group optimal strategies both

completely reject travelling when the real or perceived dis-

ease risk level is sufficiently high, or both strategies allow

free travel when the real or perceived disease risk level is suf-

ficiently low. However, disagreement (or conflict) between

the individual visitor strategy and the group optimal strategy

is observed in two forms: an overload or deficit of visitors

compared to the group optimum. In regions where disagree-

ment occurs, the disagreement between the individual

optimum (corresponding to a ‘voluntary entrance’ scheme)

and the group optimum (corresponding to a ‘restricted

entrance’ scheme) is significant. During an outbreak, this con-

flict is likely to occur at any real or perceived disease risk

level. More importantly, in this region, the model outcomes

are highly sensitive to small changes in infection transmissi-

bility and visitor costs/benefits. For certain parameter

regimes, uncontrolled visitor inflow could result in unex-

pected large-scale outbreaks when the disease risk level

suddenly increases by even a small amount, and the local

health authority’s travel restrictions could effectively control

disease outbreaks when visitor inflow is considered to be

‘overloaded’ during epidemics. Interestingly, the faster the

disease risk information is updated, the more likely a discre-

pancy will occur. Moreover, faster updating of the disease

risk information could effectively prevent visitor inflow

‘overload’ and therefore stop an outbreak.

The remaining parts of this work are organized as fol-

lows. In the next two sections, we establish a game

theoretical framework and an epidemic model including

both travelling and local populations, to model the individual

decision-making process. In the subsequent sections the

results are presented along with a detailed discussion.
2. Travelling game
Our game is a population game where players are individ-

uals in a homeland population (the ‘travelling population’)

deciding whether or not to travel to an affected destination.

These individuals can move through the following states:

individual in homeland!potential visitor!visitor outside!
visitor inside! individual in homeland:

ð2:1Þ

A certain fraction of individuals in a homeland population

are designated as potential visitors, who have the economic

means and opportunities for travel. A potential visitor

may adopt a strategy of travelling to the destination and

leaves their homeland, becoming a ‘visitor outside’. Upon

arrival at the destination, they become a ‘visitor inside’,

and subsequently they become a ‘removed visitor’ and

re-join the homeland population, again as a potential visitor.

A potential visitor corresponds to N1 in table 1, a visitor

outside corresponds to rN1 in the term f (r) in equation (3.1),

a visitor inside corresponds to (S1 þ I1 þ R1) in electronic

supplementary material, S3, and an individual in homeland

means that a visitor has been removed from the system

and re-joins individuals in the homeland. More details of

the steps individuals may take in travelling can be found

in electronic supplementary material, S1. Figure 1 presents

the process of a ‘travelling’ individual joining the epide-

mic system (i.e. from ‘potential visitor’ to ‘individual

in homeland’).

For simplicity, we suppose that every individual receives

the same information and picks strategies in the same

way (i.e. with equivalent preferences and equivalent pay-off

for the same strategy). An individual can decide whether

to travel (i.e. the ‘travelling’ strategy) or not to travel

(i.e. the ‘non-travelling’ strategy) to their destination. We

use r1 to denote the perceived cost (negative pay-off ) of

morbidity and/or mortality risk (i.e. the risk of disease,

or as a term of ‘health cost’) from infection. Similarly,

we use r0 to denote the perceived cost of the risk of utility

loss for adopting the ‘non-travelling’ strategy, since those

individuals lose economic or social opportunities. Therefore,

we write the pay-off for an individual following the travelling

strategy as

E1 ¼ �a � f(r; P) � r1, ð2:2Þ

where a represents the probability that an epidemic occurs at

the destination during a traveller’s visit (or, a ¼ 1 for an

ongoing epidemic that the traveller knows about before

departure), f(r; P) is the probability that a visitor is infected

during the trip (to the epidemic destination) given that the

pre-existing immunity level in the destination population is

P, and r is the overall proportion of potential visitors who

adopted the ‘travel’ strategy.

To assess the risk of a visitor being infected during the

trip, we need to know the basic reproduction number of

the disease, R0, i.e. the expected number of secondary cases

generated by a typical primary case during his/her infectious

period in an otherwise susceptible population. In the case of

R0 . 1, we have f(r; P) ¼ 0 if P � (1� 1=R0) (see electronic

supplementary material, S2.1). This is called perfect herd

immunity, i.e. an outbreak cannot occur when the population

immunity level is greater than (1� 1=R0) [40,41]. We denote
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Figure 1. The epidemic model diagram. Black arrows represent infection status transition paths and red dashed arrows represent transmission paths. The light blue
arrows represent natural births and deaths, and green arrows represent visitor entry and exit. Square compartments represent local classes, circular compartments
represent visitor classes, and the diamond denotes the ‘decision’ process of potential visitors. Red compartments represent infectious classes. The light grey area
(surrounded by a grey dashed line) represents ‘inside border’. The horizontal black dashed line separates the total population into ‘local population’ (or local
residents) and ‘travelling population’ (as in Path 2.1). (Online version in colour.)

Table 1. Summary table of model parameters. The ranges of the parameters are used for the sensitivity analysis. The point values of the disease parameters
reflect influenza, and the ranges of the parameters reflect a broad range of other infectious diseases. The values and ranges of the parameters related to travel
(i.e. K1, r, n21 and l21) reflect Hong Kong as the default destination.

parameter notation value range/remark source(s)

basic reproduction number R0 2.5a [1.0, 10.0] [34 – 37]

mean duration that visitors are outside border l21 3 days [0.1, 10] S6.1

ratio: travelling players
population threshold

N1 7.5% [5.0%, 15.0%] assumed, S2.2 and S3

ratio: visitors capacity
population threshold

K1 7.0% [5.0%, 15.0%] S6.2

mean infectious period g21 5 days [2.0, 10.0] [38]

mean human lifespan m21 70 years fixed —

mean duration that visitors are inside border n21 3 days [0.5, 15.0] S6.3

relative risk (as in equation (2.5)) r ¼ r0
r1

1023 [1024, 1022] S6.4

probability of travelling p — [0.0, 1.0] equation (2.4)

optimal probability of travelling p* — [0.0, 1.0] S2.1

proportion of visitors r — [0.0, 1.0] equation (2.2)

optimal proportion of visitors r* — [0.0, 1.0] equation (2.6) and S2.2

cost of all game players Y — — S2.2

difference between group and individual optima Dr r* 2 p* [21.0, 1.0] equation (4.1)

probability that a disease outbreak occurs a 0.01b [0.001, 0.02] assumed
aOne can determine the function b(R0) explicitly from equation (3.2), and R0 ¼ 2:5 is also applicable to the 2003 SARS epidemic according to [6,7,9 – 11,39].
ba ¼ 1.0 during epidemics.
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the pay-off of an individual following the non-travelling

strategy as

E0 ¼ �r0: ð2:3Þ

Since this is a population game, we also define a mixed strat-

egy where players follow the travelling strategy with a

probability p and follow the non-travelling strategy with a

probability (1 2 p). The pay-off function is then

E(p, r; P) ¼ pE1 þ (1� p)E0

¼ �par1 � f(r; P)� (1� p)r0: ð2:4Þ

The game remains unchanged if we scale the pay-off

function by a constant; thus, we eliminate one parameter in
equation (2.4) by leaving only the relative risk, r ¼ r0/r1.

Normally, we have 0 , r0� r1 since the pay-off of utility

loss, r0 in equation (2.3), should be less than that of health

loss, r1 in equation (2.2), if the disease is severe or potentially

deadly. Hence we assume 0 , r� 1 in general. Furthermore,

we have

E(p, r; P) ¼ p � [r� af(r; P)]� r: ð2:5Þ

For convenience, we denote f(r; P) as f(r) and E( p, r; P) as

E( p, r) and fix P in the rest of this work. We can show that

the individual equilibrium ( p*) of the game exists, is the

unique Nash equilibrium, and is stably convergent (see

electronic supplementary material, S2.1).
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We formulate the (scaled) costs of all potential visitors

(game players) as

Y(r) ¼ ra � f(r)þ (1� r)r, ð2:6Þ

where all terms have the same meaning as in equation (2.5).

More details are provided in electronic supplementary

material, S2.2. We also define the group (Pareto) optimum r*

as the value of r for which the population average cost function

Y(r) of all potential visitors (i.e. all game players) is minimized.
 .org
J.R.Soc.Interface

15:20180515
3. Epidemic model
3.1. Formulation of epidemic model
To specify the infection probability f(r), we adopt the standard

SIR model. Individuals of the destination population (exclud-

ing visitors) are categorized as susceptible to the disease (S,

those who may be infected), infectious (I, those capable of trans-

mitting disease) or removed (R, those who are either recovered

and immunized or died). Similarly, visitors are also categorized

as susceptible (S1), infectious (I1) or removed (R1). We use S, I
and R (S1, I1 and R1) to denote the proportions of susceptible,

infectious and recovered individuals in the destination (visitor)

populations, respectively. This patchy population structure was

proposed previously in [1,2,42,43]. Before taking the trip, visi-

tors are assumed to be totally susceptible. We illustrate this

‘local-and-travelling population’ interactive epidemic system

in figure 1. We further assume that the susceptible visitors

follow a logistic growth mechanism.

— The visitor population capacity (e.g. the number of beds

in hotels) of one place is finite and assumed to be a

constant.

— Low (/high) volume of visitors will increase (/decrease)

the recruitment effort of travellers for a business trip

and decrease (/increase) the expense for a recreation trip.

Thus, logistic growth is a reasonable choice. After elimi-

nating R0 and R01 (see electronic supplementary material, S3

for details), we formulate the epidemic model as

S0 ¼ m � ð1� K1 � SÞ � bS � ðI þ I1Þ,
I0 ¼ bS � ðI þ I1Þ � ðgþ mÞI,

S01 ¼ fr � 1�
S1 þ 1þ g

n

� �
I1

K1

2
4

3
5� bS1 � ðI þ I1Þ � nS1

and
I01 ¼ bS1 � ðI þ I1Þ � ðgþ nÞI1,

8>>>>>>>>><
>>>>>>>>>:

ð3:1Þ

where fr ¼ f(r) ¼ rlN1 represents the rate of incoming visitors,

K1 is the maximum visitor capacity that the destination is

willing (or able) to accept, N1 is the number of all players

(i.e. all potential visitors), and players who adopt the ‘travel’

strategy, travel from the homeland to the destination at a

rate l ¼ 1
3 day�1 (see electronic supplementary material,

S6.1). We express both K1 and N1 in units of proportion of

the population threshold (destination population plus the

maximum visitor capacity) and we fix N1. We assume that all

trips are 3 days long, hence visitors return at rate n ¼ 1
3 day�1

(see electronic supplementary material, S6.3). We summarize

all model parameters in table 1.

The contact term b is a function of R0. Using the next gen-

eration matrix method [44], we derive the basic reproduction
number of our epidemic model as

R0 ¼ b � (1� K1)

gþ m
þ K1

gþ n

� �
, ð3:2Þ

thus, b/R0 when the values of the other parameters

are fixed.

3.2. Model equilibria
We denote the disease-free equilibrium (DFE) as

E(1) ¼ (S(1), I(1), S(1)
1 , I(1)

1 ) ¼ (1� K1), 0,
frK1

fr þ nK1
, 0

� �
,

where I ¼ I1 ¼ 0 and S(1)
1 , K1. The DFE (E(1)) is globally

stable when R0 , 1, whereas it is unstable when R0 . 1.

When R0 . 1, there is an endemic, i.e. the visitor-absent

endemic equilibrium,

E(2) ¼ (S(2), I(2), S(2)
1 , I(2)

1 ) ¼ gþ m

b
, m � 1� K1

gþ m
� 1

b

� �
, 0, 0

� �
,

where S1 ¼ I1 ¼ 0. Specifically, S(1) ¼ (g þ m)/b is the reci-

procal of R0 of the standard SIR model [41]. E(2) can be

realized when fr in S01 (see equation (3.1)) becomes 0 and it

is locally stable. When R0 . 1, there also exists another ende-

mic equilibrium corresponding to a mixed state of local and

visitor infections (i.e. infected visitors), denoted as

E(3) ¼ (S(3), I(3), S(3)
1 , I(3)

1 ). The solution of E(3) can be obtained

explicitly by taking the non-negative root of [S0, I0, S01, I01]T ¼

0 (0 represents the zero vector) with both I = 0 and I1 = 0.

3.3. Probability of visitors becoming infected
Given the model in equation (3.1) and the assumption that all

individuals in a compartment leave it at the same rate regard-

less of how long they have been there, we may take the

probability of a visitor becoming infected during the trip to

be equal to the ratio of the rate at which susceptible visitors

(S1) are infected to the rate at which susceptible visitors (S1)

leave the destination [22],

f(r) ¼ bS(3)
1 (I(3) þ I(3)

1 )

bS(3)
1 (I(3) þ I(3)

1 )þ nS(3)
1

¼ 1� n

b(I(3) þ I(3)
1 )þ n

and thus, af(r) ¼ a� na

b(I(3) þ I(3)
1 )þ n

:

9>>>=
>>>;
ð3:3Þ

We present the numerical results of the relationship between

f(r) and r in electronic supplementary material, S2.1. Given

the relationship between b and R0, one may derive the

relationship between R0 and f(r) explicitly.
4. Results and discussion
4.1. Individual equilibrium and travelling optimum
We first explore how the predicted travel strategies depend

on the basic reproduction number (R0) and the relative risk

(r). Many factors, including seasonal (climatic) factors and

the evolution of viruses, could affect R0. Additionally,

media coverage of the risk and relevant educational pro-

grammes [45–50] could influence visitors’ perception of the

risk, thus changing r1 and r (equation (2.5)). During an

ongoing epidemic (a ¼ 1), we find that both r and R0 signifi-

cantly influence the individual equilibrium p* and the group

optimum r* (figure 2). (The values of the other parameters
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Figure 2. Individual and population optima as functions of the basic reproduction number R0 and the relative risk r during an epidemic (a ¼ 1). (a) The Nash
equilibrium proportion of travellers p*; (b) the group optimal proportion of travellers r*, with colour codes to indicate magnitude. The range of R0 and the values
of the other parameters are listed in table 1. (Online version in colour.)
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are fixed and listed in table 1, and small variations in their

values do not dramatically change the trends of these

relationships.) We observe that both the individual and popu-

lation optima have the same qualitative relationship with R0

and r: both optima are monotonically decreasing functions of

R0 and monotonically increasing functions of r. This behav-

iour is expected, since an increasing transmissibility should

reduce both the individual incentive to travel and the

group optimal rate of travelling, while a decline in the relative

risk of travelling should encourage travel, both individually

and as a group. More surprisingly, the sudden transition of

the individual optimum from 0 to 1 (as shown in figure 2a)

is steeper than that of the population optimum (as shown

in figure 2b).

To further explore the relationship between the individual

and group optimum, we study their difference:

Dr ¼ r� � p�: ð4:1Þ

More details are given in electronic supplementary

material, S2. A plot of Dr versus the population optimum

r* and the individual equilibrium p* during an ongoing
epidemic (a ¼ 1) show that they agree perfectly for most of

the parameter space (figure 3). For most of the parameter

region, r* ¼ p* ¼ 0 or 1 (i.e. the white area in figure 3).

These two situations can occur when both the disease

risk (reflected by R0) and perceived risk are (i) either con-

siderably high, i.e. r* ¼ p* ¼ 0, in which case no one

intends to travel and complete border entrance restrictions

are implemented, or (ii) considerably low, i.e. r* ¼ p* ¼ 1,

in which case all individuals intend to travel and border

entrance is completely unrestricted. Variations in the values

of the other parameters do not change the trends of these

relationships (table 1).

However, despite the broad agreement across the

parameter plane, the region where r* and p* are discrepant

reveals interesting findings. During an epidemic, most

locations are expected to receive fewer visitors (with limited

visitor entrance) than usual when there is no epidemic. But

the model predicts parameter regimes where the group opti-

mal solution requires a higher volume of travel than what is

individually optimal: in the blue region of the parameter

plane, Dr . 0, meaning p* , r* (figure 3a). In this regime,

the health authority would wish to encourage more travel
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rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180515

6

than actually occurs. However, if either the disease risk R0 or

the perceived pay-off of disease risk r1 decline even slightly

(for instance, due to seasonal factors and/or changing

media coverage) the situation is reversed, and the discre-

pancy in interests Dr could change from Dr . 0 to Dr , 0

(red region in figure 3a). When Dr , 0, a health authority

restriction on visitors is desired and only r*/p* of the visitors

should be allowed to enter in order to achieve the popula-

tion optimum r*. In summary, figure 3 shows a surprising

contrast to many game theoretical models comparing indi-

vidual and group optimal outcomes: in large parts of the

parameter space, there is no discrepancy. However, when a

discrepancy does emerge, it can emerge very quickly with

small changes in parameter values, and moreover, the indi-

vidual optimal travel rate could exceed the group optimal

rate, or vice versa.
4.2. Example of the 2003 severe acute respiratory
syndrome outbreak in Beijing

The epidemic patterns predicted by our model under a

manipulation of the group optimal strategy r are qualitatively

similar to the epidemic curve during the 2003 SARS outbreak

in Beijing, China, resulting from the timing of certain travel-

related events during the outbreak. Figure 4a (adapted from

Pang et al. [11]) shows weekly reported cases in Beijing

during the outbreak. Data are available from the electronic

supplementary material. The time point when knowledge

of the epidemic was first made public, e.g. SARS made repor-
table (Apr 10) in fig. 1 of Pang et al. [11], refers to the date of

news press.1 The time point of the official start of restrictions

on travel refers to the events outbreak announced publicly by
government (Apr 20) and fever checks at airports begin (Apr 22)
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Figure 4. The 2003 SARS outbreak in Beijing, China. (a) The reported cases during the 2003 SARS outbreak in Beijing, China (adapted from Pang et al. [11]) and (b)
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in fig. 1 of Pang et al. [11]. We note that these two events

resulted in almost no one travelling to Beijing, i.e. r ¼ 0,

until the end of the SARS epidemic.2

We also note that, although the Beijing SARS outbreak

was initially sparked by travellers, the proportion of cases

in Beijing caused by travellers over the entire outbreak is

thought to be small, especially after fever screening began

[51]. Also, the United States Centers for Disease Control

suggests that travellers to SARS-affected destinations take

precautions to avoid infection, suggesting a non-trivial infec-

tion risk for travellers.3 The latter two features of the Beijing

SARS outbreak are consistent with our model assumptions.

Figure 4b shows a model-simulated epidemic curve that

largely matches the observed epidemic curve. To generate

this curve we focus on changes in R0 (disease transmissi-

bility) and r (proportion of players adopting the ‘travel’
strategy). We decrease r from 0.5 to 0.25 at the time indicated

by the blue dashed vertical line in figure 4b. This decrease

is associated with the start of public awareness of the SARS

risk in Beijing after it was revealed to the public (see end-

note 1). Similarly, the decrease in R0 from 2.5 to 1.75 as

also indicated by the blue dashed vertical line would corre-

spond to an accompanying reduction of the effective contact

rate due to the onset of public awareness of SARS. (The effec-

tive contact rate is defined as the product of the contact rate

and transmission probability per contact. It is believed, and

is modelled, to be negatively, or at least non-positively, related

to reported disease incidence [42,46–48,52].) The time lag,

i.e. the gap between the pairs of vertical solid and dashed

lines of the same colour in figure 4, is fixed at 3 days due to

the mixed effects of the incubation period (or the latent

period) of SARS infection and the delay of human reaction
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to the outbreak. The model simulation largely captures the

observed SARS epidemic between March and May 2003, as

shown in figure 4a,b and fig. 8 of [53].

The model-predicted outcome of an earlier implemen-

tation of travel restrictions (see blue and red dashed lines in

figure 4b) is obtained by fixing the combinations of R0 and

N1, and setting r ¼ 0 (i.e. nobody is able or willing to enter

due either to travel restrictions or cautious behaviour due

to SARS risk). We found that the earlier the travel restrictions

are implemented, the more effectively the disease outbreak

level is reduced. By contrast, an uncontrolled and sudden

increase in the proportion of visitors (e.g. increasing r from

0.5 to 0.75) could yield a larger outbreak, as indicated by

the gold dashed lines in figure 4b.

We note that our objective in figure 4 is to convey how the

model framework applies during an unfolding epidemic

where travel restrictions are put in place partway through

the epidemic. Hence, although the starting value of R0 is epi-

demiologically plausible for SARS [54,55], the parameters were

chosen for convenience rather than being fitted systematically.

However, slight changes in the parameter values away from

this parameter regime do not change the outcomes. Also,

additional numerical results for wider parameter variations

in electronic supplementary material, S4 show the range of

possible dynamics exhibited by the model.

4.3. Additional sensitivity analysis
The sensitivity analysis of the baseline model (electronic sup-

plementary material, S5) shows that the results are most

sensitive to the relative risk (r), basic reproduction number

(R0) and the rate at which individuals leave the destination

(n). More detailed discussion of the influence of these

model parameters on model predictions is given in electronic

supplementary material, S7.

In the baseline model, for simplicity, we assume that visi-

tors do not bring infection back to their home country. To

amend this shortcoming, we introduce an additional probabil-

istic case importation risk level into an extended model (see

parameters in table 1). Under this extension, our main results

are unchanged (see electronic supplementary material, S9 for a

detailed discussion). We also included pre-existing immunity

among visitors in an extended model, and also found that

our main results were unchanged. A detailed discussion can

be found in electronic supplementary material, S8.

4.4. Model limitations and future research
In this subsection, we discuss possible model extensions and

some limitations. In the baseline model, we assume individuals

have accurate knowledge of the real basic reproduction number

R0. However, an imbalance between the perceived and actual

R0 could exist [56–58]. We denote ~R0 as the perceived R0.

We expect the perceived ~R0 to correlate positively with the

actualR0. Thus, we assume ~R0(R0) is a non-decreasing function

ofR0. Given the perceived disease risk ~R0, the pay-off of the dis-

ease risk r1( ~R0), i.e. r1 as a function of ~R0 given in equation (2.2),

is a non-decreasing function of ~R0 and a non-decreasing func-

tion of R0. One of the simplest forms of r1( ~R0) is r1 / ~R0 with

a positive scalar. Future research should explore the impact of

such a difference between R0 and ~R0.

In addition, travelling players may not always be

informed about outbreak events in a timely manner. Thus,

a time delay between R0 and ~R0 could exist. We denote
~R0(t; t) ¼ ~R0(R0(t� t)), where t � 0 is the time lag between

the occurrence of infection risk and the perception of infec-

tion risk. If we set t ¼ 0 for all t by assuming humans

receive accurate knowledge of a risk when it emerges, we

have limt!0þ ~R0(t; t) ¼ ~R0(R0(t)). In this work, we consider a

limiting case of t ¼ 0. In reality, this assumption can be relaxed,

and a reasonable estimate can be used. The value of t depends

on the impacts of the risk and the efficiency of the media and

relevant programmes (e.g. news press coverage [22,42,46,48],

education programmes [22,50,59], communication effective-

ness in social networks [49,50,60–63] and pre-existing public

health awareness [14,49,61]).

In this work, we assumed the same information availa-

bility and the same strategic response for the entire visitor

population (see equations (2.2) and (2.3)). However, different

groups of people could have different risk perceptions or

risk preferences, hence the pay-offs could differ between

individuals. This has been demonstrated in previous game

theoretical models to lead to different equilibria and optima

regarding the human response to epidemics [26,64]. Consider

the situation where E1 ¼ E0 (see equations (2.2) and (2.3)).

In this case, some individuals may prefer the travelling strategy

(i.e. risk-seeking preference), while others may prefer the

non-travelling strategy (i.e. risk-averse preference).

Future models including a heterogeneous population could

improve the realism of the model and help test the robustness

of our predictions. One way this could be done is by allowing

the disease natural history and economic parameters to vary

between individuals (as noted in the foregoing paragraph), to

reflect varying health conditions and socio-economic status.

Another way to account for heterogeneity at a larger scale is

to allow for a patchy environment [1] where different sub-

populations are subject to different conditions. Under such cir-

cumstances, we expect that the boundaries in figure 2 would

probably become less sharp, although it is not clear a priori
how large the effect would be. We expect that most forms of

heterogeneity would not change our finding that the individ-

ual and group optima tend to agree in this kind of game

theoretical framework, although the regime shifts implied by

figure 2 would probably be less dramatic if heterogeneity

were included.
5. Conclusion
Many game theoretical studies of closed socio-epidemiological

systems find a significant discrepancy between individual and

group (Pareto) optima in a broad range of economic and epi-

demiological parameters. In this work, we studied an open

socio-ecological system in which visitors decide whether to

travel to a location with an ongoing outbreak. Surprisingly,

we found perfect agreement between the individual and

group optimal strategies for broad ranges of parameter

values. When a disagreement between the individual and

group optimal strategies occurs, the discrepancy was very

large and highly sensitive to small changes in disease trans-

missibility and visitor costs/benefits. For instance, if disease

transmissibility increases by even a small amount, the uncon-

trolled incoming visitors are capable of causing an unexpected

outbreak. This suggests that a discrepancy between the indi-

vidual and group optima could emerge suddenly in real-

world settings, provided that slight changes in economic and

epidemiological factors (parameters) occur. However, timely
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implementation of travel restrictions by health authorities may

effectively prevent large-scale outbreaks.
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Endnotes
1News press of the reveal of the 2003 SARS epidemic in Beijing,
China: http://www.lifeweek.com.cn/2003/0729/5582.shtml (in
Chinese) and http://news.eastday.com/epublish/gb/paper148/
20030530/class014800003/hwz953568.htm.
2The news press of National Tourism Administration (see (in Chi-
nese) http://www.people.com.cn/GB/jingji/1038/1970533.html)
and WHO travel advice (see http://www.who.int/csr/sars/
archive/2003_04_23/en/)
3US Centers for Disease Control. Guidance for persons traveling to
areas where SARS cases have been reported. See https://www.cdc.
gov/sars/travel/advice.html.
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