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Introduction: Coronavirus COVID-19 pandemic is the defining global health crisis of our time and the
greatest challenge we have faced since world war two. To describe this disease mathematically, we noted
that COVID-19, due to uncertainties associated to the pandemic, ordinal derivatives and their associated
integral operators show deficient. The fractional order differential equations models seem more consis-
tent with this disease than the integer order models. This is due to the fact that fractional derivatives and
integrals enable the description of the memory and hereditary properties inherent in various materials
and processes. Hence there is a growing need to study and use the fractional order differential equations.
Also, optimal control theory is very important topic to control the variables in mathematical models of
infectious disease. Moreover, a hybrid fractional operator which may be expressed as a linear combina-
tion of the Caputo fractional derivative and the Riemann–Liouville fractional integral is recently intro-
duced. This new operator is more general than the operator of Caputo’s fractional derivative.
Numerical techniques are very important tool in this area of research because most fractional order
problems do not have exact analytic solutions.
Objectives: A novel fractional order Coronavirus (2019-nCov) mathematical model with modified param-
eters will be presented. Optimal control of the suggested model is the main objective of this work. Three
control variables are presented in this model to minimize the number of infected populations. Necessary
control conditions will be derived.
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Methods: The numerical methods used to study the fractional optimality system are the weighted aver-
age nonstandard finite difference method and the Grünwald-Letnikov nonstandard finite difference
method.
Results: The proposed model with a new fractional operator is presented. We have successfully applied a
kind of Pontryagin’s maximum principle and were able to reduce the number of infected people using the
proposed numerical methods. The weighted average nonstandard finite difference method with the new
operator derivative has the best results than Grünwald-Letnikov nonstandard finite difference method
with the same operator. Moreover, the proposed methods with the new operator have the best results
than the proposed methods with Caputo operator.
Conclusions: The combination of fractional order derivative and optimal control in the Coronavirus
(2019-nCov) mathematical model improves the dynamics of the model. The new operator is more general
and suitable to study the optimal control of the proposed model than the Caputo operator and could be
more useful for the researchers and scientists.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease.
In December 2019, the disease was first identified in China and
rapidlied spread around that country and subsequently many
others countries. It is reported that the virus might be bat origin,
and the transmission of the virus might related to a seafood market
(Huanan Seafood Wholesale Market) exposure. The genetic fea-
tures and some clinical findings of the infection have been reported
recently [10].

The spread of infectious diseases has serious effects on human
society and healthy. The modeling study of infectious diseases is
very useful in making strategies to control diseases [9]. Recently,
many interesting papers in modeling the Coronavirus, see for
example ([11–15]).

In general, mathematical models involved by the known ordi-
nary differentiation could be used to capture dynamical systems
of infectious disease, when only initial conditions are used to pre-
dict future behaviors of the spread. However, when the situation is
unpredictable, which is the case of COVID-19, due to uncertainties
associated to the pandemic, ordinal derivatives and their associ-
ated integral operators show deficient. The fractional order differ-
ential equations (FODEs) models seem more consistent with the
real phenomena than the integer order models ([2–7]). This is
due to the fact that fractional derivatives and integrals enable
the description of the memory and hereditary properties inherent
in various materials and processes. Hence there is a growing need
to study and use the fractional order differential and integral equa-
tions. Moreover, the Caputo fractional derivative has been one of
the most useful operators for modeling non-local behaviors by
fractional differential equations [1].

Recently, Baleanu et. al., in [8] constructed a hybrid fractional
operator which may be expressed as a linear combination of the
Caputo fractional derivative and the Riemann–Liouville fractional
integral. This new operator is more general than the operator of
Caputo fractional derivative. In this work we will use this new
derivative with an efficient nonstandard finite difference method
(NSFDM) to study numerically the obtained fractional systems.
The technique of the NSFDM was firstly proposed by Mickens
[19]. Using this technique, some interesting real life applications
are studied in ([16,17,20]).

Moreover, one of the new topics in mathematics is the frac-
tional optimal control (FOC). FOC can be defined using varieties
types of fractional derivatives definitions. Riemann–Liouville and
Caputo fractional derivatives [20–23] can be considered the most
important fractional derivatives definitions. Interesting numerical
schemes for FOC are given in ([24–28]).

The main goal of this paper is to extend the mathematical
model of Coronavirus given in [11] by using new hybrid fractional
operator derivative. This operator can be written as a linear combi-
nation of a Riemann–Liouville integral with a Caputo derivative
(CPC). We will introduce three control variables in order to mini-
mize the number of the population of infected. Two numerical
methods will be constructed to approximate the obtained frac-
tional optimality system. These methods are: weighted average
nonstandard finite difference method (WANFDM) and the
Grünwald-Letnikov nonstandard finite difference method (GL-
NSFDM). Stability analysis of the proposed methods will be proved.
Comparative studies with Caputo derivative will be given.

To the best of our knowledge, a hybrid fractional optimal con-
trol for Coronavirus (2019-nCov) mathematical model has never
been explored.

The organization of this article is as follows: The main mathe-
matical formals will be given in Section ‘Preliminaries and nota-
tions’. The proposed model with new fractional order derivatives
and three controls are presented in Section ‘Fractional order model
of Coronavirus with control’. In Section ‘The FOCPs’, the formula-
tion of the optimal control problem and the necessary optimality
conditions are derived. In Section ‘Numerical method for solving
FOCPs’, the numerical methods and there stability analysis are
introduced. In Section ‘Numerical experiments’ numerical
experiments with discussion are given. Finally, the conclusions
are presented in Section ‘Conclusions’.
Preliminaries and notations

In this section, we recall some important definitions of the frac-
tional calculus used throughout the remaining sections of this
paper.

� Let 0 < a < 1;C be the Euler gamma function, then the Caputo
fractional order derivative is defined as follows [1]:
C
0D

a
t y tð Þ ¼ 1

C 1� að Þ
Z t

0
t � sð Þ�ay0 sð Þds; ð1Þ
� Let y tð Þ be an integrable function, 0 < a < 1, then the Riemann–
Liouville integral is defined as follows [1]:
RL
0 Da

t y tð Þ ¼ 1
C að Þ

Z t

0
t � sð Þa�1y sð Þds; ð2Þ
� The new type of fractional operator is defined as a hybrid frac-
tional operator from combining the proprotional and Caputo
definition [8]:
CP
0 Da

t y tð Þ ¼ 1
C að Þ

Z t

0
t � sð Þ�a K1 a; sð Þy sð Þ þ K0 a; sð Þy0 sð Þð Þds:

ð3Þ
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Table 1
The variables of system (6) [11].

The variable Description

R The class of recovery
H The class of hospitalized
E The class of exposed
I The class of symptomatic and infectious
S The class of susceptible
F The class of fatality
P The class of super-spreaders
A The class of infectious but asymptomatic

Table 2
The parameters values for the Coronavirus model [11].

Parameter Description Value (per
day�a)

ba Transmission coefficient from infected
individuals

2:55a

L Relative transmissibility of hospitalized
patients

1:56
dimensionless

ba1 Transmission coefficient due to super-
spreaders

7:65a

Ka Rate at which exposed become infectious 0:25a

q1 Rate at which exposed people become
infected I

0:580
dimensionless

q2 Rate at which exposed people become super-
spreaders

0:001
dimensionless

caa Rate of being hospitalized 0:94a

cai Recovery rate without being hospitalized 0:27a

car Recovery rate of hospitalized patients 0:5a

dai Disease induced death rate due to infected
class

3:5a

dap Disease induced death rate due to super-
spreaders

1a

dah Disease induced death rate due to
hospitalized class

0:3a
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Let the kernels are given as follows: K0 a; tð Þ ¼ aC2at 1�að Þ,
K1 a; tð Þ ¼ 1� að Þta,

where 0 < a < 1;C is constant. In the special case when K0 and K1

are independent of t, the new operators are given as follows:
Definition 2.1. The proprotial-Caputo hybrid operator is defined
either as general way [8]:

CP
0 Da

t y tð Þ ¼ 1
C að Þ

R t
0 t � sð Þ�a K1 a; sð Þy sð Þ þ K0 a; sð Þy0 sð Þð Þds;

¼ K1 a; tð Þy tð Þ þ K0 a; tð Þy0 tð Þð Þ � ta
C 1�að Þ

� �
:

ð4Þ

Or as the following simple expression [8]:

CPC
0 Da

t y tð Þ ¼ 1
C að Þ

R t
0 t � sð Þ�a K1 að Þy sð Þ þ K0 að Þy0 sð Þð Þds

¼ K1 að Þ RL
0 I1�at y tð Þ þ K0 að Þ C

0D
a
t y tð Þ;

ð5Þ

where, K1 að Þ;K0 að Þ are constants with respect to t and depending
only on a. Also, in this paper we consider the kernels as follows:

K0 að Þ ¼ aC2aQ 1�að Þ, K1 að Þ ¼ 1� að ÞQa, where Q is constant and
C ¼ 1.

Fractional order model of Coronavirus with control

Herein, we consider the recent Coronavirus spreading model
given in [11] using a new hybrid fractional order derivative. This
model consists of eight nonlinear differential equations. We
change the order of the equations to a, the dimension of the left-
hand side would be timeð Þ�a. In order to have the dimensions
match we should change the dimensions of the parameters. Also,
when a ! 1 the fractional order system reduces to classical one.
Three controls, uI;uP;uh are added in order to health care such as
isolating patients in private health rooms and providing respirators
and give them treatments soothing regularly. Let us assume that
dai ¼ dap ¼ dah ¼ 0. The description of all the variables given in
Table 1. Also, Table 2 describes the parameters. The CPC-
modified model is then represented as follows:

CPC
0 Da

t S ¼ �ba IS
N � Lba HS

N � ba1
PS
N ;

CPC
0 Da

t E ¼ ba IS
N þ Lba HS

N þ ba1
PS
N � KaE;

CPC
0 Da

t I ¼ Kaq1E� caa þ cai
� �

I � dai I � muII;
CPC
0 Da

t P ¼ Kaq2E� caa þ cai
� �

P � dapP � muPP;
CPC
0 Da

t A ¼ Ka 1� q1 � q2ð ÞE;
CPC
0 Da

t H ¼ caa I þ Pð Þ � car H � dahH � muhH þ 0:5muII þ 0:5muPP;
CPC
0 Da

t R ¼ cai I þ Pð Þ þ car H þ 0:5muII þ 0:5muPP þ muhH;
CPC
0 Da

t F ¼ dai I þ dapP þ dahH;

ð6Þ

where, 0 < m 6 1. The existence and uniqueness of the solutions of
(6) follow from the results given in [29]. The basic reproduction
number of the proposed model (6) is given as follows [11]:

R0 ¼ baq1 caaLþ vh

� �
vivh

þ baq2caaLþ q2b
a
1vh

vpvh
: ð7Þ

where, vi ¼ caa þ cai þ dai ;vp ¼ caa þ cai þ dap and vh ¼ car þ dah . The
endemic threshold is given at R0 ¼ 1 and indicates the minimal
transmission potential that sustains endemic disease, that is, when
R0 < 1, the disease will die out and for R0 > 1 the disease may
become endemic [30]. In this work we consider R0 > 1.

The FOCPs

Consider the system (6) in R8, let

X¼ uI :ð Þ;uP :ð Þ;uh :ð Þð ÞjuI;uP :ð Þ;uh are Lebsegue measurable on 0;1½ �;f

0 6 uI :ð Þ;uP :ð Þ;uh :ð Þ � 1;8t 2 0; Tf

� �g;
be the admissible control set. We will define the objective func-
tional as follows:

J uI;uP;uhð Þ ¼
Z Tf

0
I tð Þ þ H tð Þ þ B1u2

I tð Þ þ B2u2
P tð Þ þ B3u2

h tð Þ� �
dt:

ð8Þ
The aim now is to find uI tð Þ;uP tð Þ and uh tð Þ such that the following
cost functional is minimum:

J uI;uP;uHð Þ ¼
Z Tf

0
g t; S; E; I; P;A;H;R; F;uI;uP ;uhð Þdt; ð9Þ

subject to the constraints

CPC
a Da

t Wj ¼ ni: ð10Þ

Where

ni ¼ ni t; S; E; I; P;A;H;R; F;uI;uP ;uhð Þ; i; j ¼ 1; . . . ;8;
Wj ¼ S; E; I; P;A;H;R; Ff g;

W1ð0Þ ¼ S0;W2ð0Þ ¼ E0;W3ð0Þ ¼ I0;W4ð0Þ ¼ P0;W5ð0Þ ¼ A0;W6ð0Þ ¼
H0;W6ð0Þ ¼ R0;W6ð0Þ ¼ F0:
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We will use a kind of Pontryagin’s maximum principle in frac-
tional order case, this idea is given by Agrwal in [23]:

Consider a modified cost functional as follows [25]:

J
�
¼
Z Tf

0

"
H t; S; E; I; P;A;H;R; F; uI;uP ;uhð Þ

�
X8
i¼1

kini t; S; E; I; P;A;H;R; F;uI;uP ;uhð Þ
#
dt: ð11Þ

The Hamiltonian is define as follows:

H t; S;A; P; I; E;H;R; F;uI;uP ;uh; kið Þ
¼ g t; S;A; P; I; E;H;R; F; uI; uP; uh; kið Þ

þ
X8
i¼1

kini t; S; E; I; P;A;H;R; F;uI;uP;uhð Þ:
ð12Þ

From (11) and (12), we have:

CPC
t Da

tf
ki ¼ @H

@#i
; i ¼ 1; . . . ;8; ð13Þ

where,

#i ¼ t; S; E; I; P;A;H;R; F;uI;uP;uh; i ¼ 1; . . . ;8f g;

0 ¼ @H
@uk

; k ¼ I; P;h; ð14Þ

CPC
0 Da

t #i ¼
@H
@kj

; i ¼ 1; . . . ;8; ð15Þ

and it is also required that the Lagrange multipliers satisfies:

ki Tf

� � ¼ 0; i ¼ 1;2; . . . ;8: ð16Þ

Theorem 4.1. There exists optimal control variables u�
I ;u

�
P;u

�
h with

the corresponding solutions S�; E�; I�; P�;A�;H�;R�
p; F

�, that minimizes

J uI;up;uh
� �

over X. Furthermore, there exists adjoint variables ki ,
i ¼ 1;2;3; . . . ;8, satisfy the following:

(i) adjoint equations:

CPC
t Da

tf
k1 ¼ k1 �ba

I�

N
� Lba

H�

N
� ba1

P�

N

� 	

þ k2 ba
I�

N
þ Lba

H�

N
þ ba1

P�

N

� 	
;

CPC
t Da

tf
k2 ¼ �Kak2 þ k3K

aq1 þ Kaq2k4 þ Ka 1� q1 � q2ð Þk5;

CPC
t Da

tf
k3 ¼ �k1b

a S�
N þ k2b

a S�
N � k3 ca þ cai þ dai þ mu�

I

� �
þk6 caa þ 0:5mu�

I

� �þ cai þ 0:5mu�
I

� �
k7 þ dai k8;

CPC
t Da

tf
k4 ¼ �k1b

a
1
S�
N þ k2b

a
1
S�
N � k4 caa þ cai þ dap þ mu�

P

� �
þk6 caa þ 0:5mu�

P

� �þ cai þ 0:5mu�
P

� �
k7 þ dapk8;

CPC
t Da

tf
k6 ¼ �k1b

aL S�
N þ k2b

aL S�
N � k6 car þ dah þ caa þ mu�

h

� �� �
þk7 car þ mu�

P

� �þ dahk8;
ð17Þ

where
CPC
t Da

tf
k5 ¼ CPC

t Da
tf
k7 ¼ CPC

t Da
tf
k8 ¼ 0:

(ii) The transversality conditions

ki Tf

� � ¼ 0; i ¼ 1;2; . . . ;8: ð18Þ

(iii) Optimality conditions:

H S; E; I; P;A;H;R; F;uI;uP;uh; k; tð Þ ¼
min

06uI ;uP ;uh61
H S; E; I; P;A;H;R; F;uI;uP;uh; k; tð Þ: ð19Þ

Moreover:

u�
I ¼ min 1;max 0;

mI� k3 � 0:5k6 � 0:5k7ð Þ
B1


 �
 �
; ð20Þ

u�
P ¼ min 1;max 0;

mP� k4 � 0:5k6 � 0:5k7ð Þ
B2


 �
 �
; ð21Þ

u�
h ¼ min 1;max 0;

mH� k6 � k7ð Þ
B3


 �
 �
: ð22Þ
Proof. Eq. (17) can be obtained from (13, where:

H ¼ k1CPC0 Da
t S

� þ k2CPC0 Da
t E

� þ k3CPC0 Da
t I

�

þk4CPC0 Da
t P

� þ k5CPC0 Da
t A

� þ k6CPC0 Da
t H

�

þk7CPC0 Da
t R

� þ k8CPC0 Da
t F

�

þP� þ H� þ I� þ B1u�
I þ B2u�

P þ B3u�
h;

ð23Þ

is the Hamiltonian. kj Tf

� � ¼ 0, j ¼ 1; . . . ;8, are hold. Eqs. (20)–(22)
can be obtained from (19). h

Now, by substituting u�
I ;u

�
P;u

�
h in (6):

CPC
0 Da

t S
� ¼�ba I�S�

N �Lba H�S�
N �ba1

P�S�
N ;

CPC
0 Da

t E
� ¼ ba I�S�

N þLba H�S�
N þba1

P�S�
N �KaE�;

CPC
0 Da

t I
� ¼Kaq1E

� � caa þcai
� �

I� �dai I
� �mu�

I I
�;

CPC
0 Da

t P
� ¼Kaq2E

� � caa þcai
� �

P� �dapP
� �mu�

PP
�;

CPC
0 Da

t A
� ¼K 1�q1�q2ð ÞE�;

CPC
0 Da

t H
� ¼ caa I� þP�ð Þ�car H

� �dahH
� �muhH

� þ0:5mu�
I I

� þ0:5mu�
PP

�;
CPC
0 Da

t R
� ¼ cai I� þP�ð Þþcar H

� þmu�
hH

� þ0:5mu�
I I

� þ0:5mu�
PP

�;
CPC
0 Da

t F
� ¼ dai I

� þdapP
� þdahH

�:

ð24Þ
Numerical method for solving FOCPs

NWAFDM

Let us consider the following fractional order differential equa-
tion with the hybrid fractional operator:

CP
0 Da

t y tð Þ ¼ n t; y tð Þð Þ; 0 < a 6 1; y 0ð Þ ¼ y0: ð25Þ
We can discretize (25) by using definition (3) as follows:

1
/ sð Þa�1C 2�að Þ

Xn
i¼0

1� að Þtai yn�iþ1 þ aC2at 1�að Þ
i

yn�iþ1�yn�i
/ sð Þ

� �

� iþ 1ð Þ 1�að Þ � ið Þ 1�að Þ
h i

¼ Hn tnþ1; y tnþ1ð Þð Þ þ 1�Hð Þn tn; y tnð Þð Þ;
ð26Þ
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where,

/ sð Þ ¼ sþ O s2
� �

; 0 < / sð Þ < 1; s�!0:

Also, we can discretize (25) by using definition (5) and using GL-
approximation to approximate the Caputo fractional derivatives:

Qa 1�að Þ
/ sð Þa�1C 2�að Þ

Xnþ1

i¼0

yn�iþ1 iþ 1ð Þ 1�að Þ � ið Þ 1�að Þ
h i

þ aC2aQ 1�að Þ

/ sð Þa ynþ1 �
Xnþ1

i¼1

liynþ1�i � qnþ1y0

 !

¼ Hn tnþ1; y tnþ1ð Þð Þ þ 1�Hð Þn tn; y tnð Þð Þ;

ð27Þ

where, K0 að Þ ¼ aC2aQ 1�að Þ, K1 að Þ ¼ 1� að ÞQa;x0 ¼ 1;xi ¼
1� a

i

� �
xi�1, tn ¼ ns; s ¼ Tf

Nn
, Nn 2 N. li ¼ �1ð Þi�1 a

i

� 	
,

l1 ¼ a, qi ¼ ia

C 1�að Þ and i ¼ 1;2; . . . ;nþ 1. Additionally, consider

([18,24]):
Fig. 1. Numerical simulations of the variables I; P and H with and without controls at a ¼ 0:95; Tf ¼ 15 and H ¼ 0:5 using scheme (27).
0 < liþ1 < li < . . . < l1 ¼ a < 1;

0 < qiþ1 < qi < . . . < q1 ¼ 1
C 1� að Þ :

The main advantage of this method is it can be explicit i. e., H ¼ 0ð Þ
or implicit i. e., 0 < H < 1ð Þ or fully implicit i. e., H ¼ 1ð Þ, the advan-
tage of implicit case is it has large stability regions by using the idea
of the weighed step introduced by the nonstandard finite difference
method. In this article we will use the method given in (27).

Remark 1. In (27), if we put K0 að Þ ¼ 1 and K1 að Þ ¼ 0, we obtained
the discretization of the Caputo fractional derivative as follows:

1
/ sð Þa ynþ1 �

Xnþ1

i¼1

liynþ1�i � qnþ1y0

 !

¼ Hn tnþ1; y tnþ1ð Þð Þ þ 1�Hð Þn tn; y tnð Þð Þ;
ð28Þ



Table 3
Comparison between the values of objective functional with and without controls, for
Tf ¼ 60, using scheme (27) and H ¼ 1.

a J u�
I ;u

�
P ;u

�
h

� �
J u�

I ;u
�
P ;u

�
h

� �
with 3

controls
J u�

I ;u
�
P ;u

�
h

� �
with 3

controls
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GL-NSFDM

We can rewrite the relation (5) in another way as follows:

CPC
0 Da

t y tð Þ ¼ 1
C að Þ

R t
0 t � sð Þ�a K1 að Þy sð Þ þ K0 að Þy0 sð Þð Þds;

¼ K1 að ÞRL0 I1�at y tð Þ þ K0 að ÞC0Da
t y tð Þ;

¼ K1 að ÞRL0 Da�1
t y tð Þ þ K0 að ÞC0Da

t y tð Þ;
ð29Þ

where, K1 að Þ;K0 að Þ are constant with respect to t and depending
only on a. Using GL-approximation and NSFDM, we can discretize
(29) as follows:

CPC
0 Da

t y tð Þjt¼tn ¼
K1 að Þ
/ sð Þa�1 ynþ1 þ

Xnþ1

i¼1

xiynþ1�i

 !

þ K0 að Þ
/ sð Þa ynþ1 �

Xnþ1

i¼1

liynþ1�i � qnþ1y0

 !
; ð30Þ

K1 að Þ
/ sð Þa�1 ynþ1 þ

Xnþ1

i¼1

xiynþ1�i

 !

þ K0 að Þ
/ sð Þa ynþ1 �

Xnþ1

i¼1

liynþ1�i � qnþ1y0

 !
¼ n y tnð Þ; tnð Þ;

ð31Þ

where,

/ sð Þ ¼ sþ O s2
� �

; 0 < / sð Þ < 1; M tð Þ�!0;

x0 ¼1;xi ¼ 1� a
i

� �
xi�1, tn ¼ ns; s ¼ Tf

Nn
, Nn is a natural number.

li ¼ �1ð Þi�1 a
i

� 	
, l1 ¼ a, qi ¼ ia

C 1�að Þ and i¼1;2; . . . ;nþ1.

Additionally, let us assume that [18]:

0 < liþ1 < li < . . . < l1 ¼ a < 1;

0 < qiþ1 < qi < . . . < q1 ¼ 1
C 1� að Þ :
without
control

/ sð Þ ¼ 1� e�sð Þ / sð Þ ¼ 0:1 1� e�sð Þ

1 5:9739� 104 3:2372� 104 2:0261� 103

0:97 4:9343� 104 2:6898� 104 3:0983� 103

0:92 3:4850� 104 1:9303� 104 4:7571� 103

0:85 2:0857� 104 1:1886� 104 7:2660� 103

0:70 2:5082� 103 630:4559 373:6541
Stability of NWAFDM

In the following we will show that the NWAFDM in case
0 < H 6 1 (implicit case) is unconditionally stable. In order to inves-
tigate the stability of the proposed method when H – 0ð Þ, consider
the following test problem of linear fractional differential equation:
Fig. 2. Numerical simulations of the variables I and H with and without
CPC
0 Da

t

� �
y tð Þ ¼ Ay tð Þ; t > 0; 0 < a 6 1; A < 0: ð32Þ

Let y tnð Þ ¼ yn is the approximate solution of this equation then
using GL-NFDMwith (29) we rewrite Eq. (32) in the following form:

¼ Qa 1�að Þ
/ sð Þa�1C 2�að Þ

Xnþ1

i¼0

yn�iþ1 iþ 1ð Þ 1�að Þ � ið Þ 1�að Þ
h i

þ C2aaQ 1�að Þ

/ sð Þ að Þð Þ ynþ1 �
Xnþ1

i¼1

liynþ1�i � qnþ1y0

 !

¼ HAynþ1 þ 1�Hð ÞAyn;

ð33Þ

put,

g1¼
Qa 1�að Þ

/ sð Þa�1C 2�að Þ
; Wa¼ iþ1ð Þ 1�að Þ � ið Þ 1�að Þ

h i
; g2¼

C2aaQ 1�að Þ

/ sð Þ að Þ
� � :

We can write (33) as follows:

g1

Xnþ1

i¼0

yn�iþ1W
a þ g2 ynþ1 �

Xnþ1

i¼1

liynþ1�i � qnþ1y0

 !

¼ HAynþ1 þ 1�Hð ÞAyn:
ð34Þ

Then,

g1ynþ1 þ g1

Xn
i¼1

yn�iþ1W
a þ g2 ynþ1 �

Xnþ1

i¼1

liynþ1�i � qnþ1y0

 !

¼ HAynþ1 þ 1�Hð ÞAyn;
ð35Þ
controls at a ¼ 0:95 and Tf ¼ 100 and H ¼ 0:5 using scheme (27).



Table 4
Comparison between the values of objective functional with three controls, for
Tf ¼ 90, using WANFDM (27), H ¼ 0.

The operator of fractional a J u�
I ;u

�
P ;u

�
h

� �
with 3 controls

CPC (27) 1 3:2651� 104

CPC (31) 3:2651� 104

Caputo(28) 3:2651� 104

CPC (27) 0:99 3:0977� 104

CPC (31) 3:0911� 104

Caputo(28) 3:3816� 104

CPC (27) 0:80 6:7811� 103

CPC (31) 9:1050� 103

Caputo(28) 3:9292� 104

CPC (27) 0:75 4:1461� 103

CPC (31) 4:3852� 103

Caputo(28) 3:0509� 104

CPC (27) 0:7 816:10564
CPC (31) 2:0535� 103

Caputo(28) 1:7234� 104

Fig. 3. Numerical simulations of I and R with control case at a ¼

Fig. 4. Numerical simulations of R tð Þ with co
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ynþ1 ¼
1�Hð ÞAyi � g1

Xn
i¼1

yn�iþ1W
a þ g2

Xnþ1

i¼1

liynþ1�i þ qnþ1y0

 ! !

g1 þ g2 �HAð Þ ;

ð36Þ
we have 1

g1þg2�HAð ÞÞ < 1, hence

y1 6 y0;

y0 P y1 P . . . P yn�1 P yn P ynþ1:

So the proposed implicit scheme is stable.

Stability of GL-NSFDM

In order to investigate the stability of the proposed method 37
consider the test problem of linear fractional differential Eq. (32).
Using GL-approximation and NSFDM (29) we can discretize (32)
as follows:

K1 að Þ
/ sð Þa�1 ynþ1 þ

Xnþ1

i¼1

xiynþ1�i

 !

þ K0 að Þ
/ sð Þa ynþ1 �

Xnþ1

i¼1

liynþ1�i � qnþ1y0

 !
¼ Ayn; ð37Þ
0:98 and Tf ¼ 45 and H ¼ 1 using schemes (27) and (28).

ntrol case using schemes (31) and (27).
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put C ¼ K1 að Þ
/ sð Þa�1, B ¼ K0 að Þ

/ sð Þa . Then, we have:

ynþ1 ¼ 1
C þ B

Ayn � C
Xnþ1

i¼1

xiynþ1�i þ B
Xnþ1

i¼1

liynþ1�i þ qnþ1y0

 ! !
;

ð38Þ
since, C þ B > 1 then we have: y1 < y0 and y0 P y1 P . . . P
yn�1 P yn P ynþ1. So the proposed scheme is stable.
Fig. 5. Numerical simulations of the all variables of system (6)
Numerical experiments

In the following, numerical simulations for the models (17) and
(24) without and with optimal control are presented. Two schemes
(27), (31) are presented to solve the proposed model with the
following initial conditions [11]: S 0ð Þ ¼ N � 6;R 0ð Þ ¼ 0;A 0ð Þ ¼ 0;
F 0ð Þ ¼ 0; E 0ð Þ ¼ 0; P 0ð Þ ¼ 5; I 0ð Þ ¼ 1;H 0ð Þ ¼ 0. Then by using the
nonstandard implicit finite difference method [27] we will solve
with and without controls at a ¼ 0:99 using scheme (31).
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the co-state Eq. (17) with the transversality conditions (18). The
controls are updated by using a convex combination of the previ-
ous controls and the value from the characterizations of u�

I ;u
�
P

and u�
h . This process is reiterated and the iteration is ended if

the current state, the adjoint state, and the control values converge
sufficiently. In this case we use different values of 0 < a 6 1 with
B1 ¼ 100;B2 ¼ 50, and B3 ¼ 100; m ¼ 1. In the numerical simula-
tions the time level is chosen in days.
Fig. 6. Numerical simulations of the all variables of system (6)
Fig. 1 demonstrate the effective of three controls case for the
proposed model (6) using the scheme WANFDM (27) at final
time equal 15 and H ¼ 0:5 . We noted that in uncontrolled case,
the number of the population of I; P;H are increasing, while the
number of these population are decreasing in controlled case in
the same interval. Moreover, when the final time equal 100, as
we can see in Fig. 2 the population number of I; P;H are increas-
ing in interval 0;25ð Þ, in uncontrolled case while the number of
at different a and three controls case using scheme (31).



158 N.H. Sweilam et al. / Journal of Advanced Research 32 (2021) 149–160
these population are decreasing in controlled case in the same
interval.

Table 3 reports the cost functional values for the scheme (27) at
fully implicit case with and without controls at different a and
/ sð Þ. We have the best results in controlled case at
/ sð Þ ¼ 0:1 1� e�sð Þ.

A comparison between cost functional values derived by three
schemes (27), (28) and (31) with three controls at Tf ¼ 90, is given
in Table 4, where the scheme (28) is a special case for the schemes
(27) and (31) when we put K0 ¼ 1;K1 ¼ 0. We concluded that
when a ¼ 1, all schemes give the same result of the objective func-
tional, also in interval 0 < a < 0:8 the difference of the schemes are
very small and almost the scheme (31) gives the best results, while
at interval 0:8 < a < 0:7 the scheme (27) gives the best results.
This mean that the new operator derivative CPC is more general
and suitable to study the optimal control of the biological phenom-
ena than the Caputo operator derivative.

Fig. 3 shows how the behavior of I and R are change when we
use the general scheme (27) with the new operator derivative
CPC and the Caputo derivative. We noted that the results which
Fig. 7. Numerical simulations of I; P and H at different a a
obtained by (27) are the best, because the number of I which
obtained by (27) is less than the number of I which obtained by
(28), also, the number of R which obtained by (27) is bigger than
the number of R which obtained by (28). This mean that, the
new operator CPC is more suitable to describe the biological phe-
nomena than the Caputo operator.

Fig. 4 shows comparesion between the results obtained by the
two schemes (27) and (31) at a ¼ 0:98 and a ¼ 0:8. We noted that
at a ¼ 0:8, the number of R which obtained by scheme (27) is big-
ger than the number of R which obtained by (31), this mean that,
the scheme (27) is the best to study the optimal control problems.

Fig. 5 shows the behavior of the solutions for the proposed
model (6) using (31) in controlled and uncontrolled cases. Fig. 6
shows how the behavior of the solutions in control case are chang-
ing by using different values of a and Tf ¼ 90 using (31). Fig. 7
shows how the behavior of the solutions I; P and H in control case
are changing by using different values of a and Tf ¼ 300 using (27).

Fig. 8 shows the evolution of the approximate solutions for the
control variables with several values of a. We noted that the range
of the solutions remain between zero and one.
nd three controls case using scheme (27) and H ¼ 1.



Fig. 8. Numerical simulations of uI ;uP and uh for the system (6) at (a)a ¼ 0:8 and Tf ¼ 300 and (b) a ¼ 0:7 and Tf ¼ 90 using scheme (27) and H ¼ 1.

Table 5
Comparison between the values of I; P and H with and without controls, Tf ¼ 30, using WANFDM (27), H ¼ 0:5.

The Controls a I P H

With 1 489:5754 5:1367� 103 633:4476

Without 581:1148 1:6621� 104 1:3685� 103

With 0:98 448:6273 3:7270� 103 474:3764

Without 636:5596 1:5491� 104 1:6026� 103

With 0:90 127:7800 1:0190� 103 127:7851

Without 1:1239� 103 1:0617� 103 1:9801� 103

With 0:8 28:0352 244:5881 27:5343
Without 85:8616 4:3370� 103 1:0642� 103

N.H. Sweilam et al. / Journal of Advanced Research 32 (2021) 149–160 159



Table 6
CPU time in seconds for the solution of optimality systems at different values of a and
H ¼ 0.

a CPU time of CPC (27) CPU time of CPC (31) CPU time of Caputo
(28)

1 2.457034 2.445327 2.561605
0.98 4.661529 2.191416 4.807198
0.90 4.936312 2.176197 4.983086
0.8 4.984231 2.130180 4.965147
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Table 5 reports the values of the objective functional obtained
by the scheme (27) with and without controls at different values
of a, H ¼ 0:5. Table 6 shows the CPU time for the optimality sys-
tems using NWAFDM (27) and GL-NSFDM(31) with CPC definition
and NWAFDM (28) with Caputo definition at different values of a.
We noted that the second method GL-NSFDM is faster than the
first and third methods.

Conclusions

In the present work, the optimal control of Coronavirus model
with new fractional operator is presented. This operator can be
written as a linear combination of a Riemann–Liouville integral
with a Caputo derivative. This dynamical model is more suitable
to describe the biological phenomena with memory than the inte-
ger order model. Three control variables, uI tð Þ;up tð Þ and uh tð Þ are
introduced in order to health care such as isolating patients in pri-
vate health rooms and providing respirators and give them treat-
ments soothing regularly. These have been implemented to
minimize the number of infected population. Necessary optimality
conditions are derived. Also, the combination of fractional order
derivative and optimal control in the model improves the dynam-
ics and increases complexity of the model. Two schemes are con-
structed to study the behavior of the proposed problems. We can
conclude from the obtained numerical results that the new opera-
tor derivative CPC is more general and suitable to study the opti-
mal control of the biological phenomena than the Caputo
operator derivative. Moreover, the WANFDM (27) is depending
on the values of the factor H, it can be explicit or implicit with
large stability regions. This scheme is the best for solve the
obtained fractional optimality system. Numerical simulations are
presented to support our theoretical findings. Moreover, the CPC
fractional derivative provides best results and could be more useful
for the researchers and scientists.
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